A NOTE ON R-EQUITABLE K-COLORINGS OF TREES

Alain HERTZ
Ecole Polytechnique de Montréal and GERAD
Montréal, Canada
alain.hertz@gerad.ca

Bernard RIES
PSL, Université Paris-Dauphine
75775 Paris Cedex 16, France
CNRS, LAMSADE UMR 7243
bernard.ries@dauphine.fr

Received: July 2013 / Accepted: November 2013

Abstract: A graph $G = (V, E)$ is r-equitably k-colorable if there exists a partition of V into k independent sets V_1, V_2, \ldots, V_k such that $|V_i| - |V_j| \leq r$ for all $i, j \in \{1, 2, \ldots, k\}$. In this note, we show that if two trees T_1 and T_2 of order at least two are r-equitably k-colorable for $r \geq 1$ and $k \geq 3$, then all trees obtained by adding an arbitrary edge between T_1 and T_2 are also r-equitably k-colorable.

Keywords: Trees, equitable coloring, independent sets.

MSC: 05C15, 05C69.

1 INTRODUCTION

All graphs in this paper are finite, simple and loopless. Let $G = (V, E)$ be a graph. We denote by $|G|$ its order, i.e., the number of vertices in G. For a vertex $v \in V$, let $N(v)$ denote the set of vertices in G that are adjacent to v. $N(v)$ is called the neighborhood of v and its elements are neighbors of v. The degree of vertex v, denoted by $\text{deg}(v)$, is the number of neighbors of v, i.e., $\text{deg}(v) = |N(v)|$. $\Delta(G)$ denotes the maximum degree of G, i.e., $\Delta(G) = \max\{\text{deg}(v) | v \in V\}$. For a set $V' \subseteq V$, we denote by $G - V'$ the graph obtained from G by deleting all vertices in V' as well as all edges incident to at least one vertex of V'.

An independent set in a graph $G = (V, E)$ is a set $S \subseteq V$ of pairwise nonadjacent vertices. The maximum size of an independent set in a graph $G = (V, E)$ is called the independence number of G and denoted by $\alpha(G)$.

A k-coloring c of a graph $G = (V, E)$ is a partition of V into k independent sets which we will denote by $V_1(c), V_2(c), \ldots, V_k(c)$ and refer to as color classes.
The cardinality of a largest color class with respect to a coloring \(c \) will be denoted by \(\text{Max}_c \). A graph \(G \) is \(r \)-equitably \(k \)-colorable, with \(r \geq 1 \) and \(k \geq 2 \), if there exists a \(k \)-coloring \(c \) of \(G \) such that \(| |V_i(c)| - |V_j(c)| | \leq r \) for all \(i, j \in \{1, 2, \cdots, k\} \). Such a coloring is called an \(r \)-equitable \(k \)-coloring of \(G \). A graph which is 1-equitably \(k \)-colorable is simply said to be \(\text{equitably} \ k \)-colorable.

The notion of equitable colorability was introduced in [8] and has been studied since then by many authors (see [2, 3, 4, 5, 6, 7, 9]). In [3], the authors gave a complete characterization of trees which are equitably \(k \)-colorable. This result was then generalized to forests in [2]. More precisely, for a forest \(F = (V, E) \), let \(\alpha^*(F) = \min\{\alpha(F - N[v])| v \in V \text{ and } \deg(v) = \Delta(F)\} \)

Theorem 1.1 ([2]) Suppose \(F = (V, E) \) is a forest and \(k \geq 3 \) is an integer. Then \(F \) is \(\text{equitably} \ k \)-colorable if and only if \(k \geq \lceil \frac{|F|+1}{\alpha^*(F)+2} \rceil \).

This result can easily be generalized to \(r \)-equitable \(k \)-colorings.

Theorem 1.2 ([1]) Suppose \(F = (V, E) \) is a forest and \(r \geq 1, k \geq 3 \) are two integers. Then \(F \) is \(r \)-equitably \(k \)-colorable if and only if \(k \geq \lceil \frac{|F|+r}{\alpha^*(F)+r+1} \rceil \).

Proof: Suppose \(F \) is \(r \)-equitably \(k \)-colorable for \(r \geq 1 \) and \(k \geq 3 \). Let \(v \) be a vertex in \(F \) such that \(\deg(v) = \Delta(F) \) and \(\alpha(F - N[v]) = \alpha^*(F) \). Clearly, for such a coloring, there are at most \(\alpha^*(F) + 1 \) vertices in the color class that contains \(v \).

It follows that all other color classes contain at most \(\alpha^*(F) + r + 1 \) vertices. Thus \(|F| \leq \alpha^*(F) + 1 + (k - 1)(\alpha^*(F) + r + 1) = k(\alpha^*(F) + r + 1) - r \), and we therefore have \(k \geq \lceil \frac{|F|+1}{\alpha^*(F)+r+1} \rceil \).

Conversely, let \(k \geq \lceil \frac{|F|+r}{\alpha^*(F)+r+1} \rceil \). Consider the forest \(F' = (V', E') \) obtained from \(F \) by adding \(r-1 \) new isolated vertices. Then \(|F'| = |F|+r-1 \) and \(\alpha^*(F') = \alpha^*(F) + r-1 \). Thus \(k \geq \lceil \frac{|F'|+r}{\alpha^*(F')+r+1} \rceil = \lceil \frac{|F'|+1}{\alpha^*(F')+2} \rceil \). By Theorem 1.1, \(F' \) is \(\text{equitably} \ k \)-colorable. Restricting the color classes to \(V \) gives an \(r \)-equitable \(k \)-coloring of \(F \).

In this note, we are interested in a different sufficient condition for a tree to be \(r \)-equitably \(k \)-colorable. More precisely, given a tree \(T = (V, E) \) and an edge \(e \in E \) such that its removal from \(T \) creates two trees \(T_1 \) and \(T_2 \) of order at least two, we show that if both \(T_1 \) and \(T_2 \) are \(r \)-equitably \(k \)-colorable, for \(r \geq 1 \) and \(k \geq 3 \), then \(T \) is also \(r \)-equitably \(k \)-colorable. We also explain why \(|T_1|, |T_2| \geq 2 \) and \(k \geq 3 \) are necessary conditions.

2 A SUFFICIENT CONDITION

Consider a tree \(T \) and two integers \(r \geq 1 \) and \(k \geq 3 \). Let \(c \) be an arbitrary \(r \)-equitably \(k \)-coloring of the vertex set of \(T \) such that \(|V_i(c)| \geq |V_j(c)| \geq \cdots \geq |V_k(c)| \). Then there may be vertices in \(T \) which are forced to be colored with color \(k \). Indeed, if for instance \(T \) is a star on \((k-1)r + k \) vertices, then the vertex \(v \) of degree \(\geq 1 \) necessarily belongs to \(V_k(c) \) and actually \(V_k(c) = \{v\} \). Furthermore, we have \(|V_i(c)| = r + 1 \) for \(i \in \{1, 2, \cdots, k-1\} \). It turns out that this is no longer true for colors \(1, 2, \cdots, k-1 \), as shown in the following property.

Lemma 2.1 Consider an \(r \)-equitably \(k \)-colorable tree \(T \) of order at least two, where \(r \geq 1 \) and \(k \geq 3 \). Also, let \(\ell \) be any element in \(\{1, 2, \cdots, k-1\} \). Then, for any vertex \(u \) in \(T \), there exists an \(r \)-equitable \(k \)-coloring \(c \) of \(T \) with \(|V_i(c)| \geq |V_j(c)| \) for all \(1 \leq i < j \leq k \) such that \(u \notin V_i(c) \).
Suppose the lemma is false. We then clearly have $|T| \geq 3$. Let c be an r-equitable k-coloring of T with $|V_i(c)| \geq |V_j(c)|$ for all $1 \leq i < j \leq k$. Among all such colorings we choose one such that, for each $t = 1, 2, \ldots, k$, there is no r-equitable k-coloring c' of T with $|V_t(c)| = |V_t(c')|$ for $i = 1, 2, \ldots, t - 1$ and $\max_{t=1}^k(|V_t(c')|) < |V_t(c)|$. In other words, $\text{Max}_c = |V_1(c)|$ is minimum among all r-equitable k-colorings of T, $|V_2(c)|$ is minimum among all r-equitable k-colorings c' of T with $\text{Max}_c = \text{Max}_{c'}$, and so on.

Let $\ell \in \{1, 2, \ldots, k - 1\}$ be an integer for which the lemma does not hold. We define $x = 1$, $y = 2$, $z = 3$ if $\ell = 1$, and $x = \ell - 1$, $y = \ell$, $z = \ell + 1$ if $\ell > 1$. Since we assume that the lemma is false, it follows that $u \in V_t(c)$, which means that $u \in V_{2t}(c)$ if $\ell = 1$ and $u \in V_{2\ell}(c)$ if $\ell > 1$. Then $|V_{2t}(c)| > |V_{2\ell}(c)|$, otherwise we could assign color x to all vertices in $V_{2t}(c)$ and color y to all vertices in $V_{2\ell}(c)$ to obtain an r-equitable k-coloring c' with $u \notin V_{2\ell}(c')$, a contradiction. Similarly, we must have $|V_{2\ell}(c)| > |V_{2t}(c)|$ when $\ell > 1$ since otherwise we could assign color y to all vertices in $V_{2\ell}(c)$ and color z to all vertices in $V_{2t}(c)$, and thus the lemma would hold.

We define F as the subgraph of T induced by $V_{2t}(c) \cup V_{2\ell}(c) \cup V_{2t}(c)$. If F is disconnected, we add some edges to make F become a tree T' such that no two adjacent vertices have the same color with respect to c; otherwise we set $T' = F$. Let V' denote the vertex set of T'. Moreover, for $q = y$ or z, we denote $\overline{q} = y + z - q$. This implies that $\overline{\overline{q}} = \overline{y} = q = \overline{q} + \overline{z} - \overline{q} = z$. We start by proving the following two claims.

Claim 1: There exists no r-equitable 3-coloring c' of T' (using colors x, y, z) with $c'(u) = c(u)$, $|V_{2t}(c')| = |V_{2t}(c)| - 1$, $|V_{2\ell}(c')| = |V_{2\ell}(c)| + 1$ and $|V_{\overline{z}}(c')| = |V_{\overline{z}}(c)|$ for $q = y$ or z.

Indeed, if such a coloring c' exists, then the assumption on c implies $|V_{2t}(c')| = |V_{2t}(c)| > |V_{2\ell}(c')|$. Now we can obtain an r-equitable k-coloring c^* of T by letting $V_{2t}(c^*) = V_{2t}(c')$, $V_{2\ell}(c^*) = V_{2\ell}(c')$, and $V_{\overline{z}}(c^*) = V_{\overline{z}}(c')$ if $i \neq x, q$. We distinguish two cases:

- If $\ell = 1$, we have $|V_1(c^*)| > \max_{t=2}^k(|V_t(c^*)|)$ and $u \notin V_1(c^*)$.
- If $\ell > 1$, we have $q = y$ since otherwise $|V_2(c')| = |V_2(c)| + 1 = |V_2(c)|$ which contradicts $|V_{2t}(c)| > |V_{2\ell}(c)| > |V_{2t}(c)|$. Then $|V_1(c^*)| \geq \cdots \geq |V_{2t-1}(c^*)| > |V_{2t}(c')| \geq |V_{2t+1}(c')| \geq \cdots \geq |V_{k}(c^*)|$ and $u \notin V_{2t-1}(c')$. Thus, in both cases, c^* is an r-equitable k-coloring of T such that $|V_1(c^*)| \geq |V_j(c^*)|$ for all $1 \leq i < j \leq k$ and $u \notin V_{2t}(c^*)$, a contradiction.

Claim 2: No leaf of T', except possibly u, is in $V_{2\ell}(c)$.

Indeed, assume T' has a leaf $v \neq u$ in $V_{2\ell}(c)$ and let w be its unique neighbor in T'. We can change the color of v from x to $c(w)$ to obtain an r-equitable 3-coloring c' of T' with $c'(u) = c(u)$, $|V_{2t}(c')| = |V_{2t}(c)| - 1$, $|V_{\overline{z}}(c')| = |V_{\overline{z}}(c)| + 1$ and $|V_{\overline{z}}(c')| = |V_{\overline{z}}(c')|$, contradicting Claim 1.

Let $\text{vec}T$ be the oriented rooted tree obtained from T' by orienting the edges from root u to the leaves. Let us partition the vertices in $V_{2\ell}(c)$ into subsets U_1, \ldots, U_p such that U_q ($q = 1, 2, \ldots, p$) contains all vertices in $V_{2\ell}(c)$ having no successor in $V_{2\ell}(c)$, i.e., $|\bigcup_{j=1}^{p-1} U_j| = 1$. For a vertex $v \in U_1$, let $L(v)$ denote the set of leaves in $\text{vec}T$ having v as predecessor.
In summary, we have Let an arbitrary edge between vertices in $V'_z(c)$, which means that $V_q(c) = V_z(c) = \emptyset$ since $|V_q(c)| > |V_z(c)| \geq |V_z(c)|$. Thus T' has only one vertex, namely u, and since $u \in V_1(c)$ this implies that T has only one vertex, a contradiction. Hence $v \neq u$.

Let w be the predecessor of v in $\text{vec}T$:

- If $c(w) = c(s_1)$, we change the color of v to $c(w)$ to obtain an r-equitable 3-coloring c' of T' with $c'(u) = c(u)$, $|V_z(c')| = |V_z(c)| - 1$, $|V_{c(w)}(c')| = |V_{c(w)}(c)| + 1$ and $|V_{c(w)}(c')|$, contradicting Claim 1;

- If $c(w) \neq c(s_1)$, we assign color $c(s_1)$ to v, color $c(s_{j+1})$ to s_j ($j = 1, 2, \ldots, a-1$), and color x to s_a; we obtain an r-equitable 3-coloring c' of T' with $|V_z(c')| = |V_z(c)|(i = x, y, z)$, $c'(u) = c(u)$ and a leaf $s_a \in V_z(c')$. But this contradicts Claim 2.

We therefore conclude that $|L(v)| \geq 2$ for all $v \in U_1$. By denoting $W_1 = \bigcup_{v \in U_1} L(v)$, we get $|W_1| \geq 2|U_1|$. For each set U_q, with $q > 1$, we will now construct a set W_q containing vertices in $V'_y(c) \cup V_z(c)$ that are successors of vertices in U_q but not successors of vertices in U_{q-1}. So let v be any vertex in U_q ($q > 1$). If v has at least 2 immediate successors in $\text{vec}T$, we add two of them to W_q. If v has a unique immediate successor in $\text{vec}T$, then let $P = v \rightarrow s_1 \rightarrow \cdots \rightarrow s_a \rightarrow v'$ denote a path from v to a vertex $v' \in U_{q-1}$. If $a > 1$, we add s_1 and s_2 to W_q. If $a = 1$ and s_1 has an immediate successor $w \notin V_z(c)$, then we add s_1 and w to W_q. Assume now that $a = 1$ and all the immediate successors of s_1 are in $V_z(c)$. We will prove that such a case is not possible.

- If $v \neq u$, then v has a predecessor w in $\text{vec}T$. We must have $c(w) = c(s_1)$, otherwise we could assign color $c(s_1)$ to v to obtain an r-equitable 3-coloring c' of T' with $c'(u) = c(u)$, $|V_z(c')| = |V_z(c)| - 1$, $|V_{c(s_1)}(c')| = |V_{c(s_1)}(c)| + 1$ and $|V_{c(s_1)}(c')|$, contradicting Claim 1. But now we can assign color $c(s_1)$ to v and assign color $c(s_1)$ to s_1 to obtain an r-equitable 3-coloring c' of T' with $c'(u) = c(u)$, $|V_z(c')| = |V_z(c)| - 1$, $|V_{c(s_1)}(c')| = |V_{c(s_1)}(c)| + 1$ and $|V_{c(s_1)}(c')|$, contradicting Claim 1.

- If $v \equiv u$, then $\ell = 1$ since $u \in V_z(c)$. By assigning color $c(s_1)$ to u and color $c(s_1)$ to s_1, we obtain an r-equitable 3-coloring c' of T' with $|V_z(c')| = |V_z(c)| - 1$, $|V_{c(s_1)}(c')| = |V_{c(s_1)}(c)| + 1$ and $|V_{c(s_1)}(c')| = |V_{c(s_1)}(c)|$. It follows from the assumptions on c that $|V_{c(s_1)}(c')| = |V_z(c)| > |V_{c(s_1)}(c)| = |V_{c(s_1)}(c')|$. Thus the lemma would hold, a contradiction.

In summary, we have $|W_q| \geq 2|U_q|$. Since all sets W_q are disjoint, we have

$$|V_y(c)| + |V_z(c)| \geq \sum_{q=1}^p |W_q| \geq \sum_{q=1}^p 2|U_q| = 2|V_z(c)|.$$

Hence $|V_y(c)|$ or $|V_z(c)|$ is larger than or equal to $|V_z(c)|$, a contradiction.

Lemma 2.1 allows us to show our main result.

Theorem 2.2 Let T_1 and T_2 be two trees or order at least two. If both T_1 and T_2 are r-equitably k-colorable for $r \geq 1$ and $k \geq 3$, then a tree T obtained by adding an arbitrary edge between T_1 and T_2 is also r-equitably k-colorable.
Proof: Consider an r-equitable k-coloring c of T_1 and an r-equitable k-coloring c' of T_2 such that $|V_i(c)| ≥ |V_j(c')|$ and $|V_i(c')| ≥ |V_j(c')|$ for all $1 ≤ i < j ≤ k$. Let u be a vertex in T_1 and v a vertex in T_2, and let T be the tree obtained by adding an edge which joins u and v. According to Lemma 2.1, we may assume that $v ∉ V_1(c')$. Hence $v ∈ V_{k−ℓ+1}(c')$ for some $ℓ ∈ \{1, 2, \ldots, k−1\}$ and it follows from Lemma 2.1 that we may assume that $u ∉ V_ℓ(c)$. We can therefore construct a k-coloring c^* of T such that $V_i(c^*) = V_i(c) ∪ V_{k−i+1}(c')$, $i = 1, 2, \ldots, k$. For $i > j$, we have:

$$|V_i(c^*)| − |V_j(c^*)| = |V_i(c)| + |V_{k−i+1}(c')| − (|V_j(c)| + |V_{k−j+1}(c')|)$$

$$= (|V_i(c)| − |V_j(c)|) + (|V_{k−i+1}(c')| − |V_{k−j+1}(c')|).$$

Since $V_i(c)| ≥ |V_j(c)|$ and $|V_{k−j+1}(c')| ≤ |V_{k−i+1}(c')|$, we have:

- $|V_i(c^*)| − |V_j(c^*)| ≥ |V_i(c)| − |V_j(c)| ≥ −r$;
- $|V_j(c^*)| − |V_i(c^*)| ≤ |V_{k−i+1}(c')| − |V_{k−j+1}(c')| ≤ r$.

This proves that the considered k-coloring c^* of T is r-equitable.

Note that the condition $k ≥ 3$ in Theorem 2.2 is necessary. Indeed, if both T_1 and T_2 are isomorphic to a star on 3 vertices (with u being the vertex of degree two in T_1 and v a leaf in T_2) then clearly T_1 and T_2 are 1-equitably 2-colorable. But by adding an edge which joins u and v, we obtain a tree T which is not 1-equitably 2-colorable.

Note also that the condition in Theorem 2.2 on the number of vertices in each tree is necessary. Indeed, if T_1 is an r-equitably k-colorable tree for some $k ≥ 3$ and $r ≥ 1$, and if T_2 contains a single vertex v, then the tree T' obtained by adding an edge which joins v and a vertex u of T_1 is possibly not r-equitably k-colorable. For example, if u is the vertex of degree four in the star T_1 on five vertices, and if we add a neighbor v (the single vertex in T_2) to u, we obtain a star T' on six vertices. While T_1 and T_2 are clearly 1-equitably 3-colorable, T' is not 1-equitably 3-colorable. It is however not difficult to prove that if T is an r-equitably k-colorable tree for some $k ≥ 2$ and $r ≥ 1$, then the tree T' obtained by adding a new vertex v and making it adjacent to some vertex u of T is $(r+1)$-equitably k-colorable. Indeed, given an r-equitable k-coloring c of T, we can extend it to a k-coloring c' of T' by assigning any color $j ≠ c(u)$ to v with $j ∈ \{1, 2, \ldots, k\}$. If $|V_j(c)| ≥ |V_i(c)|$ for all $i ≠ j$, then c' is $(r+1)$-equitable, otherwise c' is r-equitable.

ACKNOWLEDGEMENT

This note was written while the first author was visiting LAMSADE at the Université Paris-Dauphine and while the second author was visiting GERAD and Ecole Polytechnique de Montréal. The support of both institutions is gratefully acknowledged.

REFERENCES

