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1. INTRODUCTION 

1.1. Quadratic assignment problem 

The Quadratic Assignment Problem (QAP) is firstly proposed in [16] as a 
mathematical model related to economic activities. Since then, it has appeared in many 
practical applications as can be seen from [22]. We mention only several recent 
applications: 

• facility layout design problem in order to minimize work-in-process [29]; 
• website structure improvement [27]; 
• placement of electronic components [9]; 
• index assignment problem related to error control in communications [3]; 
• memory layout optimization in signal processors [34]. 
 
Several NP-hard combinatorial optimization problems, such as the traveling 

salesman problem, the bin-packing problem and the max clique problem, also can be 
modeled as QAPs.  

Since its first formulation, the QAP has been drawing researchers’ attention 
worldwide, not only because of its practical and theoretical importance, but also because 
of its complexity. The QAP is one of the most difficult combinatorial optimization 
problems. In [28] was shown that QAP is NP-hard and that, unless P = NP, it is not 
possible to find an 1+ε - approximation algorithm, for a constant ε. Such results are valid 
even when flows and distances appear as symmetric coefficient matrices. 

In general, the QAP instances of size greater than 30 cannot be solved exactly in a 
reasonable time. Although heuristic methods do not offer a guarantee for reaching the 
optimum, they give satisfactory results to a large range of various problems in a 
reasonable amount of time. Recently, so-called metaheuristics, or general frameworks for 
building heuristics, became popular for solving difficult combinatorial optimization 
problems. Metaheuristic approaches use different techniques in order to avoid 
entrapments in pour local minima and are based mainly on two principles: local search 
with globalization mechanisms and population search. 

In local search methods, an intensive search of the solution space is performed by 
moving, at each step, from the current solution to another promising solution in its 
neighborhood. Globalization mechanisms are designed so to ensure diversification of the 
search. The population search consists of maintaining a pool of good solutions and 
combining them in order to produce hopefully better solutions. 

Thus, a large number of metaheuristic methods have been used to solve the QAP and 
presentation of all such contributions is out of this paper's scope. We mention only 
several recent metaheuristic applications for QAP: 

• genetic algorithms [6, 10, 33]; 
• tabu search [7, 14, 24]; 
• simulated annealing [23]; 
• ant colony optimization [27]; 
• particle swarm optimization [20]; 
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• iterated local search [30] 
• self-organizing migrating algorithm [4]. 

As it can be seen from the literature ([22]), hybrid approaches for solving QAP have 
some advantages compared to single metaheuristic approaches. Some of the recent hybrid 
approaches are: 

• hybrid of genetic algorithm and several variants of tabu search [8]; 
• variable neighborhood particle swarm optimization [21]; 
• ant colony optimization approach coupled with a guided local search [12]; 
• ant colony optimization hybridized with the genetic algorithm and a local search 

method [32]; 
• GRASP with path-relinking [26]. 

 
1.2 Genetic algorithms 

Genetic algorithms (GAs) represent a problem-solving metaheuristic method 
rooted in the mechanisms of evolution and natural genetics. The main idea was 
introduced by Holland [13]. In the last three decades GAs have emerged as effective, 
robust optimization and search methods. 

GAs solve problems by creating a population of individuals (usually 10 - 200), 
represented by chromosomes, which are encoded solutions of the problem. The 
representation is the genetic code of an individual, and it is often a binary string, although 
other alphabets of higher cardinality can be used. A chromosome is composed of basic 
units named genes, which control the features of an individual. To each chromosome, a 
fitness value measuring its success is assigned. The initial population (the first generation 
of individuals) is usually randomly initialized. The individuals in the population then 
pass through a procedure of simulated "evolution" by means of randomized processes of 
selection, crossover, and mutation. 

The selection operator favors individuals more capable to survive through the 
generations. The probability that a chromosome will be chosen depends on its fitness. 
The higher fitness value of a chromosome provides higher chances for its survival and 
reproduction. There are different ways of selecting the best-fitted individuals. One of the 
most often used is tournament selection (for more details see [1, 11, 25]). Crossover and 
mutation operators are also used during reproduction. The crossover operator provides a 
recombination of genetic material by exchanging portions between the parents with the 
chance that good solutions can generate even better ones. 

Mutation causes sporadic and random changes by modifying individual's genetic 
material with some small probability. Its role is to regenerate the lost or unexplored 
genetic material into the population. Mutation has a direct analogy with nature, and it 
should prevent premature convergence of the GA to suboptimal solutions. 

There are many different policies for generation replacement. Certain numbers 
of individuals (elite individuals) may skip selection (or even all genetic operators) going 
directly into the next generation. This approach is named the steady-state generation 
replacement policy with elitist strategy. It provides a smaller gradient in the genetic 
search, but preserves fitted individuals from the past generations. 

There can be many modifications of the GA, but implementing the GA usually 
involves the following steps:  

• evaluating the fitness of all individuals in a population; 
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• selecting the best-fitted individuals; 
• creating a new population by performing crossover and mutation operators. 

 
The process of reproduction and population replacement is repeated until a 

stopping criterion (fixed number of generations or satisfied quality of solutions obtained) 
is met. Detailed description of GAs is out of this paper's scope, and it can be found in 
[1,25]. 

GAs have a wide range of applications, growing rapidly, for example, from 
strong metric dimensions of graphs [19], through maximally balanced connected partition 
[5], spanning sets coverage [15], generalized Euclidean distances [2] to hub location [18] 
and modeling of chemical processes [31]. As it can be seen in previous section, GAs are 
frequently used for solving QAP in stand-alone or hybrid approaches ([6, 8, 10, 32]).  

 
2. MATHEMATICAL FORMULATION OF THE QAP 

The QAP can be described as the problem of assigning n facilities to n locations 
with given distances between the locations and given flows between the facilities. The 
goal is to place the facilities on locations in such a way that the sum of the product 
between flows and distances is minimized. 

The QAP can be formulated in different ways. One of the most popular 
formulations is a permutation based formulation. Let Sn be the set of all permutations 
with n elements and π ∈ Sn. Consider fij the flows between facilities i and j and dkl the 
distances between locations k and l. If each permutation π represents an allocation of 
facilities to locations, the problem expression becomes: 
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In the literature there exist numerous formulations and presentation of the QAP 
but all of them are out of this paper's scope. Interested reader can seek for more 
information about different formulations of the QAP including the linear formulations in 
[22]. 

 
 

3. NEW GENETIC REPRESENTATION FOR THE QAP 

3.1. Representation and objective function 

Since the QAP is a minimization problem, it is obvious that, in the optimal 
permutation (solution) pairs of facilities with large flow usually corresponds to the pairs 
of locations with small distance between them. We introduce a new encoding scheme 
which forces frequent occurrence of this behavior, i.e. there are very small chances that 
the pair of facilities with the large flow corresponds to the pairs of locations with large 
distance. On that way, this encoding scheme push GA search towards promising search 
regions. 

In this encoding scheme every individual consists of n-1 genes. Length of the 
individual is n-1 because it is not necessary to remember the last element in permutation 
when all other elements are set. Each gene is represented by an integer that corresponds 
to one element in permutation. In contrast to previous representations, that particular 
integer, let us say the i-th integer in permutation, which represents the gene, is not the 
index of a location assigned to facility i. Instead, it represents a “distance” of the 
corresponding partial assignment of locations to facilities 1,2, …, i-1 from a locally 
optimal solution of QAP restricted to these facilities. Therefore, the value of i-th gene 
belongs to {0,1,…, n-i}.  

For a given coded individual the corresponding permutation of locations 
assigned to facilities is obtained by an iterative procedure expressed by a pseudo-code in 
Figure 1. In each iteration of the procedure, for every non-assigned location its weight is 
calculated as the partial sum of the products between flows and distances from this 
location to all previously assigned locations. Then non-assigned locations are sorted in a 
sequence according to non-decreasing weights. The location from the sequence for which 
"distance" from its first member is equal to the value of the corresponding gene, is 
chosen as the next location in the permutation. In this way locations with lower weights 
are associated to facilities with smaller gene values.  
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 S = []; gv := Take_Gene(1); Pi[1]:=gv+1; 
 for i:=2 to n-1 do begin 
   gv := Take_Gene(i); 
   for j:=1 to n do 
     if not (j in S) then begin 
       w[j] = F(i,i) * D(j,j); 
       for k:=1 to i-1 do begin 
         w[j] := w[j] + F(k,i) * D(Pi[k],j); 
         w[j] := w[j] + F(i,k) * D(j,Pi[k]); 
       endfor 
     endif 
   endfor 
   Quick_Sort(n-i+1, w, w_index); 
   Pi[i] := w_index[gv+1]; 
   S := S ∪ {Pi[i]}; 
 endfor 
 Pi[n] := {1,2,..,n} \ S; 
 
Figure 1: Pseudo-code for objective function. 
 
Set S represents a set of currently assigned locations, Pi is the corresponding 

permutation of locations, array w stores calculated current weights, while w_index 
denotes indices of w arranged according to non-decreasing weights by function 
Quick_Sort(). Function Take_Gene(i) returns the value of i-th gene.  

Note that the previous procedure for calculating objective function gives the 
permutation so that the individuals are always feasible. In other words, if the  initial order 
of locations 1,2,…,n  is respected whenever weights of some locations in sorted sequence 
are equal, the new encoding scheme is unique and complete, i.e. for each permutation of 
locations there exists a unique corresponding code and there are no two permutations 
with the same code. 

 
Example 1. Suppose that GA is solving QAP with n=4 and with following flow and 
distance matrix: 
 

0 3 0 2 0 1 2 3
2 0 0 7 1 0 1 2
3 4 0 0 2 1 0 1
5 2 5 0 3 2 1 0

F D

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 
In this case, each individual in the population has genetic representation with 

length 3. Suppose that the individual has following representation:  
2 0 1 

Algorithm for calculating permutation represented by this individual is:  
• At the beginning, Pi[1]=gv+1=3, i.e. location 3 is assigned to facility 1. 
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• In the next step, where i=2, non-assigned locations are {1,2,4}. For each of these 
locations, we are calculated their weights w[1]=10, w[2]=w[4]=5, so the sorted 
array w_index is 2,4,1. Since gen value gv=0 then Pi[2]= w_index[1] = 2.   

• The same procedure is applied in the third step, so Pi[3]= w_index[2]=1.  
• In the last step Pi[4]=4, which is only remaining location. 

 
3.2. Improving heuristic 

In order to improve individuals, we performed a local search on proposed 
genetic algorithms. The best results are obtained by applying best-known 2-opt heuristic 
with first improvement. This procedure is repeated until we are sure that swapping of 
each pair of the elements in permutation will not improve the quality of the permutation. 
The other strategy is to make only one local search for improving quality of obtained 
permutation. That approach is faster, but quality of obtained results is not as good as it is 
in the first case. 

Local search procedure like 2-opt usually significantly decreases diversity of the 
GA population. In case when the solution is improved by heuristic corresponding GA 
code is not changed, so the diversity of the GA population is preserved. Therefore, 2-opt 
heuristic deals directly with permutations of locations and not with the new encoding, 
which imply that the algorithm for obtaining the genetic code from the improved solution 
is not needed at all. 

 
3.3. Population initialization 

The initial population of 150popN =  individuals is randomly generated, 
allowing maximal diversity of genetic material, but initialization of the genetic code of 
all individuals in first generation should not be a pure random procedure. Natural model 
for this behavior is finite decreasing geometric progression with common ratio q.  

Probability pk that the i-th gene has value { }( 0,1,..., )k k n i∈ − , decreases with 
increasing of k according to the geometric progression with a given ratio q∈(0,1), i.e. 
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From the fixed value q, it is easy to calculate all probabilities pk, k=0,1,...,n-i 

and to generate i-th gene randomly with these probabilities. In algorithms that we 
propose, the value of q is equal to 0.5. 

 
4. GENETIC OPERATORS AND OTHER GA ASPECTS 

4.1. Fitness function and generation replacement policy 

The number of elitist individuals passed directly to the next generation is 
100eliteN = . Non-elitist individuals Nnonel (the rest of the population) go through genetic 
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operators. This means that a lot of time is saved since the objective value is calculated 
only once for each elite individual. 

To prevent undeserved domination of elite individuals over the population, their 
fitness is decreased by the next formula:  

 

1

, 1, 1 ,
0,

popN
i inew

i elite i
ipopi

Ft Ft Ft Ft
Ft i N Ft Ft

NFt Ft =

⎧ − >⎪= ≤ ≤ =⎨
≤⎪⎩

∑  (6) 

 
In this way, even non-elite individuals preserve their chance to survive to the 

next generation.  
As non-elitist individuals go through genetic operators, appearance of duplicated 

individuals is possible. Such individuals with the same genetic code are discarded - 
simply by setting fitness value of the duplicate to zero, so that selection operator allows 
them not to continue to the next generation. Furthermore, too many individuals with the 
same objective function, but different genetic codes, may predominate in population. 
This is why limiting the number of such individuals in population to some constant has 
been shown useful in [19, 5, 18]. Therefore, proposed algorithms prohibit an existence of 
more than 40 elite individuals with different genetic code and the same objection value, 
which prevent premature convergence of algorithms and increase diversity of genetic 
material. 

 
4.2. Selection and crossover 

A fine-grained tournament selection (FGTS) scheme has been used in the 
proposed GAs for deciding which individuals will produce the next generation. The 
average size of tournament, Ftour, is a real number, and is considered to be a constant in 
practice. We used the value of Ftour=5.4, because it gave good results in solving similar 
problems (for example, see [5,18,19]). Detailed information on FGTS scheme can be 
found in [11]. 

For recombination of individuals, we used the classical one-point crossover. The 
crossover rate is pcross=0.85. This means that about 85% individuals participate in 
recombination of their genes. 

 
4.3. Mutation 

Finally, modified simple mutation operator changes randomly selected genes. 
During the GA execution, it is possible that all individuals in the population have the 
same gene in a certain position. These genes are called frozen. If the number of frozen 
genes is significant, the search space becomes much smaller, and the possibility of 
premature convergence rapidly increases. For that reason, the basic mutation rates are 
increased, but only for the frozen genes. The basic mutation rates are: 

• 0.1/n for the bit on the first position. 
• 0.05/n for the bit on the second position. Next bits in the gene have repeatedly 

two times smaller mutation rate (0.025/n, 0.0125/n...). 
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When compared with the basic mutation rates, frozen bits are mutated by 2.5 
times higher rate: 

• 0.25/n instead of 0.1/n if they are at the first position of the gene. 
• 0.125/n for the bit on the second position. Next bits in the gene have repeatedly 

two times smaller mutation rate (0.0625/n, 0.03125/n...). 
 

4.4. Caching GA 

Caching optimizes run-time of a genetic algorithm. The evaluated objective 
values are stored in a hash-queue structure using the Least Recently Used caching 
technique (LRU). Otherwise it would be necessary to calculate the same objective value 
each time genetic operators produce another individual with the same genetic code. With 
caching technique, when such individual appears, its objective value is taken from the 
caching table, and this saves a significant amount of time. Cashing of GAs has no impact 
on results that are obtained by GAs - it only reduces execution time. 

In proposed GA implementations, we limited the number of individuals stored 
in a caching table to Nlcache=5000. Detailed information about caching GA can be found 
in [17]. 
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Table 1: GA results on QAP instances 
 

Instance 
name Opt t 

(sec) gen agap 
(%) 

σ 
(%) eval cache 

(%) 
bur26a 5426670 77.422 2014 0.000 0.000 61114 60.6 
bur26b 3817852 92.447 2020 0.000 0.000 63242 62.5 
bur26c 5426795 81.654 2001 0.000 0.000 60001 59.9 
bur26d 3821225 111.720 2299 0.000 0.000 71577 62.0 
bur26e 5386879 108.612 2457 0.000 0.002 77288 62.5 
bur26f 3782044 113.981 2001 0.000 0.000 58122 58.0 
bur26g 10117172 84.253 2092 0.000 0.000 67248 64.2 
bur26h 7098658 95.664 2178 0.000 0.000 67481 62.0 
chr12a 9552 2.071 2001 0.000 0.000 73872 73.7 
chr12b 9742 3.154 2001 0.000 0.000 68129 68.0 
chr12c 11156 1.730 2014 0.000 0.000 77339 76.7 
chr15a 9896 4.780 2262 0.061 0.148 86105 75.9 
chr15b 7990 4.645 2001 0.000 0.000 73500 73.4 
chr15c 9504 3.745 2274 1.306 2.229 88766 77.9 
chr18a 11098 8.678 2261 0.299 1.026 84592 74.6 
chr18b 1534 7.461 2001 0.000 0.000 67921 67.8 
chr20a 2192 12.140 2265 0.771 1.377 82531 72.5 
chr20b 2298 9.828 2777 5.013 1.725 102941 74.3 
chr20c 14142 25.052 2356 0.472 1.454 82246 69.7 
chr22a 6156 18.720 2465 0.369 0.291 93180 75.3 
chr22b 6194 15.258 2914 1.088 0.481 110681 75.6 
chr25a 3796 48.375 2946 2.903 1.719 107506 73.0 
els19 17212548 25.806 2194 0.177 0.364 74309 67.4 

esc16a 68 3.353 2001 0.000 0.000 62204 62.1 
esc16b 292 0.063 25 0.000 0.000 397 17.1 
esc16c 160 4.802 2001 0.000 0.000 58745 58.6 
esc16d 16 3.679 2001 0.000 0.000 59255 59.1 
esc16e 28 2.729 2001 0.000 0.000 60625 60.5 
esc16f 0 0.002 1 0.000 0.000 0 0.0 
esc16g 26 2.994 2001 0.000 0.000 59974 59.9 
esc16h 996 0.008 1 0.000 0.000 0 0.0 
esc16i 14 0.492 315 0.000 0.000 8038 43.3 
esc16j 8 2.716 2001 0.000 0.000 60994 60.9 
esc32e 2 0.050 1 0.000 0.000 0 0.0 
esc32f 2 0.050 1 0.000 0.000 0 0.0 
had12 1652 2.493 2001 0.000 0.000 77814 77.7 
had14 2724 7.797 2001 0.000 0.000 67434 67.3 
had16 3720 16.534 2001 0.000 0.000 61102 61.0 
had18 5358 22.627 2001 0.000 0.000 57944 57.8 
had20 6922 38.445 2001 0.000 0.000 57925 57.8 

 

5. COMPUTATIONAL RESULTS 

The tests were made on an Intel 2.5 GHz with 1GB memory, under Windows 
XP operating system. The algorithm was coded in C programming language. We tested 
our algorithm on QAPLIB instances (http://www.seas.upenn.edu/qaplib/) with known 
optimal solutions. The stopping criterion of GA was the maximum number of generations 
equal to 5000 or at most 2000 generations without the improvement of the objective 
value. 
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The GA was run 20 times for each instance, and the results are summarized in 
Table 1 and Table 2. For all the instances the algorithm reached the optimal solution. The 
tables are organized as follows: 

• the first column contains the test instance’s name; 
• the second column contains the optimal solution for the particular instance; 
• the average total running time (t) and the average number of generations for 

finishing GA (gen) are given in the third and the fourth columns; 

the fifth and the sixth column (agap and σ) contain information on the average 

solution quality: agap is a percentage gap defined as 
20

1

1
20 i

i
agap gap

=

= ∑ , where 

100 i
i

GA opt
gap

opt
−

= ⋅  and iGA  represents the GA  solution obtained in the i-th 

run, while σ  is the standard deviation of gapi, i=1,2,...,20, obtained by formula 
20

2

1

1 ( )
20 i

i
gap agapσ

=

= −∑ ; 

• in the last two columns eval represents the average number of the objective 
function evaluations, while the cache displays savings (in percent) achieved by 
using the caching technique. 
 



 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP  236

Table 2: GA results on QAP instances 
 

Instance 
name Opt t 

(sec) gen agap 
(%) 

σ 
(%) eval cache 

(%) 
kra30a 88900 117.353 2078 0.067 0.302 69757 67.0 
kra30b 91420 132.594 2269 0.009 0.029 77643 68.3 
lipa20a 3683 11.044 2011 0.000 0.000 70296 69.8 
lipa20b 27076 18.240 2001 0.000 0.000 55735 55.6 
lipa30a 13178 57.660 2173 0.000 0.000 76183 70.0 
lipa30b 151426 70.761 2001 0.000 0.000 62397 62.3 
nug12 578 1.589 2001 0.000 0.000 79805 79.6 
nug14 1014 3.341 2001 0.000 0.000 74519 74.4 
nug15 1150 5.779 2001 0.000 0.000 68544 68.4 
nug16a 1610 6.454 2013 0.000 0.000 71358 70.8 
nug16b 1240 9.817 2001 0.000 0.000 61327 61.2 
nug17 1732 9.315 2266 0.046 0.058 80968 71.2 
nug18 1930 10.218 2001 0.000 0.000 71870 71.7 
nug20 2570 20.740 2005 0.000 0.000 66932 66.6 
nug21 2438 27.497 2064 0.000 0.000 69749 67.3 
nug22 3596 35.819 2006 0.000 0.000 70199 69.9 
nug24 3488 48.132 2011 0.000 0.000 68349 67.8 
nug25 3744 65.388 2043 0.003 0.012 71173 69.5 
nug27 5234 57.737 2186 0.002 0.009 76857 70.0 
nug28 5166 71.577 2677 0.083 0.128 95321 71.1 
nug30 6124 160.993 2525 0.090 0.080 88657 69.9 
rou12 235528 1.376 2004 0.000 0.000 77921 77.6 
rou15 354210 3.582 2010 0.000 0.000 74054 73.6 
rou20 725522 12.864 2512 0.069 0.087 91333 72.6 
scr12 31410 1.573 2001 0.000 0.000 70681 70.5 
scr15 51140 4.467 2001 0.000 0.000 68398 68.3 
scr20 110030 11.825 2187 0.000 0.000 79151 72.3 
ste36a 9526 484.717 2943 0.477 0.291 97933 66.3 
ste36b 15852 418.567 2206 0.038 0.092 72428 65.4 
ste36c 8239110 509.277 2941 0.181 0.122 99200 67.3 
tai10a 135028 0.917 2001 0.000 0.000 76443 76.3 
tai10b 1183760 1.103 2001 0.000 0.000 71168 71.0 
tai12a 224416 1.871 2001 0.000 0.000 72101 72.0 
tai12b 39464925 2.713 2002 0.000 0.000 73265 73.1 
tai15a 388214 3.178 2001 0.000 0.000 75096 74.9 
tai15b 51765268 7.523 2001 0.000 0.000 67744 67.6 
tai17a 491812 6.716 2453 0.215 0.203 89057 72.5 
tai20a 703482 10.470 2307 0.371 0.221 83099 71.9 
tai20b 122455319 43.257 2001 0.000 0.000 65802 65.7 
tai25b 344355646 84.672 2081 0.000 0.000 72678 69.6 
tho30 149936 171.737 2763 0.099 0.135 97441 70.1 

 
Our approach reached optimal solutions within reasonable running time. If we 

compare these running time with the running time of other existing GA for QAP 
[6,10,33], applied to the same set of instances, we can see that our algorithm seems to 
perform slower. However, our main goals here are to develop a GA approach with 
completely new encoding and to generate high-quality solutions. 

 
 



 J. Kratica, D. Tošić, V. Filipović, Đ. Dugošija / A New Genetic Representation for QAP  237 

6. CONCLUSIONS 

This paper is devoted to exploring the results of the new genetic encoding 
scheme to the quadratic assignment problem. Arranging possible locations of every 
facility in non-decreasing order of their weights directs GA to promising search regions. 
The proposed encoding scheme is performed with adequate objective function and 
appropriate modified genetic operators. The performance of the genetic algorithm is 
improved with a local search, the mutation with frozen genes, a limited number of 
different individuals with the same objective value and the caching GA technique. The 
experimental results are encouraging and show effectiveness of the new encoding 
scheme. The proposed GA obtains solutions that match all known optimal solutions from 
the literature. 

Further research should be directed to testing large-scale instances on more 
powerful and/or parallel computers as well as to investigate the combination of presented 
GA approach with some other metaheuristic. 
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