
Yugoslav Journal of Operations Research
24 (2014) Number 1, 1-20
DOI: 10.2298/YJOR130731040E

Invited Review

OPTIMAL RECOMBINATION IN

GENETIC ALGORITHMS FOR

COMBINATORIAL OPTIMIZATION

PROBLEMS – PART I

Anton V. EREMEEV
Sobolev Institute of Mathematics, Omsk Branch

644099, Omsk, Russia
eremeev@ofim.oscsbras.ru
Julia V. KOVALENKO

Omsk F.M. Dostoevsky State University,
644077, Omsk, Russia
juliakoval86@mail.ru

Received: July 2013 / Accepted: October 2013

Abstract: This paper surveys results on complexity of the optimal recombination
problem (ORP), which consists in finding the best possible offspring as a result of
a recombination operator in a genetic algorithm, given two parent solutions. We
consider efficient reductions of the ORPs, allowing to establish polynomial solvabil-
ity or NP-hardness of the ORPs, as well as direct proofs of hardness results. Part I
presents the basic principles of optimal recombination with a survey of results on
Boolean Linear Programming Problems. Part II (to appear in a subsequent issue)
is devoted to the ORPs for problems which are naturally formulated in terms of
search for an optimal permutation.

Keywords: Genetic Algorithm, Optimal Recombination Problem, complexity,
crossover, Boolean Linear Programming
MSC: 90C59, 90C10.

1 INTRODUCTION

The genetic algorithms (GAs) originally suggested by J. Holland [20] are ran-
domized heuristic search methods using an evolving population of sample solutions,
based on analogy with the genetic mechanisms in nature. Various modifications of
GAs have been widely used in operations research, pattern recognition, artificial
intelligence, and other areas (see e.g. [28, 31, 32]). Despite numerous experimental

2 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

studies of these algorithms, the theoretical analysis of their efficiency is currently at
an early stage [7]. Efficiency of GAs depends significantly on the choice of crossover
operator, that combines the given parent solutions, aiming to produce ”good” off-
spring solutions (see e.g. [21]). Originally the crossover operator was proposed as a
simple randomized procedure [20], but subsequently the more elaborated problem-
specific crossover operators emerged [28].

This paper is devoted to complexity and solution methods of the Optimal
Recombination Problem (ORP), which consists in finding the best possible offspring
as a result of a crossover operator, given two feasible parent solutions. The ORP is
a supplementary problem (usually) of smaller dimension than the original problem,
formulated in view of the basic principles of crossover [27].

The first GAs using the optimal recombination appeared in papers of C.C. Agar-
wal, J.B. Orlin and R.P. Tai [1] and M. Yagiura and T. Ibaraki [31]. These articles
provide GAs for the Maximum Independent Set problem and several permutation
problems. Subsequent results in [5, 11, 13, 16, 18], and others added more exper-
imental support to expediency of solving the optimal recombination problems in
crossover operators.

Interestingly, it turned out that a number of NP-hard optimization prob-
lems have efficiently solvable ORPs. The present paper contains a survey of results
focused on the issue of efficient solvability vs. intractability of the ORPs.

Part I is structured as follows. The formal definition of the ORP for NP
optimization problems is introduced in Section 1. Then, using efficient reductions
between the ORPs, it is shown in Section 3 that the optimal recombination is com-
putable in polynomial time for the Maximum Weight Set Packing Problem, the
Minimum Weight Set Partition Problem, and for one version of the Simple Plant
Location Problem. In Section 3, we also propose an efficient optimal recombination
operator for the Boolean Linear Programming Problems with at most two vari-
ables per inequality. In Section 4, we consider a number of NP-hard ORPs for the
Boolean Linear Programming Problems.

2 OPTIMAL RECOMBINATION IN GENETIC
ALGORITHMS

We employ standard definition of an NP optimization problem (see e.g. [3]).
By {0, 1}∗, we denote the set of all strings with symbols from {0, 1} and with
arbitrary string length. For a string S ∈ {0, 1}∗, the symbol |S| denotes its length.
The term polynomial time stands for the computation time which is upper bounded
by a polynomial in length of the input data. Let R+ denote the set of non-negative
reals.

Definition 2.1 An NP optimization problem Π is a triple Π = (Inst, Sol, fI), where
Inst ⊆ {0, 1}∗ is the set of instances of Π and:

1. The relation Inst is computable in polynomial time.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 3

2. Given an instance I ∈ Inst, Sol(I) ⊆ {0, 1}n(I) is a set of feasible solu-
tions of I, where n(I) stands for the dimension of the space of the solutions. Given
I ∈ Inst and x ∈ {0, 1}n(I), the decision whether x ∈ Sol(I) may be done in poly-
nomial time, and n(I) ≤ poly(|I|) for some polynomial poly.

3. Given an instance I ∈ Inst, fI : Sol(I) → R+ is the objective function
(computable in polynomial time) to be maximized if Π is an NP maximization
problem or to be minimized if Π is an NP minimization problem.

For the sake of compactness of notation, we will simply put Sol instead of
Sol(I), n instead of n(I) and f instead of fI , when it is clear which problem instance
is implied.

Throughout the paper, we use the term efficient algorithm as a synonym for
polynomial-time algorithm. A problem solved by such an algorithm is polynomially
solvable.

Often, it is possible to formulate an NP optimization problem as a Boolean
Linear Programming Problem:

max f(x) =
n∑

j=1

cjxj , (1)

subject to
n∑

j=1

aijxj ≤ bi, i = 1, . . . ,m, (2)

xj ∈ {0, 1}, j = 1, . . . , n. (3)

In the context of Boolean Linear Programming Problem, x ∈ {0, 1}n is
treated as a column vector of Boolean variables x1, . . . , xn, which belongs to Sol
iff the constraints (2) are satisfied.Similar problems where instead of ”≤” in (2)
stands ”≥” or ”=” for some indices i (or for all i) can be easily transformed to
formulation (1)–(3).

Minimization problems can be considered by using the goal function with
coefficients cj of opposite sign. Where appropriate, we will use a more compact
notation for problem (1)–(3):

max {cx : Ax ≤ b, x ∈ {0, 1}n} ,

where A is an (m × n)-matrix with elements aij , b = (b1, . . . , bm)T and c =
(c1, . . . , cn).

2.1 Genetic Algorithms

The simple GA proposed in [20] has been intensively studied and exploited
over four decades (see e.g. [29]). This algorithm operates with populations Xt, t =
1, 2, . . . of binary strings in {0, 1}n traditionally called genotypes. Each popula-
tion consists of a fixed number of genotypes N , which is assumed to be even. In
a selection operator Sel, each parent is drawn from the previous population Xt

independently with probability distribution assigning each genotype a probability

4 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

proportional to its fitness, where fitness is measured by the value of the objective
function or a composition of the objective function with some monotonic function.

A pair of offspring genotypes is created through recombination and mutation
stages. In the recombination stage, a crossover operator Cross exchanges random
substrings between pairs of parent genotypes ξ, η with a given constant probabil-
ity Pc so that

P {ξ′ = (ξ1, ..., ξj , ηj+1, ..., ηn), η′ = (η1, ..., ηj , ξj+1, ..., ξn)} =
Pc

n− 1
, j = 1, ..., n−1,

P{ξ′ = ξ, η′ = η} = 1− Pc.

In the mutation operator Mut, each bit of an offspring genotype may be
flipped with a constant mutation probability Pm, which is usually chosen to be
relatively small. When the whole population Xt+1 of N offspring is constructed,
the GA proceeds to the next iteration t+ 1. An initial population X0 is generated
randomly with independent choice of all bits in genotypes.

A plenty of variants of GA have been developed since the publication of the
simple GA in [20], sharing the basic ideas, but using different population man-
agement strategies, selection, crossover and mutation operators [29]. The practice
shows that the best results are obtained when the GAs are designed in view of
the specific features of the optimization problem to be solved. A number of such
problem-specific GAs make use of crossover operators that find exact or at least
approximate solution to the optimal recombination problem.

2.2 Formulation of Optimal Recombination Problem

In this paper, the ORPs are considered assuming that a binary representation
of solutions in genotypes is identical to the solutions encoding of the NP optimiza-
tion problem. Besides, it is assumed that X0 consists of feasible solutions and
operators Cross and Mut maintain feasibility of solutions, i. e. Cross : Sol2 →
Sol2, Mut : Sol → Sol. Therefore, the term ”genotype” will denote an element of
the set of feasible solutions Sol.

Note that there may be a number of NP optimization problems which essen-
tially correspond to the same problem in practice. Such formulations are usually
easy to transform to each other, but the solution representations may be quite dif-
ferent in the degree of degeneracy, the number of local optima for some standard
neighborhood definitions, the length of encoding strings and other parameters im-
portant for heuristic algorithms. Since the method of solutions representation is
crucial for recombination operators, in what follows, we always explicitly indicate
which solutions encoding is used in formulation of an NP optimization problem.

In general, an instance of an NP optimization problem may have no feasible
solutions. However, w.r.t. the optimal recombination problem such cases are not
meaningful, since there exist no feasible parent solutions. Therefore, in the context
of optimal recombination below, we will always assume that Sol ̸= ∅.

The following definition of optimal recombination problem is motivated by
the principles of (strictly) gene transmitting recombination formulated by N. Rad-
cliffe [27].

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 5

Definition 2.2 Given an NP optimization problem Π = (Inst, Sol, f), the optimal
recombination problem for Π is the NP optimization problem Π = (Inst, Sol, f),
where for every instance I = (I,p1,p2) ∈ Inst holds
I ∈ Inst, p1 = (p11, . . . , p

1
n(I)) ∈ Sol(I), p2 = (p21, . . . , p

2
n(I)) ∈ Sol(I), and it is as-

sumed that

Sol(I) = {x ∈ Sol(I)| xj = p1j or xj = p2j , j = 1, . . . , n(I)}. (4)

The optimization criterion in I is the same as in I, i. e. f I ≡ fI .

Feasible solutions p1,p2 to problem I are called parent solutions for the
problem I = (I,p1,p2). In what follows, we denote the set of coordinates, where
the parent solutions have different values, by D(p1,p2) = {j : p1j ̸= p2j}. These are
the variables subject to optimization in the ORP. All other variables are ”fixed” in
the ORP, being equal to the values of the corresponding coordinates in the parent
solutions.

Other formulations of recombination subproblem, which may be found in
literature, are the examples of allelic dynastically optimal recombination [10]. In
particular, in [8, 9, 14, 25] promising experimental results are demonstrated by
GAs where the recombination subproblem is defined by ”fixing” only those genes,
where both parent genotypes contain zeros.

3 EFFICIENTLY SOLVABLE OPTIMAL
RECOMBINATION PROBLEMS

As the first examples of efficiently solvable ORPs, we will consider the following
three well-known problems. Given a graphG = (V,E) with vertex weights w(v), v ∈
V ,

� the Maximum Weight Independent Set Problem asks for a subset S ⊆ V ,
such that each edge e ∈ E has at least one endpoint outside S (i.e. S is an
independent set) and the weight

∑
v∈S w(v) of S is maximized;

� the Maximum Weight Clique Problem asks for a maximum weight subset
Q ⊆ V , such that any two vertices u, v in Q are adjacent (i. e. Q is a clique);

� the MinimumWeight Vertex Cover Problem asks for a minimum weight subset
C ⊆ V , such that any edge e ∈ E is incident at least to one of the vertices
in C (i. e. C is a vertex cover).

Suppose, the vertices of graph G are ordered. We will consider these three
problems using the standard binary representation of solutions by the indicator
vectors, assuming n = |V | and xj = 1 iff vertex vj belongs to the subset represented
by x. The following result is due to E. Balas and W. Niehaus.

Theorem 3.1 [4] The ORP for the Maximum Weight Clique Problem is solvable
in time O(|D(p1,p2)|3 + n).

6 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

Proof. Consider the Maximum Weight Clique Problem on a given graph G with
two parent cliques Q1 and Q2, represented by binary vectors p1 and p2. An off-
spring solution Q should contain the whole set of vertices Q1 ∩Q2, besides that Q
should not contain the elements from the set V \ (Q1 ∪Q2), while the vertices with
indices from the set D(p1,p2) should be chosen optimally. The latter task can be
formulated as a Maximum Weight Clique Problem in subgraph H = (V ′, E′), which
is induced by the subset of vertices with indices from D(p1,p2). To find a clique
of maximum weight in H, it is sufficient to find a minimum weight vertex cover C ′

in the complement graph H̄ and take V ′\C ′. Note that H̄ is a bipartite graph, so
let V ′

1 , V
′
2 be the subsets of vertices in this bipartition.

The Minimum Weight Vertex Cover C ′ for H̄ can be found by solving the
s-t-Minimum Cut Problem on a supplementary network N , based on H̄, as de-
scribed e.g. in [19]: in this network, an additional vertex s is connected by outgoing
arcs with the vertices of set V ′

1 , and the other additional vertex t is connected by
incoming arcs to the subset V ′

2 . The capacities of the new arcs are equal to the
weights of the adjacent vertices in H̄. Each edge of H̄ is viewed as an arc, di-
rected from its endpoint u ∈ V ′

1 to the endpoint v ∈ V ′
2 . The arc capacity is set to

max{w(u), w(v)}. This s-t-Minimum Cut Problem can be solved in O(|D(p1,p2)|3)
time using the maximum-flow algorithm due to A.V. Karzanov – see e.g. [26].

We will assume that the s-t-minimum cut contains only the arcs outgoing
from s or incoming into t, because if some arc (u, v), u ∈ V ′

1 , v ∈ V ′
2 enters the

s-t-minimum cut, one can substitute it by (s, u) or (v, t), which does not increase
the weight of the cut.

Finally, it is easy to verify that (V ′
1 ∪V ′

2)\C ′ joined with Q1 ∩Q2 defines the
required ORP solution.

Since the parent solutions are given by the n-dimensional indicator vectors p1

and p2, we get the overall time complexity O(|D(p1,p2)|3 + n). �

Note that if all vertex weights are equal, then the time complexity of Karzanov’s
algorithm for the networks of simple structure (as the one constructed in the proof of
Theorem 3.1) reduces to O(|D(p1,p2)|2.5) – see [26]. The same time complexity has
the Optimized Crossover Algorithm [1, 5] for solving this ORP in the unweighted
case. The algorithm is based on reduction of the ORP to the Maximum Matching
problem.

The Maximum Weight Independent Set and the Minimum Weight Vertex
Cover Problems are closely related to the Maximum Weight Clique Problem (see
e.g. [17]). It is sufficient to consider the complement graph and to change the
optimization criterion accordingly. Then there is a bijection between the set of
feasible solutions of each of these problems and the set of feasible solutions of the
corresponding Maximum Weight Clique Problem. In the case of Maximum Weight
Independent Set, the bijection is an identity mapping, while in the case of the
Minimum Weight Vertex Cover, the bijection alters each bit in x. In the first case,
the mapped feasible solutions retain their objective function values, while in the
second case the original objective function values are subtracted from the weight
of all vertices. In view of these relationships, Theorem 3.1 implies that the ORPs
for the Maximum Weight Independent Set and the Minimum Weight Vertex Cover
Problems are solvable in time O(|D(p1,p2)|3 + n) as well. Indeed, it suffices to
consider the corresponding instance of the ORP for the Maximum Clique Problem,

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 7

solve this ORP in O(|D(p1,p2)|3 + n) time and map the obtained solution back
into the set of feasible solutions of the original problem.

The above arguments illustrate that when one NP-optimization problem
transforms efficiently to another one, the corresponding ORPs may reduce effi-
ciently as well. The following subsection is devoted to analysis of the situations
where such arguments apply.

3.1 Reductions of Optimal Recombination Problems

The usual approach to spreading a class of polynomially solvable (or in-
tractable) problems consists in building chains of efficient problem reductions. In
order to apply this approach to optimal recombination problems, we shall first for-
mulate a relatively general reducibility condition for NP optimization problems.

Proposition 3.2 Let Π1 = (Inst1, Sol1, fI) and Π2 = (Inst2, Sol2, gI′) be NP op-
timization problems with maximization (minimization) criteria, and there exists
a mapping α : Inst1 → Inst2 and an injective mapping β : Sol1(I) → Sol2(α(I)),
such that given I ∈ Inst1,

1. for any x,x′ ∈ Sol1(I), satisfying the condition

fI(x) > fI(x
′), (5)

the following inequality holds

gα(I)(β(x)) > gα(I)(β(x
′)) (6)

(if Π1 is a minimization problem, the inequality sign in (5) changes into ”<”; if Π2

is a minimization problem, the inequality sign in (6) changes into ”<”);

2. if y ∈ β(Sol1(I)), y
′ ∈ Sol2(α(I)), and

gα(I)(y
′) ≥ gα(I)(y), (7)

then y′ ∈ β(Sol1(I)) (if Π2 is a minimization problem, the inequality sign in (7)
changes into ”≤”).

Then Π1 transforms to Π2, so that any instance I ∈ Inst1 can be solved in time
O(Tα(I) + Tβ−1(I) + T (I)), where Tα(I) is the computation time of α(I); Tβ−1(I)
is an upper bound on the computation time of β−1(y), y ∈ β(Sol1(I)); T (I) is the
time complexity of solving the problem α(I).

Proof. Suppose I ∈ Inst1 and consider an optimal solution y∗ to problem α(I).
According to condition 2, if Sol1(I) ̸= ∅, then y∗ ∈ β(Sol1(I)). By proof from the
contrary, in view of condition 1, we conclude that if Sol1(I) ̸= ∅, then β−1(y∗) is
an optimal solution to I. �

Note that condition 2 in Proposition 3.2 implies that the set of feasible so-
lutions of problem Π1 is mapped into a set of ”sufficiently good” feasible solutions
to Π2 (in terms of objective function). This property is observed in many transfor-
mations, involving penalization of ”undesired” solutions to Π2 (see e.g. [6, 24]).

8 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

If the computation times Tα(I) and Tβ−1(I) are polynomially bounded w.r.t. |I|,
then Proposition 3.2 provides a sufficient condition of polynomial reducibility of one
NP optimization to another.

The following proposition is aimed at obtaining efficient reductions of one
ORP to another, when there exist efficient transformations between the correspond-
ing NP optimization problems.

Proposition 3.3 Let Π1 = (Inst1, Sol1, fI) and Π2 = (Inst2,Sol2, gI′) be both NP op-
timization problems, where Sol1(I) ⊆ {0, 1}n1(I), Sol2(I

′) ⊆ {0, 1}n2(I
′) and there

exist the mappings α and β for which the condition of Proposition 3.2 holds, and
besides that:

(i) For any j = 1, . . . , n1(I) there exists such k(j) that β−1(y)j is a function
of yk(j), when y = (y1, . . . , yn2) ∈ β(Sol1(I)).

(ii) For any k = 1, . . . , n2(α(I)) there exists such j(k) that β(x)k is a function
of xj(k), when x = (x1, . . . , xn1) ∈ Sol1(I).

Then Π1 reduces to Π2, and any instance I = (I,p1,p2) from ORP Π1 is
solvable in time O(Tα(I)+Tβ(I)+Tβ−1(I)+T (I,p1,p2)), where T (I,p1,p2) is the
time complexity of solving ORP (α(I), β(p1), β(p2)), and Tβ(I) is an upper bound
on computation time of β(x), x ∈ Sol1(I).

Proof. Without loss of generality, we shall assume that Π1 and Π2 are maximization
problems. Suppose that an instance I of problem Π1 and two parent solutions
p1,p2 ∈ Sol1(I) are given. These solutions correspond to feasible solutions q1 =
β(p1), q2 = β(p2) to problem α(I).

Now let us consider the ORP for instance α(I) of Π2 with parent solu-
tions q1,q2. The optimal solution to this ORP y′ ∈ Sol2(α(I)) can be transformed
in time Tβ−1 into a feasible solution z = β−1(y′) ∈ Sol1(I).

Note that for all j ̸∈ D(p1,p2) hold zj = p1j = p2j . Indeed, by condition (i),
for any j = 1, . . . , n1(I), there exists such k(j) that

(I) either β−1(y)j = yk(j) for all y ∈ β(Sol1(I)), or

(II) β−1(y)j = 1− yk(j) for all y ∈ β(Sol1(I)), or

(III) β−1(y)j is constant on β(Sol1(I)).

In the case (I) for all j ̸∈ D(p1,p2), we have zj = y′k(j). Now y′k(j) = q1k(j) by

the definition of the ORP, since q1k(j) = p1j = p2j = q2k(j). So, zj = q1k(j) = p1j = p2j .

The case (II) is treated analogously. Finally, the case (III) is trivial since z,p1,p2 ∈
β−1(β(Sol1(I))). So, z is a feasible solution to the ORP for Π1.

To prove the optimality of z for the instance I from the ORP Π1, we will
assume by contradiction that there exists a feasible solution z′ = (z′1, . . . , z

′
n1
) ∈

Sol1(I) such that z′j = p1j = p2j for all j ̸∈ D(p1,p2), and fI(z
′) > fI(z

′). Then

gα(I)(β(z
′)) > gα(I)(β(z)) = gα(I)(y

′). But β(z′) coincides with q1 and q2 in all
coordinates k ̸∈ D(q1,q2) according to condition (ii) (it is sufficient to consider
three cases similar to (I) – (III) in order to verify this). Thus y′ is not an optimal
solution to the ORP for α(I), which is a contradiction. �

The special case of this proposition where n1(I) ≡ n2(I
′) and k(j) ≡ j, j(k) ≡

k appears to be the most applicable, as it is demonstrated in what follows.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 9

Let us use Proposition 3.3 to obtain an efficient optimal recombination algo-
rithm for the Maximum Weight Set Packing Problem:

max {fpack(x) = cx : Ax ≤ e,x ∈ {0, 1}n} , (8)

where A is a given (m × n)-matrix of zeros and ones. Here and below e is an m-
dimensional column vector of ones. The transformation α from the Set Packing to
the Maximum Weight Independent Set Problem (with the standard binary solutions
encoding) consists in building a graph on a set of vertices v1, . . . , vn with weights
c1, . . . , cn. Each pair of vertices vj , vk is connected by an edge iff j and k both
belong at least to one of the subsets Ni = {j : aij ̸= 0}. In this case, β is an
identical mapping. Application of Proposition 3.3 leads to

Corollary 3.4 [15] The ORP for the Maximum Weight Set Packing Problem (8)
is solvable in time O(|D(p1,p2)|3 + n2m).

Now, we can prove the polynomial solvability of the next two problems in
Boolean linear programming formulations.

The first problem is the Minimum Weight Set Partition Problem:

min {fpart(x) = cx : Ax = e,x ∈ {0, 1}n} , (9)

where A is a given (m× n)-matrix of zeros and ones.
The second problem is the Simple Plant Location Problem. Suppose that

there are n sites of potential facility location for production of some uniform product.
The cost of opening a facility at a location i is Ci ≥ 0. Each opened facility can
provide an unlimited amount of commodity.

Suppose that there are m customers who require service, and that the cost of
serving a client j by facility i is cij ≥ 0. The goal is to determine a set of sites where
the facilities should be opened, so as to minimize the total opening and service cost.
This problem can be formulated as a nonlinear Boolean Programming Problem:

min fsplp(x) =

n∑
i=1

Cixi +

m∑
j=1

min
i:xi=1

cij , (10)

s. t.
n∑

i=1

xi ≥ 1. (11)

Here, the vector of variables x = (x1, . . . , xn) ∈ {0, 1}n is an indicator vector for
the set of opened facilities. Note that given a vector of opened facilities, a least cost
assignment of clients to these facilities is easy to find. An optimal solution to the
Simple Plant Location Problem in the above formulation is denoted by x∗.

The Simple Plant Location Problem is strongly NP-hard even if the ma-
trix (cij) satisfies the triangle inequality [23]. Interconnections of this problem to
other well-known optimization problems may be found in [6, 24] and the references
provided there.

Alternatively, the Simple Plant Location Problem may be formulated as a
Boolean Linear Programming Problem:

10 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

min fsplp(Y,u) =
K∑

k=1

L∑
ℓ=1

ckℓykℓ +
K∑

k=1

Ckuk, (12)

K∑
k=1

ykℓ = 1, ℓ = 1, . . . , L, (13)

uk ≥ ykℓ, k = 1, . . . ,K, ℓ = 1, . . . , L, (14)

ykℓ ∈ {0, 1}, uk ∈ {0, 1}, k = 1, . . . ,K, ℓ = 1, . . . , L. (15)

Here and below, we denote the (K × L)-matrix of Boolean variables ykℓ by
Y, and the K-dimensional vector of Boolean variables uk is denoted by u. This
formulation of the Simple Plant Location Problem is equivalent to (10) – (11).
However, according to Definition 2.1, the NP optimization problem (10)–(11) is
different from the problem (12)–(15)since in the first case, the feasible solutions are
encoded by vectors x ∈ {0, 1}n while in the second case, the feasible solutions are
encoded by pairs (Y,u).

On one hand, in Section 4 it will be shown that the ORP for the Simple Plant
Location Problem (10)–(11) is NP-hard. On the other hand, the following corollary
shows that the ORP for Simple Plant Location Problem (12)–(15) is efficiently
solvable, as well as the ORP for the Set Partition Problem (9).

Corollary 3.5 [15]
(i) The ORP for the Minimum Weight Set Partition Problem (9) is solvable

in time O(|D(p1,p2)|3 + n2m).
(ii) The ORP for the Simple Plant Location Problem in Boolean Linear Pro-

gramming formulation (12)–(15) is solvable in polynomial time.

Proof. For both cases, we will use well-known transformations of the corresponding
NP optimization problems to the Minimum Weight Set Packing Problem (see e.g.
the transformations T2 and T5 in [24]).

(i) Let us denote the Minimum Weight Set Partition Problem by Π1, and let
the Set Packing Problem be Π2. Since Sol1(I) ̸= ∅, the problem I is equivalent to

min

n∑
j=1

cjxj + λ

m∑
i=1

wi,

subject to
n∑

j=1

aijxj + wi = 1, i = 1, . . . ,m,

xj ∈ {0, 1}, j = 1, . . . , n; wi ≥ 0, i = 1, . . . ,m,

where λ > 2
∑n

j=1 |cj | is a penalty factor assuring that all ”artificial” slack vari-
ables wi become zeros in the optimal solution. By substitution of wi into the
objective function, the latter model transforms into

min

λm+

n∑
j=1

(
cj − λ

m∑
i=1

aij

)
xj : Ax ≤ ε, x ∈ {0, 1}n

 ,

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 11

which is equivalent to the following instance α(I) of the Set Packing Problem Π2:

max

g(x) =
n∑

j=1

(
λ

m∑
i=1

aij − cj

)
xj : Ax ≤ ε, x ∈ {0, 1}n

 .

Assume that β is an identical mapping. Then, each feasible solution x of
the Set Partition Problem is a feasible solution to problem Π2 with the objective
function value g(x) = λm− fpart(x) > λ(m− 1/2). At the same time, if a vector x′

is feasible for problem Π2 but infeasible for Π1, it will have the objective function
value g(x′) = λ(m−k)−fpart(x

′), where k is the number of constraints of the form∑n
j=1 aijxj = 1, which are violated by x′. So, β is a bijection from Sol1(I) to a set

of feasible solutions with sufficiently high values of the objective function:

{x ∈ Sol2(α(I)) | g(x) > λ(m− 1/2)}.

The complexity of ORP for Π2 is bounded by Corollary 3.4. Thus, applica-
tion of Proposition 3.3 completes the proof of part (i).

(ii) Let Π′
1 be the Simple Plant Location Problem. Analogously to the

case (i), we will convert equations (13) into inequalities. To this end, we rewrite (13)

as
∑K

k=1 ykℓ+wℓ = 1, ℓ = 1, . . . , L, with nonnegative slack variables wℓ and ensure
that all of them turn into zero in the optimal solution, by means of a penalty term
λ
∑L

ℓ=1 wℓ added to the objective function. Here

λ >
K∑

k=1

Ck +
L∑

ℓ=1

max
k=1,...,K

ckℓ.

Eliminating variables wℓ, we substitute (13) by
∑K

k=1 ykℓ ≤ 1, ℓ = 1, . . . , L, and

change the penalty term into λL − λ
∑L

ℓ=1

∑K
k=1 ykℓ. Multiplying the criterion

by −1, and introducing a new set of variables uk = 1−uk, k = 1, . . . ,K, we obtain
the following NP maximization problem Π′

2:

max g′(Y,u) =

K∑
k=1

L∑
ℓ=1

(λ− ckℓ)ykℓ +

K∑
k=1

Ckuk − λL−
K∑

k=1

Ck, (16)

subject to
K∑

k=1

ykℓ ≤ 1, ℓ = 1, . . . , L, (17)

uk + ykℓ ≤ 1, k = 1, . . . ,K, ℓ = 1, . . . , L, (18)

ykℓ ∈ {0, 1}, uk ∈ {0, 1}, k = 1, . . . ,K, ℓ = 1, . . . , L, (19)

where u = (u1, . . . , uK). Obviously, Π′
2 is a special case of the Set Packing Problem,

up to an additive constant −λL−
∑K

k=1 Ck in the objective function. Thus, we have
defined the mapping α(I).

Assume that β maps identically all variables ykℓ and transforms the vari-
ables uk into uk = 1 − uk, k = 1, . . . ,K. Then, each feasible solution (Y,u) of

12 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

the Simple Plant Location Problem is mapped into a feasible solution to prob-
lem Π′

2 with an objective function value g′(Y,u) = −fsplp(Y,u) > −λ. If a
pair (Y,u) is feasible for problem Π′

2 but (Y,u) is infeasible in Π′
1 then, g′(Y,u) ≤

−fsplp(Y,u)− λ, because at least one of the equalities (13) is violated by (Y,u).
The ORP for the problem Π′

2 can be solved in polynomial time by Corol-
lary 3.4, thus Proposition 3.3 gives the required optimal recombination algorithm
for Π′

1. �

3.2 Boolean Linear Programming Problems and Hypergraphs

The starting point of all reductions considered above was Theorem 3.1 which
may be viewed as an efficient reduction of the ORP for the Maximum Weight Clique
Problem to the Maximum Weight Independent Set Problem in a bipartite graph.
In order to generalize this approach, now we will move from bipartite graphs to
2-colorable hypergraphs.

A hypergraph H = (V,E) is given by a finite nonempty set of vertices V
and a set of edges E, where each edge e ∈ E is a subset of V . A subset S ⊆ V
is called independent if none of the edges e ∈ E is a subset of S. The Maximum
Weight Independent Set Problem on hypergraph H = (V,E) with rational vertex
weights w(v), v ∈ V asks for an independent set S with maximum weight w(S) =∑

v∈S w(v).
A generalization of the bipartite graph is the 2-colorable hypergraph: there

exists a partition of the vertex set V into two disjoint independent subsets C1 and
C2. The partition V = C1 ∪C2, C1 ∩C2 = ∅ is called a 2-coloring of H and C1, C2

are the color classes.
Let us denote by Ni the set of indices of non-zero elements in constraint i of

the Boolean Linear Programming Problem (1)-(3). In the sequel, we will assume
that at least one of the subsets Ni contains two or more elements (otherwise the
problem is solved trivially).

Theorem 3.6 [15] The ORP for Boolean Linear Programming Problem (1)-(3)
reduces to the Maximum Weight Independent Set Problem on a 2-colorable hyper-
graph with a 2-coloring given in the input. Each edge in the 2-colorable hypergraph
contains at most Nmax vertices, where Nmax = maxi=1,...,m |Ni|, and the time com-
plexity of this reduction is O(m(2Nmax + n)).

Proof. Given an instance of the Boolean Linear Programming Problem with parent
solutions p1 and p2, let us denote |D(p1,p2)| by d and construct a hypergraph H
on 2d vertices, assigning each variable xj , j ∈ D(p1,p2), a couple of vertices vj and
vn+j . In order to model each of the linear constraints for i = 1, . . . ,m, we will look
through all possible combinations of the Boolean variables from D(p1,p2) involved
in this constraint:

{x ∈ {0, 1}n : xj = 0 ∀j ̸∈ Ni ∩D(p1,p2)}.

Let xik, k = 1, . . . , 2|Ni∩D(p1,p2)| denote the k-th vector in this set. For each com-
bination k which violates a constraint i from (2), i.e.∑

j∈Ni∩D(p1,p2)

aijx
ik
j +

∑
j∈Ni\D(p1,p2)

aijp
1
j > bi,

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 13

we add an edge

eik = {vj : xik
j = 1, j ∈ Ni ∩D(p1,p2)} ∪ {vj+n : xik

j = 0, j ∈ Ni ∩D(p1,p2)}

into the hypergraph. (Note that the edge eik contains at most |Ni| elements.)
Besides, we add d edges {vj , vn+j}, j ∈ D(p1, p2) to guarantee that both vj and vn+j

will not enter into an independent set together.
If x is a feasible solution to the ORP for (1)-(3) then, the set of vertices

S(x) = {vj : xj = 1, j ∈ D(p1, p2)} ∪ {vj+n : xj = 0, j ∈ D(p1, p2)}

is independent in H. Given a set of vertices S, we can construct the corresponding
vector x(S), assigning x(S)j = 1 if vj ∈ S, j ∈ D(p1,p2) or if p1j = p2j = 1.
Otherwise, x(S)j = 0. Then, for each independent set S of d vertices, x(S) is
feasible in the Boolean Linear Programming Problem.

The hypergraph vertices are given the following weights:

w(vj) = cj + λ, w(vn+j) = λ, j ∈ D(p1,p2),

where λ > 2
∑

j∈D(p1,p2)
|cj |.

Now each maximum weight independent set S∗ contains either vj or vn+j

for any j ∈ D(p1,p2). Indeed, there must exist a feasible solution to the ORP
and it corresponds to an independent set of weight, at least λd. However, if an
independent set neither contains vj nor vn+j then, its weight is below λd− λ/2.

So, optimal independent set S∗ corresponds to a feasible vector x(S∗) with
the goal function value

cx(S∗) =
∑

j∈S∗, j≤n

cj +
∑

j ̸∈D(p1,p2)

cjp
1
j = w(S∗)− λd+

∑
j ̸∈D(p1,p2)

cjp
1
j .

Under the mapping S(x), which is inverse to x(S), any feasible vector x yields an
independent set of weight

w(S(x)) = cx+ λd−
∑

j ̸∈D(p1,p2)

cjp
1
j ,

therefore x(S∗) is an optimal solution to the ORP. �

Note that if an edge e ∈ H consists of a single vertex, e = {v} then, the ver-
tex v can not enter into the independent sets. All such vertices should be excluded
from the hypergraph H constructed in Theorem 3.6. Let us denote the resulting
hypergraph by H ′. If Nmax ≤ 2 then, the hypergraph H ′ is an ordinary graph
with at most 2d vertices. Thus, by Theorem 3.6 the ORP reduces to the Maximum
Weight Independent Set Problem in a bipartite graph H ′, which is solvable in O(d3)
operations. Using this fact, Theorem 3.1 may be extended as follows:

Corollary 3.7 [15] The ORP for Linear Boolean Programming Problem with at
most two variables per inequality is solvable in time O(|D(p1,p2)|3 + mn) if the
solutions are represented by vectors x ∈ {0, 1}n.

The class of Linear Boolean Programming Problems with at most two vari-
ables per inequality includes the Vertex Cover Problem and theMinimum 2-Satisfiability
Problem – see e.g [19].

14 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

4 NP-HARD OPTIMAL RECOMBINATION
PROBLEMS IN BOOLEAN LINEAR

PROGRAMMING

It was shown above that the optimal recombination on the class of Boolean
Linear Programming Problems is related to the Maximum Weight Independent Set
Problem on hypergraphs with a given 2-coloring. The next lemma indicates that in
general case the latter problem is NP-hard.
Lemma 4.1 [15] The problem of finding a maximum size independent set in a
hypergraph with all edges of size 3 is strongly NP-hard even if a 2-coloring is given.

Proof. Let us construct a reduction from the strongly NP-hard Maximum Size
Independent Set Problem on ordinary graphs to the problem under consideration.
Given a graph G = (V,E) with the set of vertices V = {v1, . . . , vn}, consider a
hypergraph H = (V ′, E′) on the set of vertices V ′ = {v1, . . . , v2n}, where for each
edge e = {vi, vj} ∈ E there are n edges of the form {vi, vj , vn+k}, k = 1, . . . , n
in E′. A 2-coloring for this hypergraph can be composed of color classes C1 = V
and C2 = {vn+1, . . . , v2n}. Any maximum size independent set in this hypergraph
consists of a set of vertices {vn+1, . . . , v2n} joined with a maximum size indepen-
dent set S∗ in G. Therefore, any maximum size independent set in H immediately
induces a maximum size independent set for G. �

The Maximum Size Independent Set Problem in a hypergraph H = (V,E)
may be formulated as a Boolean Linear Programming Problem

max
{∑n

j=1 xj : Ax ≤ b,x ∈ {0, 1}n
}

(20)

with m = |E|, n = |V |, bi = |ei| − 1, i = 1, . . . ,m and aij = 1 iff vj ∈ ei,
otherwise aij = 0. In the special case where H is 2-colorable, we can take p1

and p2 as the indicator vectors for the color classes C1 and C2 of any 2-coloring.
Then, D(p1,p2) = {1, . . . , n}, and the ORP for the Boolean Linear Programming
Problem (20) becomes equivalent to solving the maximum size independent set in
a hypergraph H with a given 2-coloring. In view of Lemma 4.1, this leads to the
following

Theorem 4.2 [15] The optimal recombination problem for Boolean Linear Pro-
gramming Problem is strongly NP-hard even in the case where |Ni| = 3 for all
i = 1, . . . ,m; cj = 1 for all j = 1, . . . , n and matrix A is Boolean.

In the rest of this section, we will discuss NP-hardness of the ORPs for some
well-known Boolean Linear Programming Problems.

4.1 One-Dimensional Knapsack and Bin Packing

In Boolean linear programming formulation the One-Dimensional Knapsack
Problem has the following formulation

max {cx : ax ≤ A,x ∈ {0, 1}n} , (21)

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 15

where c = (c1, . . . , cn), a = (a1, . . . , an), aj ≥ 0, cj ≥ 0, j = 1, . . . , n, and A ≥ 0 are
integer.

Below, we also consider the One-Dimensional Bin Packing Problem. Given
an integer number A (size of a bin) and k integer numbers a1, . . . , ak (sizes of items),
ai ≤ A, i = 1, . . . , k it is required to locate the items into the minimal number of
bins, so that the sum of sizes of items in each bin does not exceed A.

The One-Dimensional Bin Packing Problem may be formulated as a Boolean
Linear Programming Problem the following way (a more ”standard” integer linear
programming formulation can be found e.g. in [22]). Let a Boolean variable yj
be the indicator of usage of a bin j, j = 1, . . . , k and a Boolean variable xij ,
i, j = 1, . . . , k be the indicator of packing item i in bin j. Find

min

k∑
j=1

yj (22)

s. t.
k∑

j=1

xij = 1, i = 1, . . . , k, (23)

k∑
i=1

aixij ≤ A, j = 1, 2, . . . , k, (24)

yj ≥ xij , i = 1, . . . , k, j = 1, . . . , k, (25)

xij , yj ∈ {0, 1}, i = 1, . . . , k, j = 1, 2, . . . , k. (26)

Note that for solutions encoding, it suffices to store only the matrix of assign-
ments (xij), since the vector (y1, . . . , yk) corresponding to such a matrix is uniquely
defined. Below, we assume that (k× k)-matrices of assignments are used to encode
the feasible solutions and n = k2.

The following special case of the well-known Partition Problem [17] will be
called Bounded Partition: Given 2m positive integer numbers α1, . . . , α2m, which
satisfy

B

m+ 1
< αj <

B

m− 1
, j = 1, . . . , 2m, (27)

where B =
∑2m

j=1 αj/2, is there a vector x ∈ {0, 1}2m, such that

2m∑
j=1

αjxj = B? (28)

The next lemma is due to P. Schuurman and G. Woeginger.

Lemma 4.3 [30] The Bounded Partition Problem is NP-complete.

16 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

Proof. NP-completeness of this problem may be established via reduction from the
following NP-complete modification of Partition Problem [17]: given a set of 2m
positive integers α′

j , j = 1, . . . , 2m, it is required to recognize existence of such x ∈
{0, 1}2m, that

2m∑
j=1

xj = m and
2m∑
j=1

α′
jxj =

1

2

2m∑
j=1

α′
j . (29)

The reduction consists in setting αi = α′
i + M, i = 1, . . . , 2m, with a sufficiently

large integer M , e.g., M = 2m ·max{α′
j : j = 1, . . . , 2m}. Satisfaction of (27), as

well as equivalence of (29) and (28), given this set of parameters {αi}, is verified
straightforwardly. �

Theorem 4.4 [12] The ORPs for the One-Dimensional Knapsack Problem (21)
and the One-Dimensional Bin-Packing Problem (22) – (26) are NP-hard.

Proof. 1. Consider ORP for Knapsack Problem (21). The NP-hardness of this
problem can be established using a polynomial-time Turing reduction of Bounded
Partition Problem to it. W. l. o. g. let us assume m > 2.

Note that if an instance of Bounded Partition Problem has the answer ”yes”,
then there exists a vector x′ ∈ {0, 1}2m, such that

∑2m
i=1 αix

′
i = B, and since

B/(m+ 1) < αi < B/(m− 1), i = 1, . . . , 2m, this vector contains exactly m ones,
which is less than 2m− 2 because m > 2. On the contrary, if the instance of
Partition Problem has the answer ”no” then, such a vector does not exist.

The Turing reduction of Bounded Partition Problem to the ORP for One-
Dimensional Knapsack problem is based on enumeration of polynomial number of
different pairs of parent solutions (and the corresponding ORP instances). Assume
n = 2m, A = B and cj = aj = αj , j = 1, . . . , n, and enumerate all of the

(
2m
2

)
pairs of variables with indices {iℓ, jℓ}, ℓ = 1, . . . ,

(
2m
2

)
. For each pair iℓ, jℓ we set

p1iℓ = p2jℓ = 0 and fill the remaining positions j ̸∈ {iℓ, jℓ} so that p1j+p2j = 1 and each
of the parent solutions contains in total m − 1 ones (such parent solutions will be
feasible since aj < A/(m−1), j = 1, . . . , n). The greatest value among the optima of
the constructed ORPs equals A iff the answer to the instance of Partition Problem
is ”yes”. This implies NP-hardness of the ORP for One-Dimensional Knapsack
Problem.

2. The proof of NP-hardness of the ORP for One-Dimensional Bin-Packing
Problem is based on a similar (but more time demanding) Turing reduction from
Bounded Partition Problem. Now we assume k = 2m, A = B, and ai = αi, i =
1, . . . , k. In what follows it is supposed that m > 4.

Given an instance of Bounded Partition Problem, we enumerate a polynomial
number of parent solutions, choosing them in such a way that (i) 2m − 4 items in
the offspring solution are packed into the first two containers, (ii) among them, a
pair of ”selected” items may be packed only in bin 2, (iii) four other ”selected”
items may be packed either in bin 1 or in bin 3, optionally. Let us describe this
reduction in detail.

As in the first part of the proof, we enumerate all of the
(
2m
2

)
pairs of

items {iℓ, i′ℓ}, ℓ = 1, . . . ,
(
2m
2

)
, aiming to fix the corresponding variables {xiℓ,1, xi′ℓ,1

}
to zero value.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 17

For each of the pairs {iℓ, i′ℓ} enumerate all
(
2m−2

2

)
pairs {ur, u

′
r}, r = 1, . . . ,

(
2m−2

2

)
drawn from the rest of the items. Given {iℓ, i′ℓ} and {ur, u

′
r}, enumerate all

(
2m−4

2

)
pairs {vs, v′s}, s = 1, . . . ,

(
2m−4

2

)
, in the rest of the items.

To ensure that for given ℓ, r and s, the items {iℓ, i′ℓ} in the offspring solution
are packed in bin 2, while items ur, u

′
r, vs, v

′
s may be packed only in bin 1 or bin 3,

the pair of parent solutions p1 = (p1ij) and p2 = (p2ij) is defined the following way.

In the first column of parent solutions

p1iℓ,1 = p1i′ℓ,1
= p2iℓ,1 = p2i′ℓ,1

= 0,

p1ur,1 = p1u′
r,1

= 1, p2ur,1 = p2u′
r,1

= 0,

p1vs,1 = p1v′
s,1

= 0, p2vs,1 = p2v′
s,1

= 1

and fill the remaining positions i ̸∈ {iℓ, i′ℓ, ur, u
′
r, vs, v

′
s} so that p1i,1 + p2i,1 = 1 holds

and each of the parent solutions has m−1 ones in column 1. These parent solutions
satisfy condition (24) for bin j = 1, since ai < A/(m− 1), i = 1, . . . , k.

Let the second column in each of the parent solutions be identical to the first
column of the other parent, except for the components corresponding to the six
items mentioned above. Two entries 1 in rows vs and v′s of the parent solution p1

are placed into column j = 3, rather than into column j = 2. Two entries 1 in
rows ur and u′

r of the parent solution p2 are placed into column j = 3, rather than
into column j = 2. Besides, in column j = 2 of both parent solutions the entries 1
are placed in rows iℓ and i′ℓ.

In each parent solution, the second column contains m − 1 entries 1 thus,
condition (24) for bin j = 2 is satisfied, as well as in the case of j = 1. For
bin j = 3, this condition holds since ai < A/4, i = 1, . . . , k when m > 4. Note that
all feasible solutions to the ORP corresponding to a triple of indices ℓ, r, s contain
the items iℓ, i

′
ℓ in the second bin, while items ur, u

′
r, vs and v′s may appear either

in bin 1 or in bin 3.

If an instance of Bounded Partition Problem has the answer ”yes” then, at
least one of the constructed ORPs has the optimum objective function value 2.
Indeed, in such a case the vector x′ that satisfies condition (28) should have two
entries x′

î
= x′

ī
= 0 for some î, ī. Besides, there are four indices û, ū, v̂ and v̄

such that x′
û = x′

ū = x′
v̂ = x′

v̄ = 1, since this vector contains not less than m

entries 1. The corresponding ORP with {iℓ, i′ℓ} = {̂i, ī}, {ur, u
′
r} = {û, ū} and

{vs, v′s} = {v̂, v̄} has a feasible solution (x′
ij), where the first column is identical

to x′, the entries of the second column are x′
i2 = 1− x′

i, i = 1, . . . , k, and the rest
of the columns are filled with zeros.

Conversely, if an optimal solution x∗
ij to one of the constructed ORPs has

value 2 then, setting xi = x∗
i1, i = 1, . . . , k,, we obtain equality (28). �

The One-Dimensional Bin Packing problem is contained, as a special case,
in a number of packing and scheduling problems so, the latter theorem may be
applicable in analysis of complexity of the ORPs for these problems. In particu-
lar, Theorem 4.4 implies NP-hardness of the ORP for the Transfer Line Balancing
Problem [13].

18 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

4.2 Set Covering and Location Problems

The next example of an NP-hard ORP is that for the Set Covering Problem,
which may be considered as a special case of (1)-(3):

min {cx : Ax ≥ e, x ∈ {0, 1}n} , (30)

where A is a Boolean (m × n)-matrix; c = (c1, . . . , cn); cj ≥ 0, j = 1, . . . , n.
Let us assume that the binary representation of solutions by the vector x. Given
an instance of the Set Covering Problem, one may construct a new instance with
a doubled set of columns in the matrix A′ = (AA) and a doubled vector c′ =
(c1, . . . , cn, c1, . . . , cn). Then, an instance of the NP-hard Set Covering Problem (30)
is equivalent to the ORP for the modified set covering instance where the input
consists of (m×2n)-matrix A′, 2n-vector c′ and the feasible parent solutions p1,p2,
with p1j = 1, p2j = 0 for j = 1, . . . , n and p1j = 0, p2j = 1 for j = n + 1, . . . , 2n. So,
the ORP for the Set Covering Problem is also NP-hard.

Interestingly, in some cases the ORP may be even harder than the original
problem (assuming P ̸= NP). This can be illustrated on the example of the Set
Covering Problem. A special case of this problem, defined by the restriction ai,1 =
1, i = 1, . . . ,m; c1 = 0 is trivially solvable: x = (1, 0, 0, . . . , 0) is the optimal
solution. However, in the case p11 = p21 = 0, the ORP becomes NP-hard under this
restriction.

The Set Covering Problem may be efficiently transformed to the Simple Plant
Location Problem (10)-(11) – see e.g. transformation T3 in [24]. In this case the
dimensions m and n in both problems are equal, Ci = ci for i = 1, . . . , n and

cij =

{ ∑n
k=1 ck + 1, if aij = 0,

0, if aij = 1,
for all i = 1, . . . , n, j = 1, . . . ,m.

It is easy to verify that a vector x∗ in the optimal solution to this instance of
the Simple Plant Location Problem will be an optimal set covering solution as well.
Thus, if the solution representation in the Simple Plant Location Problem is given
only by the vector x then, this reduction meets the conditions of Proposition 3.3.
The subset of solutions to the Simple Plant Location Problem β(Sol1(I)) is charac-
terized in this case by the threshold on objective function fsplp(y) <

∑n
j=1 cj + 1,

which ensures that all constraints of the Set Covering Problem are met. Therefore,
an NP-hard ORP problem is efficiently reduced to the ORP for (10)-(11) and the
following proposition holds.

Proposition 4.5 [15] The ORP for the Simple Plant Location Problem (10), (11)
is NP-hard.

The well-known p-Median Problem may be defined as a modification of the
Simple Plant Location Problem (10), (11): it suffices to assume Ck = 0, j =
1, . . . , n, and to substitute the inequality (11) by constraint

n∑
i=1

xi = p, (31)

where 1 ≤ p ≤ n is a parameter given in the problem input.

A.V. Eremeev, J.V. Kovalenko / Optimal Recombination 19

Proposition 4.6 [15] The ORP for the p-Median Problem (10), (31) is NP-hard.

Proof. E. Alexeeva, Yu. Kochetov and A. Plyasunov in [2] propose a reduction of
an NP-hard Graph Partitioning Problem to the p-Median Problem with n = |V |
and p = |V |/2, where V is the set of the graph vertices and |V | is even. Thus,
this special case of the p-Median Problem is NP-hard as well. Consider an ORP
for this case of the p-Median Problem with parent solutions p1 = (1, . . . , 1, 0, . . . , 0)
and p2 = (0, . . . , 0, 1, . . . , 1) of n/2 ones. Obviously, such ORP is equivalent to the
original p-Median Problem. �

REFERENCES

[1] Agarwal, C.C., Orlin, J.B. and Tai, R.P., Optimized crossover for the indepen-
dent set problem, Massachusetts Institute of Technology, 1995.

[2] Alekseeva, E., Kochetov, Yu. and Plyasunov, A., “Complexity of local search
for the p-median problem”, European Journal of Operational Research, 191
(2008) 736-752.

[3] Ausiello, G., Crescenzi, P., Gambosi, G. et al., Complexity and Approximation:
Combinatorial Optimization Problems and Their Approximability Properties,
Springer-Verlag,Berlin, 1999.

[4] Balas, E. and Niehaus, W., A Max-Flow Based Procedure for Finding Heavy
Cliques in Vertex-Weighted Graphs, MSRR no. 612, Carnegie-Mellon Univer-
sity, 1995.

[5] Balas, E. and Niehaus, W., “Optimized crossover-based genetic algorithms for
the maximum cardinality and maximum weight clique problems”, Journal of
Heuristics, 4 (2) (1998) 107-122.

[6] Beresnev, V.L., Gimady, Ed.Kh. and Dementev, V. T., Extremal Problems of
Standardization, Novosibirsk, Nauka, 1978 (in Russian).

[7] Beyer, H.-G., Schwefel, H.-P. and Wegener, I., “How to analyse evolutionary
algorithms”, Theoretical Computer Science, 287 (2002) 101-130.

[8] Borisovsky, P., Dolgui, A. and Eremeev, A., “Genetic algorithms for a sup-
ply management problem: MIP-recombination vs greedy decoder”, European
Journal of Operational Research, 195 (3) (2009) 770-779.

[9] Cook, W. and Seymour, P., “Tour merging via branch-decomposition”, IN-
FORMS Journal on Computing, 15 (2) (2003) 233-248.

[10] Cotta, C., “A study on allelic recombination”, Proc. of 2003 Congress on Evo-
lutionary Computation, Canberra, IEEE Press, 2003, 1406-1413.

[11] Cotta, C. and Troya, J.M., “Embedding branch and bound within evolutionary
algorithms”, Applied Intelligence 18 (2003) 137-153.

[12] Dolgui, A. and Eremeev, A., “On complexity of optimal recombination for
one-dimensional bin packing problem”, Proc. of VIII Intern. Conf. “Dynamics
of Systems, Mechanisms and Machines”, Vol. 3, Omsk, Omsk Polytechnical
University, 2012, 25-27. (In Russian)

[13] Dolgui, A., Eremeev, A. and Guschinskaya, O., “MIP-based GRASP and ge-
netic algorithm for balancing transfer lines”, Matheuristics. Hybridizing Meta-
heuristics and Mathematical Programming, (ed.) by V. Maniezzo, T. Stutzle,
and S. Voss, Berlin, Springer-Verlag, 2010, 189-208.

20 A.V. Eremeev, J.V. Kovalenko / Optimal Recombination

[14] Eremeev, A.V., “A Genetic algorithm with a non-binary representation for the
set covering problem”, Proc. of Operations Research (OR’98), Springer-Verlag,
Berlin,1999, 175-181.

[15] Eremeev, A.V., “On complexity of optimal recombination for binary represen-
tations of solutions”, Evolutionary Computation, 16 (1) (2008) 127-147.

[16] Eremeev, A.V. and Kovalenko, J.V., “On scheduling with technology based
machines grouping”, Diskretnyi analys i issledovanie operacii, 18 (5) (2011)
54-79. (In Russian)

[17] Garey, M. and Johnson, D., Computers and intractability. A guide to the theory
of NP-completeness. W.H. Freeman and Company, San Francisco, CA, 1979.

[18] Glover, F., Laguna, M. and Marti, R., “Fundamentals of scatter search and
path relinking”, Control and Cybernetics, 29 (3) (2000) 653-684.

[19] Hochbaum, D.S. “Approximating covering and packing problems: set cover,
vertex cover, independent set, and related problems”, Approximation Algo-
rithms for NP-Hard Problems, (ed.) by D. Hochbaum, PWS Publishing Com-
pany, Boston,1997, 94-143.

[20] Holland, J., Adaptation in natural and artificial systems, Ann Arbor, University
of Michigan Press, 1975.

[21] Jansen, T. and Wegener, I., “On the analysis of evolutionary algorithms – a
proof that crossover really can help”, Algorithmica, 34 (1) (2002) 47-66.

[22] Mukhacheva, E.A. and Mukhacheva, A.S., “L.V. Kantorovich and cutting-
packing problems: New approaches to combinatorial problems of linear cutting
and rectangular packing”, Journal of Mathematical Sciences, 133 (4) (2006)
1504-1512.

[23] Korte, B. and Vygen, J., Combinatorial Optimization. Theory and Algorithms,
3rd edition, Springer-Verlag, Berlin,2005.

[24] Krarup, J. and Pruzan, P., “The simple plant location problem: survey and
synthesis”, European Journal of Operational Research, 12 (1983) 36-81.

[25] Lourenγco, H., Paixão, J. and Portugal, R., “Multiobjective metaheuristics for
the bus driver scheduling problem”, Transportation Science, 35 (2001) 331-343.

[26] Papadimitriou, C.H. and Steiglitz, K., Combinatorial Optimization: Algo-
rithms and Complexity, Prentice-Hall, Upper Saddle River, NJ,1982.

[27] Radcliffe, N.J., “The algebra of genetic algorithms”, Annals of Mathemathics
and Artificial Intelligence, 10 (4) (1994) 339-384.

[28] Reeves, C.R. “Genetic algorithms for the operations researcher”, INFORMS
Journal on Computing 9 (3) (1997) 231-250.

[29] Reeves, C.R. and Rowe, J.E., Genetic algorithms: principles and perspectives,
Norwell, MA, Kluwer Acad. Pbs., 2002.

[30] Schuurman, P. and Woeginger, G., Approximation schemes – a tutorial, Eind-
hoven University of Technology, 2006.

[31] Yagiura, M., Ibaraki, T., “The use of dynamic programming in genetic algo-
rithms for permutation problems”, European Journal of Operational Research,
92 (1996) 387-401.

[32] Yankovskaya, A.E., “Test pattern recognition with the use of genetic algo-
rithms”, Pattern Recognition and Image Analysis, 9 (1) (1999) 121-123.

