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Abstract: At some time, in the childhood of spectral graph theory, it was conjectured 
that non-isomorphic graphs have different spectra, i.e. that graphs are characterized by 
their spectra. Very quickly this conjecture was refuted and numerous examples and 
families of non-isomorphic graphs with the same spectrum (cospectral graphs) were 
found. Still some graphs are characterized by their spectra and several mathematical 
papers are devoted to this topic. 

In applications to computer sciences, spectral graph theory is considered as 
very strong. The benefit of using graph spectra in treating graphs is that eigenvalues and 
eigenvectors of several graph matrices can be quickly computed. Spectral graph 
parameters contain a lot of information on the graph structure (both global and local) 
including some information on graph parameters that, in general, are computed by 
exponential algorithms. Moreover, in some applications in data mining, graph spectra 
are used to encode graphs themselves. 

The Euclidean distance between the eigenvalue sequences of two graphs on the 
same number of vertices is called the spectral distance of graphs. Some other spectral 
distances (also based on various graph matrices) have been considered as well. Two 
graphs are considered as similar if their spectral distance is small. If two graphs are at 
zero distance, they are cospectral. In this sense, cospectral graphs are similar. Other 
spectrally based measures of similarity between networks (not necessarily having the 
same number of vertices) have been used in Internet topology analysis, and in other 
areas. 

The notion of spectral distance enables the design of various meta-heuristic 
(e.g., tabu search, variable neighbourhood search) algorithms for constructing graphs 
with a given spectrum (spectral graph reconstruction). 
                                                 
1 Presented at the Conference on Applications of Graph Spectra in Computer Science, 
Barcelona, July 16 to 20, 2012 
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Several spectrally based pattern recognition problems appear in many areas 
(e.g., image segmentation in computer vision, alignment of protein-protein interaction 
networks in bio-informatics, recognizing hard instances for combinatorial 
optimization problems such as the travelling salesman problem).  

We give a survey of such and other graph spectral recognition techniques used 
in computer sciences. 
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1. INTRODUCTION 

Spectral graph theory is a mathematical theory in which linear algebra and graph 
theory meet. For any graph matrix M we can build a spectral graph theory in which 
graphs are studied by means of eigenvalues of the matrix M. This theory is called M-
theory. In order to avoid confusion, to any notion in this theory a prefix M-could be 
added (e.g., M-eigenvalues). Frequently used graph matrices are the adjacency matrix A , 
the Laplacian L D A= −  and the signless Laplacian Q D A= + , where D  is a diagonal 
matrix of vertex degrees. The spectral graph theory includes all particular theories 
together with interaction tools. 

 
1.1. Preliminaries: Spectral graph theory in computer sciences 

It was recognized in about the last ten years that graph spectra have several 
important applications in computer sciences (see, e.g., [13, 14, 21]). Graph spectra 
appear in the literature in Internet technologies, computer vision, pattern recognition, 
data mining, multiprocessor systems, statistical databases and in many other areas. 
There are thousands of such papers. 

In surveys [21] and [2] of the applications of graph spectra in Computer 
science, applications in the following branches of Computer science have been 
identified : 
 

1. Expanders and combinatorial optimization, 
2. Complex networks and the Internet topology, 
3. Data mining, 
4. Computer vision and pattern recognition, 
5. Internet search, 
6. Load balancing and multiprocessor interconnection networks, 
7. Anti-virus protection versus spread of knowledge, 
8. Statistical databases and social networks, 
9. Quantum computing, 
10. Bio-informatics, 
11. Coding theory, 
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12. Control  theory. 
This classification of numerous applications contains some overlapping in the 

classified material. For example, methods of data mining (in particular, spectral graph 
clustering) appear in computer vision, social networks and Internet search while several 
problems of combinatorial optimization are relevant for data mining (e.g., in 
clustering). 

The approach in the second survey [2] is different from one in the companion 
paper [21]. While [21] gives a survey of the areas of applications, [2] contains a 
description of particular topics from the theory of graph spectra independently of the 
areas of Computer science in which they are used. However, for each described spectral 
technique fields where they are used are indicated. From the presented material one 
can see that a great part of the theory of graph spectra is really used in computer 
sciences. 

The paper [2] contains, among others, the following sections and subsections: 
3. Significant eigenvalues, 3.1. Largest eigenvalue, 3.2. Algebraic 

connectivity, 3.3. The second largest eigenvalue, 3.4. The least eigenvalue, 3.5. Main 
eigenvalues, 

4. Eigenvector techniques, 4.1. Principal eigenvector, 4.2. The Fiedler 
eigenvector, 4.3. Other eigenvectors, 

5. Spectral recognition problems, 6. Spectra of random graphs, 7. Miscellaneous 
topics, 7.1. The Hoffman polynomial, 7.2. Integral graphs, 7.3. Graph divisors. 

Through various applications in computer sciences it becomes clear that 
spectral graph theory is by no means bounded to a particular graph matrix, such as 
adjacency matrix or Laplacian. A great variety of graph matrices are used depending on 
the problem treated. 

Of course, we do not have space here to provide standard details from the 
theory of graphs spectra; instead we direct the reader to the corresponding 
mathematical literature, in particular to books [12, 17]. 

Since methods of Computer science are present in all branches of science, 
applications of graph spectral techniques to Computer science are transferred to 
almost all branches of science (telecommunications, electrical engineering, biology, 
chemistry, geography, social sciences, etc.). Sometimes by using the adjective 
”computational” one can denote those parts of particular sciences which overlap with 
Computer science (e.g., computational biology, computational chemistry, etc.). In this 
sense one can speak of computer sciences which explains the title of [2]. 

Of course, graph spectra appear in Computer science since graphs for 
themselves are relevant. The main benefit of using graph spectra comes from the fact 
that eigenvalues and eigenvectors of several graph matrices can be quickly computed 
(computational complexity is 3( )O n  where n  is the number of vertices). However, 
spectral graph parameters contain a lot of information on the graph structure (both 
global and local). This includes some information on graph parameters that, in 
general, are computed by exponential algorithms (e.g. chromatic number, the size of 
maximal clique, etc.). For example, computing the chromatic number of a graph with a 
few thousands vertices is a difficult task while eigenvalues and eigenvectors can be 
computed in a few seconds (by iterative algorithms). 
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Graphs that are treated in computer sciences using graph spectra typically 
represent either some physical networks (computer network, Internet, biological 
network, etc.) or data structures (documents in a database, indexing structure, etc.). In 
the first case the graphs usually have a great number of vertices (thousands or millions) 
and they are called complex networks while in the second case graphs are of small 
dimensions. 

This paper elaborates spectral recognition problems by extending 
considerations of Section 5 of the paper [2]. 

 
1.2. Preliminaries: Spectral recognition problems 

The whole spectral graph theory is related in some sense to the recognition of 
graphs since spectral graph parameters contain a lot of information on the graph 
structure (both global and local). However, we shall treat here the problems of 
recognizing entire graphs, or some parts of them, both in an exact manner and in an 
approximative way. 

In particular, we shall consider 
- characterizations of graphs with a given spectrum 
- exact or approximate constructions of graphs with a given spectrum, 
- similarity of graphs, 
- perturbations of graphs. 
The rest of the paper is organized as follows. Section 2 discusses some 

differences concerning graph spectra in mathematics and computer science while in 
Section 3 spectral characterizations of graphs are presented. Section 4 introduces the 
concept of the similarity of graphs while Section 5 describes the use of the interlacing 
theorem. Section 6 contains a description of two kinds of graph perturbations. Some 
specific spectral recognition problems are described in Section 7. 

 
2. GRAPH SPECTRA IN MATHEMATICS AND COMPUTER SCIENCE 

Spectral graph theory is a very well developed mathematical field (see, for 
example, [17]) but also an engineering discipline [44]2. 

For decades graph theory was just a collection of weakly interrelated 
subtheories (chromatic graph theory, metrical problems, trees, planar graphs, etc.). The 
theory of graph spectra contains tools which can be applied to all these subtheories, 
although with varying strength, and one can think of it as being a unifying theory for 
the whole graph theory. However, spectral techniques are weak for some problems and 
mathematicians could reasonably hold doubt in such a possible conclusion. 

In applications to computer sciences spectral graph theory is considered as 
very strong and perhaps one can say that its unifying mission for graph theory has been 
realized through Computer Science. 

                                                 
2 An Internet search has shown that, for example, the following universities in their computer 
science departments offer to students a course in spectral graph theory: Univ. 
Pennsylvania, Philadelphia; Yale University; Carnegy Melon University; Univ. Alicante, 
Spain; Duke University; Univ. Polit. Catalunia, Barcelona. 
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As already pointed out, the benefit of using graph spectra in treating graphs is 
that eigenvalues and eigenvectors of several graph matrices can be quickly computed. 
Spectral graph parameters contain a lot of information on the graph structure (both 
global and local) including some information on graph parameters that, in general, are 
computed by exponential algorithms. 

Moreover, in some applications in data mining graph spectra are used to encode 
graphs themselves (see, e.g., [23, 51]). The following examples are illustrative in this 
respect. 

The indexing structure of objects appearing in computer vision (and in a wide 
range of other domains such as linguistics and computational biology) may take the form 
of a tree. An indexing mechanism that maps the structure of a tree into a low-dimensional 
vector space using graph eigenvalues is developed in [40]. 

In some cases researchers feel that the spectrum very well characterizes the 
graphs under consideration so that the spectrum is considered as a fingerprint of the 
corresponding network. The eigenvalues iγ ; 1, 2,...,i n=  of the normalized Laplacian L̂  

in non-decreasing order can be represented by points 1( , )
1 i

i
n

γ−
−

 in the region 

[ ] [ ]0,1 0,2×  and can be approximated by a continuous curve. It was noticed in [45, 46] 
that this curve is practically the same during the time for several networks in spite of the 
increasing number of vertices and edges of the corresponding graph. 

 
3. SPECTRAL CHARACTERIZATIONS OF GRAPHS 

At some time it was conjectured that non-isomorphic graphs have different 
spectra, i.e. that graphs are characterized by their spectra. Very quickly this conjecture 
was refuted and numerous examples and families of non-isomorphic graphs with the 
same spectrum were found. In particular, it was proved that almost all trees are not 
characterized by their spectra. Analogous question for general graphs remained open 
(see, e.g., [12], Section 6.1, for a survey on these questions). Also in Chemistry there 
was a criticism on using graph eigenvalues to characterize molecules [30]. 

Graphs with the same spectrum of an associated matrix M  are called 
cospectral graphs with respect to M, or M - cospectral graphs. 

The existence of cospectral graphs is not considered as a disadvantage in using 
graph spectra in Computer Science since it is believed that graph spectra contain 
enough information for the purposes for which they are used. 

To clarify recent developments we need some definitions.  
A graph H  cospectral with a graph G , but not isomorphic to G , is called a 

cospectral mate of G . Let G be a finite set of graphs, and let G’ be the set of graphs in G 
which have a cospectral mate in G with respect to M . The ratio │G’│/ │G’│ is called the 
spectral uncertainty of (graphs from) G with respect to M  (or, in general, spectral 
uncertainty of the M -theory). 

The papers [22, 29] provide spectral uncertainties nr  with respect to the 
adjacency matrix A, ns  with respect to the Laplacian L  and nq  with respect to the 
signless Laplacian Q  of sets of all graphs on n  vertices for 11n ≤  (see [5] for 12n = ): 
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n  4 5 6 7 8 9 10 11 12 
nr  0 0.059 0.064 0.105 0.139 0.186 0.213 0.211 0.188 
ns  0 0 0.026 0.125 0.143 0.155 0.118 0.090 0.060 
nq  0.182 0.118 0.103 0.098 0.097 0.069 0.053 0.038 0.027 

 
We see that the sequences ns  and nq  are decreasing for 12n ≤  while the 

sequence nr  is increasing for 10n ≤ . Yet, it starts to decrease for 10n > . This is a strong 
basis for believing that almost all graphs are determined by their spectra when n  tends 
towards the infinity, as conjectured in [22, 29]. 

The proof of this conjecture would strengthen the theory of graph spectra and, in  
particular, its application to computer sciences. 

Having in view the above data, in applications the L-spectrum is used to encode 
graphs rather than A-spectrum, i.e. the L-spectrum has more representational power than 
the A-spectrum, in terms of resulting in fewer cospectral graphs. The above data show 
that it is even better to use signless Laplacian eigenvalues since they have stronger 
characterization properties. 

Recently, a spectral theory of graphs based on the signless Laplacian has been 
developed [18, 19, 20]. 

There are many results in the mathematical literature on spectral 
characterizations of particular classes of graphs (see, e.g., Chapter 4 of [17]). For 
example, complete graphs, paths and circuits are characterized by their A-spectra up to an 
isomorphism3. There are also characterizations with some exceptional cospectral mates. 

However, these results hardly could be applied to graphs which appear in 
applications to computer science. 

 
4. SIMILARITY OF GRAPHS 

There is a need to introduce the notion of similarity of graphs. (This has nothing 
to do with similarity in matrices, i.e. two graphs can be similar without corresponding 
matrices being similar.) This will be done using various distances between graphs. A 
special role play spectral graph distances. 

Another spectrally based measure of similarity between networks has been 
introduced in [25], and applied to Internet topology analysis. 

 
4.1. Spectral distances in graphs 

The Euclidean distance between the eigenvalue sequences of two graphs on the 
same number of vertices is called the spectral distance of graphs. Some other spectral 
distances have been considered as well (e.g., the Manhattan distance). 

In defining spectral distances various graph matrices can be used (e.g., the 
adjacency matrix, the Laplacian, the signless Laplacian). 

                                                 
3 Graphs characterized by their spectra up to an isomorphism are called in [22, 29] DS-
graphs or it is said that such graphs are DS (spectrally determined). 
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Some mathematical results on the Manhattan spectral distance have been 
obtained in [31]. An interesting observation from this paper is that the Manhattan 
distance is in connection with graph energy, a graph invariant studied very much in the 
literature. The energy of a graph is the sum of absolute values of its A-eigenvalues. Thus 
the energy of a graph is the Manhattan spectral distance of the graph from the graph 
without edges. 

The use of the Laplacian and the signless Laplacian matrix for the Manhattan 
distance seems to be very useful when considering subgraphs. By the interlacing 
theorems for these matrices (see Section 5), all eigenvalues go down or remain the same 
if an edge is deleted from the graph. Hence the distance between a graph and any of its 
edge deleted subgraphs is equal to the decrement of the trace of the matrix. Since for 
both matrices the trace is equal to the sum of vertex degrees, we conclude that the 
distance is equal to the twofold number of deleted edges. All these properties do not hold 
for the adjacency matrix. 

Two graphs are considered as similar if their spectral distance is small. If two 
graphs are at zero distance, this does not necessarily mean that they are equal (i.e. 
isomorphic); they are only cospectral. In this sense, cospectral graphs are similar. See 
next subsection for a possibility to introduce a positive distance between cospectral 
graphs. 

For several reasons it is of interest to construct or generate a graph with the 
given spectrum. 

An algorithm for such a spectral graph reconstruction has been developed in 
[7]. Given the spectrum of a graph, the algorithm starts from a random graph and uses 
the tabu search to diminish the Euclidean spectral distance between the given and the 
current spectrum. Both, the distance and the meta-heuristic, can be varied. We could 
use the Manhattan distance based on the adjacency matrix or on the signless Laplacian.  
The tabu search could be replaced by the variable neighbourhood search (see, for 
example, [6]) or by some other meta-heuristics. 

The variable neighbourhood search is exploited in the programming package 
AutoGraphiX (briefly AGX) for finding graphs with extremal values of a graph 
invariant chosen by the user. The system starts from a random graph or from a graph 
given by the user. The graph is perturbed to some extent using the variable 
neighbourhood search and a new graph is chosen which improves maximally the 
considered graph invariant. The system AGX is very useful in formulating some 
conjectures which are later treated by theoretical means. For example, system AGX 
has generated several conjectures for the energy of a graph [6] and thirty conjectures 
concerning signess Laplacian eigenvalues [16]. See also [1]. It would be interesting to 
treat some conjectures from [31] concerning spectral distances of graphs by AGX. 

AGX could be used for spectral reconstruction of graphs. It is sufficient to 
require that the system minimizes the distance (of any kind) between the current graph 
and a fixed graph. One could compare the speed of convergence for several distances 
and for several meta-heuristics. 

Computer programs for spectral reconstruction of graphs can be used to 
generate example graphs with desired spectral properties. 
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4.2. Refinements using graph angles 

Cospectral graphs are at spectral distance 0  and if we wish to define some kind 
of positive distance among them we need to consider graph invariants other than 
eigenvalues. 

Since eigenvectors are not graph invariants it is reasonable to extend eigenvalue 
based techniques by some invariants of the eigenspaces called graph angles. 

Let G  be a graph on n  vertices with distinct eigenvalues 
1 2 1 2, ..., ( )m mμ μ μ μ μ μ> > >L  and let 1 2, ,..., mS S S  be the corresponding eigenspaces. 

Let { }1 2, ,..., ne e e  be the standard (orthonormal) basis of nR . The numbers 
cos ( 1, 2,..., ; 1, 2,..., ),pq pq p m q nα β= = = where pqβ  is the angle between pS  and qe , are 

called graph angles. The sequence ( 1,2,..., )pq q nα =  is called the eigenvalue angle 
sequence corresponding to the eigenvalue ( 1,2,..., )p p mμ = . We also define the angle 
matrix of G , i.e. an m n×  matrix ( m  is the number of its distinct eigenvalues, while n  
is the order of G ) as a matrix ( )ijα . This matrix is a graph invariant if its columns are 
ordered lexicographically. The rows of the angle matrix are called the standard 
eigenvalue angle sequences. 

Let 1 2( , ,..., ) ( 1, 2,..., )i i i inx x x x i n= =  be orthonormal eigenvectors of G. Define 

{ }p j p jM j Ax xμ= = . We have 2 2

p

pq jq
j M

xα
∈

= ∑  for squares of angles of G. This formula 

holds for any choice of orthonormal eigenvectors of G  (cf. [15], p. 76). 
Angles between the vector (1,1,...,1) nR∈  and eigenspaces 1 2, ,..., mS S S  are 

called main angles of the graph. 
An overview of results on graph angles is given in [15] including the 

characterizing properties of graph angles. 
It was suggested in [10] that cospectral graphs can be ordered by graph angles, 

in particular, lexicographically by their standard eigenvalue angle sequences. The paper 
provides an example of 21 mutually cospectral graphs (on 10 vertices with 20 edges) 
ordered by the first standard eigenvalue angle sequences. 

In defining a spectral graph distance we use differences between corresponding 
eigenvalues of two graphs. For each spectral graph distance we can define a 
corresponding cospectral graph distance by using differences between the corresponding 
entries of the angle matrix instead of differences between corresponding eigenvalues. For 
example, the Manhattan cospectral graph distance is the sum of absolute values of 
differences between the corresponding entries of the angle matrices of the graphs. 

However, the cospectral graph distance can be 0 for non-isomorphic graphs 
since there are graphs having the same eigenvalues and the same angles (for example, 
strongly regular graphs, see [15]). Such effects cannot appear if we use stronger 
invariants such as canonical star basis of a graph [9], [15]. However, the computational 
complexity of constructing a canonical star basis is probably so high that it is not 
practical to use this approach in applications. 
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4.3. Network alignment problem 

The notion of graph similarity can be extended to graphs having different 
numbers of vertices. Detecting similarities between networks is frequently called 
alignment of networks. The general idea is the following one. 

Given the graphs G  and H, a measure of similarity between vertices of G  and 
vertices of H  is introduced by some definition. Let ,i jR  be the measure of similarity 
between vertex i  of G  and vertex j  of H. Let B  be the bipartite graph on vertex sets of 
the graphs G  and H with edge weights ,i jR . We want to find a maximal matching with a 
maximal sum of weights in B . This matching defines subgraphs of graphs G  and H 
which are similar w.r.t. the introduced similarity between vertices of G  and vertices of 
H. Finding a maximal matching with a maximal sum of weights in a bipartite graph can 
efficiently be performed by existing algorithms for the assignment problem in 
combinatorial optimization (see, for example, [36]). 

In this way we can find common or similar subgraphs in the considered graphs. 
Note that the subgraph isomorphism problem is NP-complete which means that we 
cannot expect a satisficatory algorithm by comparing subgraphs directly. 

The measure of similarity ,i jR  is always defined taking into the account the 
neighbouhoods of vertex i  in G  and vertex j in H . For example, vertices of the same 
degree should be considered as being more similar than those with different degrees. 

A survey of structural (non-spectral) measures of similarity between vertices can 
be found in [49]. The normalized positive eigenvector belonging to the largest A-
eigenvalue of a connected graph is called the principal eigenvector. 

A spectrally based measure of similarity between vertices of two graphs is used 
in [41] in the context of protein interaction networks. The algorithm is called IsoRank, it 
uses graph eigenvectors and is similar to the algorithm PageRank, used in the Internet 
search [4]. Here the measure of similarity ,i jR  is equal to the product4 of the i-th 
coordinate of the principal eigenvector of the graph G  and the j-th coordinate of the 
principal eigenvector of the graph H . This measure has the property that for any pair 
( , )i j  it is equal to the mean value of similarities between all pairs ( , )p q  where p  is a 
neighbour of i  and q  is a neighbour of j . The principal eigenvector of a graph can 
efficiently be computed by an iterative algorithm called the power method (see, for 
example, [28]). 

A similar concept of the measure of similarity has been introduced in [3], even 
more generally between vertices of two digraphs and applied to synonym extraction from 

                                                 
4 The paper [41] uses graph product G H×  of graphs G  and H. The quantity ,i jR  is interpreted 

as a coordinate of the principal eigenvector of G× H. However, it is well-known that the 
adjacency matrix of G H×  is equal to the Kronecker product of adjacency matrices of graphs G  
and H  and that the principal eigenvector of G H×  is the Kronecker product of principal 
eigenvectors of graphs G  and H  (see, for example, [12], pp. 69-70). Hence, principal 
eigenvectors of graphs G  and H  can be computed separately. 
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a dictionary. When considering undirected graphs, we obtain the construction used in 
IsoRank. 

Coordinates of the principal eigenvector are related to vertex neighbourhoods 
because they are asymptotically proportional to the number of walks of length k  starting 
at particular vertices. The following relevant theorem of T.H. Wei [47] is noted in [15], p. 
26: 
Theorem 4.1. Let ( )kN i  be the number of walks of length k starting at vertex i  of a non-

bipartite connected graph G  with vertices 1,2,...,n . Let ( ) 1

1( ) ( ) ( )n
k k j ks i N i N j

−

== ⋅ ∑ . 

Then, for ,k →∞  the vector ( (1), (2),..., ( ))T
k k ks s s n  tends towards the principal 

eigenvector of G . 
Counting walks with specified properties in a graph (or digraph) is related to 

graph spectra by the following well-known result (see [12], p. 44). 
Theorem 4.2. If A is the adjacency matrix of a graph, then the ( , )i j -entry ( )k

ija  of the 

matrix kA is equal to the number of walks of length k  that originate at vertex i  and 
terminate at vertex j . 

The paper [33] surveys methods of network alignment used in protein 
interaction networks and recommends an algorithm based on "graphlets" (induced 
subgraphs on at most 5 vertices). This is again a non-spectral approach in which a vertex 
is characterized by a 73-dimensional vector (vertex signature) whose coordinates 
represent frequencies of graphlets in which the vertex appears. The corresponding 
programming package is called GRAAL. 

Let G  be a graph with adjacency matrix A, and let ( )( ) k
k jjN j a=  the number of 

walks of length k  in G  originating and terminating at vertex j . Let H ( )j t  be the 

generating function 0 ( ) k
k kN j t∞
=∑ . Using notation from Subsection 4.2, we can obtain, 

[15], p. 82, 

H
2

2

0 1 1
( ) .

1

m m
ijk k

j ij i
k i i i

t t
t

α
α μ

μ

∞

= = =

= =
−∑ ∑ ∑  

On the other hand, we have H 2 3( ) 1 2 ...,j j jt d t t t= + + +  where jd  is the degree 
of vertex j  and jt  is the number of triangles containing j . The quantity jt  is also called 
the clustering coefficient of the vertex j. Higher terms of ( )jH t  give the numbers of 
closed walks contained in graphlets with 4 and 5 vertices to which the vertex j  belongs. 

We think that in problems of network alignment vertices should be 
characterized by generating functions H ( )j t . This function depends on the vertex 
neighbourhood which is in this case extended to the whole graph unlike the method with 
graphlets where the neighbourhood is very limited. 

For example, the measure of similarity ,i jR  can be defined in some way using 

the difference H ( )G
i t −H ( )H

j t  of generating functions of vertex i  in G  and vertex j  in 
H . 
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The following formulas are also useful. 

( ) 2

1
( ) .

n
s s

s jj i ij
i

N j a μ α
=

= = ∑  

The degree jd  of the vertex j , and the number jt  of triangles containing the 
vertex j , are given by 

2 2 2 3

1 1

1, .
2

m m

j ij i j ij i
i i

d tα μ α μ
= =

= =∑ ∑  

Let ( ) det( )GP I Aλ λ= −  be the characteristic polynomial of the graph G . The 
generating function can be obtained by the formula 

H
1 1( ) ( ) / ( ),G

j G j Gt P tP
t t−=  

since 
2

1
( ) ( ) .

m
ij

G j G
i i

P x P x
x
α
μ−

=

=
−∑  

It would be interesting to compare the performances of the three described 
approaches to the network alignment problem using various criteria. It was reported in 
[33] that GRAAL finds common subgraphs with more vertices than IsoRank. 

It is interesting to note that the use of the signless Laplacian (Manhattan) 
spectral distance provides an upper bound for the number of edges in a common 
subgraph of two graphs. By the Interlacing theorem, the signless Laplacian eigenvalue 
sequence of a maximal common subgraph is dominated by signless Laplacian eigenvalue 
sequences of each of the considered networks. Hence, an upper bound for the number of 

edges in a common subgraph is equal to 1
2 iκ∑ , where iκ  is the minimum of the i-th 

largest signless Laplacian eigenvalues of the considered networks. 
 

5. QUERIES FOR DATABASES AND THE SUBGRAPH ISOMORPHISM 
PROBLEM 

In several databases the data are often represented as graphs. Very frequently 
graphs are indexed by their spectra. 

In [37] a spectral graph theory approach is presented for representing melodies 
as graphs, based on intervals between the notes they are composed of. These graphs are 
then indexed using their Laplacian spectrum. This makes it possible to find melodies 
similar to a given melody. See also [40], [51] for other examples. 

The query for such a database is given by a graph. To find similar data in the 
database it is necessary to compare subgraphs of the query graph with subgraphs of the 
graphs stored in the database. One should efficiently select a small set of database graphs, 
which share a subgraph with the query. 
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The subgraph isomorphism problem is a computational task in which two 
graphs G  and H  are given as input, and one must determine whether G  contains a 
subgraph that is isomorphic to H. Sometimes the name subgraph matching is also used 
for the same problem. Subgraph isomorphism is a generalization of two well-known NP-
complete problems, the maximum clique problem and the problem of testing whether a 
graph contains a Hamiltonian cycle, and is therefore NP-complete [8]. There is a similar 
problem known as the maximum common subgraph-isomorphism problem. This problem 
is known to be NP-hard. The formal description of the problem is as follows: given two 
graphs 1G  and 2G , what is the largest induced subgraph of 1G  isomorphic to an induced 
subgraph of 2G ? The associated decision problem, i.e., given 1G , 2G  and an integer k , 
deciding whether 1G  contains an induced subgraph of at least k  edges isomorphic to an 
induced subgraph of 2G  is NP-complete. 

Instead of comparing subgraphs one can compare their spectra. While the 
subgraph isomorphism problem is NP-complete, comparing spectra can be done in 
polynomial time. The so called Interlacing Theorem (Theorem 5.1) plays an important 
role in problems of spectral graph recognition and in spectral graph theory and its 
applications in general. 

Recall that the matrix A  with complex entries ija  is called Hermitian if 

,TA A=  i.e. ,j i ija a=  for all i,j. 
Theorem 5.1. (see, e.g., [12], p. 19) Let A be a Hermitian matrix with 
eigenvalues 1 2 nλ λ λ≥ ≥ ≥L  and let B be one of its principal submatrices. If the 
eigenvalues of B are 1 2 mμ μ μ≥ ≥ ≥L  then 1 ( 1,..., )n m i i i mλ μ λ− + ≤ ≤ = . 

The inequalities of this theorem are known as Cauchy's inequalities and the 
whole theorem is known as the Interlacing Theorem. 

Usually, A is the adjacency matrix of a graph G and B is the adjacency matrix of 
an induced subgraph H  of the graph G . 

We have the following version of the interlacing theorem for L- spectra. 
Theorem 5.2. Let G  be a connected graph on n vertices. Eigenvalues in non-decreasing 
order of the Laplacian L D A= −  of G are denoted by 1 20, ,..., nv v v= . Let G′  be 
obtained from G by adding an edge and let 1 20, ,..., nσ σ σ=  be L-eigenvalues of G′ . 
Then 

1 1 2 20 .n nv v vσ σ σ= = ≤ ≤ ≤ ≤ ≤L  

The proof is obtained using well-known Courant-Weyl inequalities (see, e.g., 
[12], pp. 51-52). 

Literally the same theorem holds for the signless Laplacian spectra but the proof 
relies on some connections between Q -eigenvalues and A-eigenvalues of line graphs 
[16]. 

The interlacing theorem is often an effective tool in pruning the search in graph 
databases. Such databases consist of graphs and a query is also a graph Q . One should 
find all graphs in the database which contain the graph Q  as a subgraph. 
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The problem is that Cauchy's inequalities hold for induced subgraphs and not 
necessarily for subgraphs in general. However, in the set of trees connected subgraphs 
are always induced subgraphs and the pruning rules based on the Interlacing theorem do 
work [40]. 

Using this fact a spectral coding of graphs is introduced in [51]. This coding 
uses spectra of trees associated to graph vertices. It seems that better search pruning 
possibilities can be expected from interlacing theorems for Laplacian and signless 
Laplacian spectra. Laplacian eigenvalues are used to code graphs, for example, in [37], 
[23]. 

To accelerate the process of computing spectra of subgraphs the spectral 
integral variation technique is used in [23]. 

By the interlacing theorem, when adding an edge to a graph the L-eigenvalues 
do not decrease. However, the sum of L-eigenvalues increases by 2. We are interested in 
the case when L-eigenvalues change only by integer quantities. Evidently, there are just 
two possible scenarios [43, 24] where that can happen: either one eigenvalue will 
increase by 2 (and 1n −  eigenvalues remain unchanged) or two eigenvalues will increase 
by 1 (and 2n −  eigenvalues remain unchanged). Precise conditions when each of these 
two cases of spectral integral variation technique occurs are given in the literature [32, 
43]. 

The use of the signless Laplacian eigenvalues looks even better. 
 

6. STRUCTURAL AND SPECTRAL PERTURBATIONS OF GRAPHS 

Informally speaking, similar graphs can be understood as being obtained, one 
from the other, by some"small" perturbation. A graph perturbation can be described as a 
"small" change in its structure or in its spectrum. 

The spectral integral variation technique, described in the last section, is just an 
example involving graph perturbations. A graph perturbation means a small change in 
graph structure (e.g., adding an edge or a vertex). We are interested in changes in graph 
eigenvalues caused by a perturbation. 

There is a chapter in the book [15] devoted to graph perturbations and 
corresponding changes in the spectrum. 

The problem of protecting the privacy appears in social networks on the Internet 
(for example, Facebook) when studying general properties of an existing network. A way 
to protect the privacy of personal data is to randomize the network representing relations 
between individuals by deleting some actual edges and by adding some additional edges 
in such a way that the global characteristics of the network are unchanged. This is 
achieved by using eigenvalues of the adjacency matrix (in particular, the largest one) and 
of the Laplacian (algebraic connectivity) to control the process of deleting and adding the 
edges [50]. The choice of deleted and added edges is performed by using results of [15], 
Chapter 6, for the largest eigenvalue and the corresponding results for the algebraic 
connectivity have been derived in the paper. 

In Computer Science literature, some spectral perturbations of graphs have been 
considered as well. This means that the graph spectrum is slightly changed while the 
eigenvectors remain unchanged. This is used in connection with the formula for spectral 
decomposition of the adjacency matrix A of a graph, i.e. TA U U= Λ ; where Λ  is a 
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diagonal matrix containing the eigenvalues of A and the columns of matrix U are 
orthonormal eigenvectors of A. The paper [34] proposes a new robustness parameter for 
complex networks: this is the maximal number k such that one can replace k smallest in 
modulus eigenvalues of A with zeros with the possibility that A still can be reconstructed. 

A similar "deletion" of eigenvalues appears also in the so called latent semantic 
indexing (LSI) but it is applied on singular values of the term-by-document matrix (see, 
e.g., [35, 42]). 

 
7. SOME OTHER SPECTRAL RECOGNITION PROBLEMS 

The second smallest Laplacian eigenvalue is called algebraic connectivity of the 
graph and was introduced by Fiedler [26]. The eigenvector belonging to the second 
smallest Laplacian eigenvalue of the connected graph is called the Fiedler eigenvector. 
Of course, we have both positive and negative entries in it. 

A heuristic for solving the min-cut problem uses the Fiedler eigenvector to 
partition the vertex set into parts corresponding to positive and negative coordinates of 
this vector [27]. 

These ideas were exploited in the literature in various ways for devising 
powerful heuristics for spectral graph partitioning and/or clustering. For instance, Shi and 
Malik [39] have shown how the sign pattern of the Fiedler eigenvector can be used to 
separate the foreground from the background structure in images. The original procedure 
from [27] has been improved by using the matrix 1D L−  (so as to maximize the 
normalized graph cut). More generally, image segmentation is an important procedure in 
computer vision and pattern recognition. The problem is to divide the image into regions 
according to some criteria. Very frequently the image segmentation is obtained using 
eigenvectors of some graph matrices (for more details see, e.g., [48]). 

Graph spectra can be used to recognize some abstract objects like hard instances 
for a combinatorial optimization problem. 

Let A  be an (exact) algorithm for solving an NP-hard combinatorial 
optimization problem C  and let I  be an instance of C  of dimension n . A complexity 
index of I  for C  with respect to A is a real r, computable in polynomial time from I, by 
which we can predict (in a well defined statistical sense) the execution time of A  for I. 

We consider the symmetric travelling salesman problem with instances I  
represented by complete graphs G with distances between vertices (cities) as edge 
weights (lengths). Intuitively, the hardness of an instance G depends on the distribution 
of short edges within G. Therefore we consider some short edge subgraphs of G (minimal 
spanning tree, critical connected subgraph, critical 2-connected subgraph and several 
others) as non-weighted graphs and several their invariants as potential complexity 
indices. Here spectral invariants (e.g. spectral radius of the adjacency matrix) play an 
important role since, in general, there are intimate relations between eigenvalues and the 
structure of a graph. Since hidden details of short edge subgraphs really determine the 
hardness of the instance, one should use techniques of data mining to find them. In 
particular, spectral clustering algorithms are used including information obtained from 
the spectral gap in Laplacian spectra of short edge subgraphs [11]. 
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