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1. INTRODUCTION

In recent years, there have been extensive investigations concerning the analysis
of interior-point methods (IPMs) for symmetric cone optimization (SCO). A few
optimization problems are special cases of symmetric cones, such as nonnegative
orthants, linear optimization (LO), semidefinite optimization (SDO) and second-order
cone optimization (SOCO). Basic idea for solving SCO is using feasible interior-point
method, as used by Nesterov and Nemirovskii [9]. Their method was primarily either
primal or dual based. Later on, Nesterov and Todd [10] proposed symmetric interior-
point algorithms on a special class of convex optimization problems, where the
associated cone is self-scaled. Later on, it was observed that these cones were precisely
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symmetric cones [3]. Thus, Nesterov and Todd algorithm was the first primal-dual
interior-point algorithm for optimization over symmetric cones. Monteiro and Zhang [8]
designed a interior-point path-following algorithm for SDO based on commutative class
of search directions. Subsequently, Schmieta and Alizadeh [12] introduced primal-dual
IPMs for SCO extensively under the framework of Euclidean Jordan algebra. Roos [11]
introduced a full-Newton primal-dual infeasible interior-point (1IPM) algorithm for LO.
Gu et al. [5] extended this algorithm to SCO based on Euclidean Jordan algebra. Darvay
[1] proposed a new technique for finding a class of search directions. Based on this
technique, the author designed a new primal-dual path-following interior-point algorithm
for LO with iteration bound O(ﬁlogg). Recently, Wang and Bai [2] extended the

Darvay's technique to SCO.

Sonnevend et al. [13] were the first to introduce the predictor-corrector interior-
point algorithm for LO. This algorithm needs more corrector steps after each predictor
step in order to return to the appropriate neighborhood of the central path. Mizuno et al.
[7] presented a predictor-corrector interior-point algorithm for LO in which each
predictor step is followed by a single corrector step, and whose iteration complexity is
the best known in LO literature. Ye and Anstreicher [16] extended this result to the linear
complementarity (LC) problems with a positive semidefinite matrix with the same
iteration complexity. Recently, Illés and Nagy [6] presented a new version of the
Mizuno-Todd-Ye predictor-corrector algorithm for P,(x)-LCP that uses self-regular
proximity measure.

Motivated by their work, we propose a predictor-corrector path-following
algorithm for solving SCO based on Darvay's technique. Our algorithm uses two kinds
of steps: predictor and corrector. The aim of corrector step is to restore the appropriate
neighborhood of the central path. After each corrector step, new iterates will be within
the region where Newton process is quadratically convergent, which is an advantage of
the algorithm. Then the algorithm operates one damped Newton step used to reduce the
duality gap. The algorithm is repeated until an e-approximate solution is followed. We
analyze the algorithm and obtain the complexity bound, which coincides with the best
known result for SCO.

The paper is organized as follows: In Section 2, firstly we provide the theory of
the Euclidean Jordan algebra and their associated symmetric cones; then, after briefly
reviewing the central path for SCO, we obtain the search directions based on Darvay's
technique for SCO. In Section 3, the predictor-corrector algorithm for SCO is presented.
In Section 4, we analyze the algorithm and derive the iteration bound. Finally, we
conclude the paper in Section 5.

2. PRELIMINARIES

2.1 Euclidean Jordan algebra

Here, we outline some needed main results on Euclidean Jordan algebra and
symmetric cones. For a comprehensive study, the reader is referred to [3, 15].

Jordan algebra (J is a finite dimensional vector space endowed with a bilinear
map o:J X J — J satisfying the following properties for all x,y € J:

1—xoy:yox}
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2—xo(x?0y)=x%0(xoy) where x2 =xox.

Moreover, Jordan algebra (¢, °) is called Euclidean if there exists an inner
product, denoted by "(., .)", such that

(xoy,z) =(x,y°z),

forallx, y,z € J.

Jordan algebra has an identity element, if there exists a unique element e € J
such that x ce = e o x = x, for all x € J. Throughout the paper, we assume that J is a
Euclidean Jordan algebra with an identity element e. The set X = {x%|x € J} is called
the cone of squares of Euclidean Jordan algebra (J, o, (.,.)) . Cone is symmetric if and
only if it is the cone of squares of some Euclidean Jordan algebra. An element ¢ € J is
idempotent if ¢ o ¢ = ¢. Idempotents x and y are orthogonal if x o y = 0. An idempotent
c is primitive if it is nonzero and can not be expressed by sum of two other nonzero
idempotents. A set of primitive idempotents {c;, c,, -, ¢} is called a Jordan frame if
cioci=0, forany i #j€{12,-,k} and ¥} ¢; =e. For any x € J, let r be the
smallest positive integer such that {e, x,x2,---,x"} is linearly dependent; r is called the
degree of x and is denoted by deg (x). The rank of J, denoted by rank(J) is defined as
the maximum of deg (x) over all x € J. The importance of Jordan frame comes from the
fact that any element of Euclidean Jordan algebra can be represented by using some
Jordan frame, as explained more precisely in the following spectral decomposition
theorem.
Theorem 1 (Theorem 111.1.2 in [3]) Let (J, o, {.,.)) be an Euclidean Jordan algebra
with rank(J) = r. Then, for any x € J, there exists a Jordan frame {c,, c,, -+, ¢} and
real numbers 4, (x), 1,(x), -+, 1,-(x) such that x = }}]_; 4; (x)c;, where the A;’s are the
eigenvalues of x. The numbers A;(x) (with their multiplicities) are uniquely determined
by x. Furthermore, tr(x) = Y-, 1; (x) and det(x) =[], 4; (x) where tr and det
stand for the trace and determinant, respectively.

Since "o is a bilinear map, for each x € J, there exists a matrix L(x) such
that for every y € J,x o y = L(x)y. Moreover, we define P(x) := 2L(x)? — L(x?),
where L(x)? = L(x)L(x). The map P(x) is called the quadratic representation of J,
which is an essential concept in the theory of Jordan algebra and plays an important role
in the analysis of interior-point algorithms. An element x € J is called invertible if there
existsay = Y™, a; x' for some finite m < oo and real numbers a; such that x oy = y o
x = e, and it is denoted as x~1. An element x € J is invertible if and only if P(x) is
invertible. In this case, P(x)x~! = x and P(x)~* = P(x™1).

Let x = Xi_; 4 (x)c; be the spectral decomposition of x. It is possible to
extend the definition of any real valued continuous function f(.) to elements of Jordan
algebra via their eigenvalues, i.e., F: J — J is given by

F) = ) f)e

1
In particular, we have the square root, xz = ».7_; \/4;(x) ¢; when x € ¥, and
undefined otherwise, the inverse, x~'=Y7_, 1,7 (x)c; wherever A; # 0, for all
i=1,2,-,r, and undefined otherwise.
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The next lemma contains a result of crucial importance in the design of IPMs
within the framework of Jordan algebra.

Lemma 2 (Lemma 2.2 in [4]) Let x,s € K. Then, tr(xes) =0, and we have tr(x o
s) =0 ifandonly if xos = 0.

Forany x,y € J, x and y are said to be operator commutable if L(x) and L(y)
commute, i.e., L(x)L(y) = L(y)L(x). In other words, x and y operator are commutable
ifforallze J,xo(yez)=yo(xoz) (see[12]).

Theorem 3 (Lemma X.2.2 in [3]) Let x,y € J. The elements x and y operator are
commutable if and only if they share a Jordan frame, that is, x = Y/_; 4; (x)c; and
y = Xi-1 A )c; for Jordan frame {c;,c,, -+, ¢}

For any x,y € J, we define the canonical inner product of x,y € J as

follows:

(x,y) = tr(x °J’)'
and the Frobenius norm of x as follows:

I x llp= y/{x,x) = tr(x?).

It follows that

I x llp=+/tr(x?) =

Z 22 (x) =l Ax) 1.
i=1

Note that tr(.) is associative, and we have
(Lx)y,z) = tr((xoy)oz) =tr((yox) oz) = tr(y o (x o 2)) = (y,L(x)z),
showing that L(x) is a self-adjoint operator. As the definition of P(x) depends only on
L(x) and L(x?), both of which are self-adjoint, P(x) is also self-adjoint. Let A,,,;,,(x) and
Amax(x) denote the smallest and the largest eigenvalue of x, respectively. Then

[ Amin GOl I X Mgy [Amax GO <0 x Mg, [€6 ) < Hll y Nl

The following lemma shows the existence and the uniqueness of a scaling point
w corresponding to any points x,s € int X such that P(w) takes s into x. This was
done by Nesterov and Todd [10] for self-scaled cones. This lemma plays a fundamental
role in the design of interior-point algorithms for SCO.
Lemma 4 (Lemma 3.2 in [4]) Let x, s € int K. Then, there exists a unique w € int K
such that x = P(w) s. Moreover,

1 1

wep () (r (<)) 1= () (2 () ).
The point w is called the scaling point of x and s. Hence, there exists ¥ €
int X such that

_1 1
ﬁ=P<W 2>x=P<w2)s,
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which is the so-called Nesterov and Todd (NT)-scaling of R™. We say that two elements
x € Jandy € J are similar, as denoted by x~ y, if and only if x and y share the same
set of eigenvalues. We say x € K if and only if 4; > 0 and x € int X if and only if
A; >0, foralli=1,2,---,7. We also say x is positive semidefinite (positive definite),
denotedas x = 0 (x > 0), if x € X (x € int X).

In what follows, we list some lemmas, which will be used in the analysis later.
Lemma5 (Lemma 2.15 in [5]) If x o s € int K, then det (x) # 0.
Lemma 6 (Lemma 2.13 in [5]) Letx,s € J withtr(xos) = 0. Then

1
— lIx+slfesxes<lix+slie,

B

1 2
Xos ||g<—I x+ s |g.
Ixoslp< ;= lIx+s I}

Lemma 7 (Proposition 21 in [12]) Let x, s, u € int K. Then
1 1
Q) —P (xa) s~ P(s?) ..
1 1
(i) —P ((P(u)x)f) P(u™s ~P(x2)s.

Lemma 8 (Proposition 3.2.4 in [15]) Let x, s € int K, and w be the scaling point of x
and s. Then

(P (x2) )7~P(w) s.

Lemma 9 (Lemma 30 in [12]) Let x, s € int K. Then
1P(x2)s —elg<lixos—e llp.

Lemma 10 (Theorem 4 in [14]) Letx, s € int K. Then
Amin (P (X%) s) > Apin(x 0 8).

2.2 The problem background

We consider the following symmetric cone optimization (SCO) problem
min {c, x)
s.t. Ax = b, (P)

x €KX,

where ¢ and the rows of A lie in J, and b € R™,(x,s) = tr(x o s) stands for the trace
inner product in J. Moreover, assume that a; is the i —th row of 4, then Ax = b means
that

(a,x)=b;, i=12,,m, 1)

The dual problem of (P) is as follows
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max bTy
s.t. ATy+s=c¢, (D)
sEeEX,
where y € R™ and ATy + s = ¢ means that
Yitiviai+s=c. )

Throughout the paper, we assume that (P) and (D) satisfy the interior point
condition (IPC), i.e., there exists (x°,y°,s%) such that

Ax®=b, ATy* +s%=¢, x%s% € int K,

and the matrix A is of rank m. The optimality conditions for (P) and (D) are given by the
following system

Ax = b, x€EKXK
ATy+s=c¢, seX 3
xos=0.

In path-following IPMs one follows the central path that is given as the set of
solutions (u-centers) of the perturbed optimality conditions

Ax = b,
ATy +s =c, 4)
xos=ue.

For each u >0, the perturbed system (4) has a unique solution
(x(u), y(w),s(w)), and we call x(u) and (y(u), s(w)) the u-centers of problems (P) and
(D) respectively. The set of u-centers gives a curve called the central path of (P) and (D).
If u— 0, then the limit of the central path exists and since the limit points satisfy the
complementarity condition, the limit yields an e-approximate solution for (P) and (D) [4].
Similarly to the LO case [1], Wang and Bai [2] replace the standard centering

equation x o s = pe by (p(%) = @(e) where ¢(.) is the vector-valued function induced
by the univariate function ¢(t). Thus, the system (4) becomes

Ax = b,
ATy+s=c, ®)

¢Cﬁs>=¢@)

Applying Newton's method to system (5), then using Taylor's theorem to the
third equation, lead to

AAx =0,
ATAy+As =0, (6)
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XoS. iy, _(xes
xods+sodx=up/(—) ((p(e) o ; ))

Due to the fact that L(x)L(s) # L(s)L(x), system (6) does not always have a
unique solution in int . It is well known that this difficulty can be resolved by
applying a scaling scheme. This is given in the following lemma.

Lemma 11 (Lemma 28 in [12]) Letu € int K. Then xos = pe © P(w)x o P(u™1)s =

ue.
Replacing the third equation of the system (5) by

PwxoP(u s
() (f) = p(e),

and applying Newton's method to the result system lead us to the following system

AAx =0,
ATAy +As =0,
PwxoPw HAs+PusoP(u)Ax = )

u(e’ (P(u)x °‘up(u_1)5>)—1 0 ((p(e) - (P(u)x °HP(u_1)S>>.

1
Let u = w2z, where w is the NT-scaling point of x and s as defined in Lemma
4. We define

P(W 2)x P(w2)s

®
) N
A == +[uAP (WZ),dx = T,ds =— 9)
This enables us to rewrite the system (7), considering ¢(t) = V/t, as follows:
Ad, =0,
AT 4 ds =0, (10)

de+ds =2(e—v):=p,

The search directions d, and d, are obtained by solving (10) so that Ax and As
are computed via (9). The new iterate is obtained by taking a full NT-step as follows

xti=x+Ax, yhi=y+Ay, sti=s+As.

For the analysis of the algorithm, we define a norm-based proximity measure
o(x,s; u) asfollows

o) = 0(x,s; 1) =2 =l e — v Il (11)
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We can conclude that

cw)=0ev=esd,=d;, =0 xo5 = pe. (12)

Hence, the value of o(v) can be considered as a measure for the distance
between the given triple (x, y, s) and the u-center.

3. THE PREDICTOR-CORRECTOR ALGORITHM

In this section, we propose a predictor-corrector algorithm based on NT-
directions obtained by Darvay's technique, which uses these directions in the both
predictor- and corrector steps. Firstly, we define the t-neighborhood of the central path as
follows

N(,u):={(x,8)|[Ax =b,ATy +s =c,x,s € int K,o(x,s; u) < 1},

where 7 is a threshold parameter. The framework of the algorithm is described
as follows

Algorithm: A predictor-corrector algorithm for SCO

Input:
An accuracy parameter ¢ > 0;

barrier update parameter 6,0<6 <% (default 6 = %);

proximity parameter 7, 0<r<l (default T=§);

an initial point (x%y%s% such that o(x°s%u% <r+.
begin:

x:=x%s5:=5%y:=9% u:=pub;

While tr(xos)>¢ do

begin:

solve system (10) and via (9) to obtain (Ax, Ay, As);

and let (x,y,5):=(x,y,5) + (Ax, Ay, As), u=w;

solve system (13) and via (9) to obtain (APx, APy, APs);

(xP,yP,sP):= (x,y,5) + 6(APx, APy, APs);

uP:=(1-20)
x=xp,y=y”,s=sp,u=up;

end
end

If for the current point (x, y, s) in the neighborhood of the central path V' (z, 1),
tr(x os) > ¢ then the algorithm performs centering and predictor steps. In centering
step, by solving the system (10) for the scaled-directions (d,, dy), thatis
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Ad, =0,
AT% +d; =0, (13)
d,+ds =2(e —v),
and using (9) for (Ax, Ay, As), we obtain
x = x + Ax, y=y+Ay, s =s+As.

In the predictor (affine-scaling) step, starting at the iterate (x, y, s) and
targeting at the u-centers, the search directions (APx, APy, APs) are the damped Newton
directions, defined by

Ad? =0,
A4l =0, (14)
d? +df = —2v.

We denote the iterates after a predictor step by xP = x 4+ 0APx, yP =y +
OAP y, sP = s + OAPs, uP = (1 — 26)u, Where 0 € (0,%). The point (xP, yP, sP) will

be in the t-neighborhood again. The algorithm repeats until the duality gap is less than
the accuracy parameter «.

4. ANALYSIS

In this section, we deal with the analysis of the previous algorithm. In the
analysis of the affine-scaling step, we will give sufficient conditions for strict feasibility,
and the effect on the proximity measure; the proximity measure does not exceed the
proximity parameter. At the centering step, we describe the effects of a full Newton-step
for the quantity of the proximity measure.

Before dealing with the analysis of the steps, we prove a lemma which yields
lower and upper bounds for the eigenvalues of v.

Lemma 12 Let x,s € int X and u > 0. Assume that o: = g (v). Then

l-c< W) 1+0,i=1,2,---,r.
Moreover, the following inequalities hold
Amin = (1=0)%, IvIE<r(1+0)2

Proof By the definition of o (cf. 11), we have

o7 =lle-viE= ) A(e-v)= ) (1-A4®).
i=1 i=1

This implies that
[1-24,W)| <o, i=12-,r
or equivalently

l—-c<A@W)<1+0,i=12,,r1. (15)
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This proves the first part of the lemma. For the proof of the second part, by
definition of Frobenius norm and (15), we have

r r
lvi2= Zli(v)z < Z(l +0)2=r(1+0)?
=1 =1

and
Amin(vz) = lmin(v)z >(1- 0')2.
This completes the proof. -

4.1 The affine-scaling step

Next lemma gives a sufficient condition for yielding strict feasibility after an
affine-scaling step.
Lemma 13 Let x,s € int I and u > 0 such that ¢ < 1. Furthermore, let 0 < 6 < % Let
xP = x 4+ 04Px and sP = s + 0APs denote the iterates after an affine-scaling step. Then
xP,sP € int KX if K(a, 8, r) > 0, where
76%(1 + 0)?

1-—26

Proof Introduce a step length a with « € [0, 1] and define

xP(a) = x + aBAPx, sP(a) = x + aBAPs.

Using (8) and (9), we have

K(s,0,r) =(1—0)%*—

xP(a) = x + aAPx = \[u P (w%) (v+ab db),
sP(a) =s + afAPs = \Ju P (w_%) (v+ab d?). (16)

1 1
Since P(wi) and P(w‘i) are automorphisms of int K (Theorem 111.2.1 in

[3]), by (16), xP and sP belong to int X if and only if v + 8 d% and v + 6 d? belong to
int J. Therefore, using the third equation of (14), we obtain

vP(a) o vP(a):= (v + abdl) o (v+ ab db)
=v2+afvo(dl +db) +a?62%db o d¥
=v? 4+ afv o (—2v) + a?6%dl o d¥

= (1-2a0)v? + a?6%dk o df.

From the above relation, we have

vy (@) o vl (a) a?6?

2 dP o db. 17
1—2a6 Vit T T 2ae 0 s a7

It follows that
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14 o pP 292
lmin <M) = Amm <v2 + @ d,’? ° df)

1—2a6 1—2ab
2p2
2 Amin(v?) — T 2a0 " A(d} o df) lloo-
2p2
For each fixed 0<6 < i the function f(a) = 101219 for0<a<1lisa

strictly increasing. Thus, we obtain

vE (a)o vl (@)

2 62 p_ P
Amin (W) = Amin(v ) T 120 I A(dx ° ds) lloo.- (18)
From Lemma 6, the third equation of (14) and Lemma 12, we get
I (%o d?) s 211 d? +d? I3=1 v I3< r(1 + 0)2 (19)
Now, using (18), (19) and Lemma 12, we obtain

vE (@)o vP ()

Amin (W) = (1 - 0-)2

This implies that det(v} (a) o v¥(a)) >0 for 0 <a <1. By Lemma 5, it
follows that det (v}f(a)) #0 and det (vsp(a)) #0, for 0<a<1. Since
det(vf(0)) = det(v?(0)) = det(v) > 0 and v} (a),v?(a) are linear functions of «,
they do not change sign on [0, 1]. Thus, det(v? (a)) and det(v? ()) stay positive for
all 0 < a < 1. Moreover, by Theorem 3, this implies that all the eigenvalues of v¥ («)
and v’ (a) stay positive for all 0 < a < 1. Hence, all the eigenvalues of vZ(1) and
v? (1) are positive. Therefore, v + 8 d¥ € int X and v + 6 d~ € int K, completing the

proof. ]
Following (8), we denote

_ 02%(14+0)?
1-260

= K(o,0,7). (20)

1
__ P(wP)zsP
= o

where, w? is the scaling point of xP and sP. Using (16) with « = 1, (21) and
lemmas 7 and 8, we have

vP (21)

1
P(xP)z sP
Py~ 7
=3
1

2
| p(p(w)%(v+edg)> Pw) 2(v+0d?) |

- 1(1-26) 22)
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1
P(v+6d})2(v + 0d?b)
1-26 '
Using Lemma 10, (22) and (20) with « = 1, we obtain

dori (D)D) = A _(P<v+9d§>%(v+9d§’>)
min v - min \/1_29 \/1_29

v+0dP v+0dP
= Amin((\h—z;) ° (41—2;)) (23)
> K(o0,0,7).

In the following lemma, we investigate the effect on the proximity measure of
an affine-scaling step, and the update of the parameter p.
Lemma 14 Let 0: = o(x,s; ) < 1, pP = (1 —20)u, where 0< 6 <, K(a, 6,7) >0

and let xP,sP denote the iterates after an affine-scaling step, i.e., x? = x + 64Px and
sP = s+ 04Ps. Then

o(0) —V2K(0,6,7)
1+./K(0,0,7)

oP:= g(xP,s?; u?) <

where K (o, 6,7) is defined as in Lemma 13, and
0(0) = (1 +v2)o? +2(1 —V2)o + V2.

Proof From Lemma 13, we deduce that the affine-scaling step is strictly feasible. Using
(22), (23), (17) with ¢ = 1 and Lemma 9, we have

oP:=o(xP,sP; uP) =lle —vP |lp
=l (e + @) "o (e — WP)D) Iy
le—@P)? g

1
v+ 0di\Z (v +0dY

<——|le-P I
1+ Apin(vP) vi—-26/ \V1-26

1 17+(9dfcJ v+9df
S——lle— ° Iz
1+Amin(WP) V1-26 V1-26

[
1+ Amin(vp)

<—1 Il 2 o abodl |
< e—vt— °
1+ K(0,6,1) 1-20% " °F
2
<———(le—v? llz— Il d o d? |lp.
1+ .K(0,0,7) Fr1—20" 7 0 F

On the other hand, by Lemma 12, we have
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le—v?lp=le—v+v—v2I

Sle—vlip+llv—v2i (24)
S0+ AW lle—vlg

<o+ ({1 +o0)a.

Moreover, by Lemma 6, the third equation of (14) and Lemma 12, we get

I d} o d? lp< s 1 df +d? 3= V2 Il v I3< V2r(1 + 0)2. (25)
Finally, using (24) and (25)
V262
e 20+ 0% + 7557 (1 +0)? _0(0) —V2K(0,6,7)
B 1+ K(0,0,7) 1+.K(0,6,r)
We got the desired. |

4.2 The corrector step

The next lemma gives a condition for strictly feasibility of full Nesterov and
Todd step (NT-step).
Lemma 15 (Lemma 4.2 in [2]) Let 0:=c(v) < 1. Then the full NT-step is strictly
feasible.

The second lemma is devoted to the proximity measure of the iterates obtained
by a full NT-step.
Lemma 16 (Lemma 4.4 in [2]) Let o(v) < 1. Suppose that the iterates x* and s* are
produced by a full NT-step, i.e., x* = x + Ax and s* = s + 4s. Then

2

o
WS —
1++vV1l—o02
Thus, o(xt,s*; u) < o2, which shows the quadratical convergence of the

algorithm.
The following lemma gives an upper bound of the duality gap after a full NT-

o(xt, st

step.
Lemma 17 (Lemma 4.5 in [2]) After a full NT-step, then

tr(xto s*) < pur.
4.3 The iteration bound

The following lemma gives an upper bound of the duality gap after the main
iteration.

Lemma 18 Let x,s € int X, £ >0 suchthat o:=o0(x,s; 1) <1, and 0<6 < % If
xP and sP are the iterates obtained after the affine-scaling step of the algorithm, then
ruP

tr(xPosP) < (1—-20+209)tr(xo s) < (1 —0)tr(xos) < Tl
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Proof Letting « = 1 in (16) and (17), we obtain
tr(xP o sP) = tr(\/ﬁP(w)%(v +0dY) o Ju P(w)‘%(v + 6d")
=utr((v+0dh)o (v+6ah)) (26)
=utr((1 —20)v*+62dP o d?)
=u(1-20)tr(v?) + ud? tr(dy o d?).

From the third equation of (14), we get

D2 P2
VAN < 3 e (v2). (@7)

tr(dl o d¥) = 2tr(v?) —
Now, using (26) and (27), we obtain
tr(xP o sP) < (1 —26 +262) tr(x e s).
This proves the first inequality. If 0 < 8 < % theni <1-6<1,weget
1-20+202=1-201—-6)<1-6.

This proves the second inequality. Since x and s are obtained by a full NT-step
of the algorithm, by Lemma 16, we have tr(x o s) < ru. Therefore

A —=6)ru?  ruP
1-26 1-26’
and the proof is completed. [ ]

1-0)tr(xes) <1 —-0)ru=

4.4 Fixing the parameter

In the following subsection, we want to fix the parameters T and 6, which
guarantee that after a main iteration, the proximity measure will not exceed the proximity
parameter got before.

Let (x,y,s) be the iterate at the start of a main iteration with x € int X and
s €int K suchthato = a(x, s; u) < t. After a corrector step, by Lemma 16, one has

2

o
W) S —
1++vV1l—o2
It can be easily verified that the right-hand side of the above inequality is a
monotonically increasing with respect to a, which implies that
2

T
;#)Sﬁzl—\/l—TZZW(T).

Following the predictor step and a $\mu$-update, by Lemma 14, one has

o(xt, st

o(xt, st

p < QO)=VK(r)

1+/K(0,01) ' (28)
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where K(o,0,r) defined as in Lemma 13. It is easily verifiable that the right-hand side
of (28) is a monotonically increasing one with respect to o, which means that

o(c) — V2K (0,0,7) - o(w(1)) —V2Kw(7), 6,7)
1+JK(@, 0,1 ~  1+JKw@,6,1)

To keep o? < 1, it suffices that
o(w(0) —V2Kw(1), 6,7) <
1+ KWw(),0,r) -

At this stage, if we set T = % and 6 =

5 . . .
o the inequality above certainly
holds. This means, that x,s € int X and o(x,s; u) s% are maintained during the
algorithm. Thus the algorithm is well-defined. Moreover, one has

(g T+’
K(0,0,7)=(1—-0) T
r62(1 + w(n))’
> (1-w(®)’ - % > 0.4151,

by Lemma 13, one conclude that the predictor step is strictly feasible.

4.5 Complexity bound

The next lemma gives an upper bound for the number of iterations produced by
our algorithm.
Lemma 19 Let x° and s° be strictly feasible, u°® = and o(x%s% u% <.
Moreover, let x* and s* be iterates obtained after k iterations. Then tr(x* o s*) < & for

tr(x%s9)

K14 1 | tr(x% o s%)
- 20 8 £
Proof It follows from Lemma 18 that
k
1-26
Then the inequality tr(x* o s¥) < & holds if
(1-20)1tr(x%o s% <.
Taking logarithms, we obtain

(k—1)log(1—20) +logtr(x°e s° <e.

tr(x* o s¥) <

=r(1-20)1u’ = (1 -20)tr(x%0 s°).

Since log(1+ 0) < 0, 6 = —1, we observe that the above inequality holds if
—20(k — 1) +logtr(x° o s°%) < loge.

This implies the result. u
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Theorem 20 Let r=% and 6 =%ﬁ, then the algorithm is well defined and the
algorithm requires at most

0] (\/FIOg_tT(xOgo SO))

’

iterations. The output is a primal-dual pair (x, s) satisfying tr(x o s) < e.
Proof Sincet = % and 0 = %ﬁ the proof follows from Lemma 19. [

5. CONCLUSION

We have introduced a predictor-corrector path-following algorithm for SCO.
We showed that this algorithm can solve SCO problems in polynomial-time, and that it
can derive the iteration bound for the algorithm with small-update method.
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