In this paper the Bandwidth Multicoloring Problem (BMCP) and the Bandwidth Coloring Problem (BCP) are considered. The problems are solved by two genetic algorithms (GAs) which use the integer encoding and standard genetic operators adapted to the problems. In both proposed implementations, all individuals are feasible by default, so search is directed into the promising regions. The first proposed method named GA1 is a constructive metaheuristic that construct solution, while the second named GA2 is an improving metaheuristic used to improve an existing solution. Genetic algorithms are tested on the publicly-available GEOM instances from the literature. Proposed GA1 has achieved a much better solution than the calculated upper bound for a given problem, and GA2 has significantly improved the solutions obtained by GA1. The obtained results are also compared with the results of the existing methods for solving BCP and BMCP.