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Abstract. The multipurpose water resources system Danube-Tisza-Danube (WRS
DTD) (flood control, drainage, irrigation, water supply, navigation, water quality
control, etc.) is hydraulically very complex. WRS is controlled through a number of
weirs which send the water in various directions, depending on the actual hydrolog-
ic or water resources conditions. To mmprove the operation of the system a control
model has been developed. The complex development task is realized by a chain of
gradually developed MM. First, WRS was decomposed: (a) spatially (divided into
subsystems); (b) temporally (by time intervals — or the periods of quasy-steady
and unsteady flow); (¢) according to the hydraulic function (the weirs operation
MM, network flow MM, inflow estimation MM, etc.); and (d) according to numer-
ical aspects. The non-standard problems of unsteady flow with varying discharge
throughout the WRS (tributaries, pumping stations for irrigation and drainage)
are solved by using the latest advancements in the computational hydraulics theory
(Preismann scheme, Cholesky scheme, etc.). A very operable unsteady-flow MM has
been developed and its introduction to practice will improve the operation efficiency
of the WRS.

Key words and phrases: water resources system, real-time control, modelling,
unsteady flow

l. INTRODUCTION

The Danube-Tisza-Danube Water resources System (WRS DTD) in the Pan-
nonian Plain is the largest and most important drainage and irrigation system in
Yugoslavia. Particularly important and intrinsic, from the aspect of water manage-
ment is its part east of the Tisza, in Banat region. This part is spatially separate
and independent subsystem form the rest of the WRS D'I'D. The rivers of the DTD
system (Tisza, Zlatica, the Old and Navigable Bege), Tamis, Brzava, Moravica,
Karas, etc.), which flow from the Carpathians, have very unfavourable, nonuniform
water regimes. The main canals receive water [rom all these intersecting rivers
forming a water resource system which 1s expected to provide the most efficient
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flood control, successful drainage, irrigation, navigation, industrial (and municipal
im the future) water supply and water quality control. An extension of the WRS
use to the hydroelectric power generation is planned for the future, thus leading to
an extremely complex WRS.

Each of the above mentioned purposes of the WRS 1s fulfilled essentially
through the maintenance of the required water levels and discharges at specif-
ic WRS sections. These tasks are accomplished by a system of weirs and gates
(Fig. ) wstalled at inlets and/or outlets and along the course of the main canals.
Discharges and levels are controlled by operating gates (the key control interven-
tion i WRS) according to the requirements of the WRS. Realizations of various
complex flow patterns (as indicated by arrows in Fig. 1) are feasible depending on
hydrologic conditions and applied gate procedures.
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Figure 1, Schematic representation of the considered part of the Danube-
Tisza-Danube WRS.

The key goals of the WRS are:

— Eflicient discharge of lood flows into the rivers with the aim of redistributing
ows and providing the lowest levels in critical system sections during flood control
periods.

— Ellective drainage of irrigated areas (either by gravity or pumping), de-
pending on the progress of hydrologic conditions. There are many outlets from the

drainage systems, which causes difficulties for the development of the mathematical
model (MM).
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— Provision of adequate conditions for irrigation, by means of maintaining the
necessary water levels in the WRS junctions and providing necessary flow rates.

— Provision of adequate water levels for navigation.

— Provision of conditions for safe discharging of municipal and industrial waste
walters.

— Prevention of floods (which were frequent in Banat region) caused by the
Tisza river in the WRS protected area.

— Maintenance of water levels in individual junctions of the WRS within the
limits defined by the agreement between Yugoslavia and Romania, for a better
drainage and irrigation in the two countries.

— Upon the construction of power plants on the Tisza and the canals, the
maintenance of such water levels and flow rates which will maximize hydroelectric
power generation.

The strategy of the drainage and flood control policy is based on an important
hydrologic feature of the flood generation in the catchment area: flood peaks of
the Tisza, as the major recipient, do not coincide with the floods of other rivers.
The delay of these floods, provided good forecast and skilled manipulation of gates,
allows for an eflicient flood control and drainage. The water is sent to outlet of the
WRS (to the Tisza and the Danube) thus maintaining low water levels at critical
WRS sections. Being a very important system, which protects the granary of
Yugoslavia and many towns and industries, its maxunum efliciency and reliability
1s an imperative.

2. COMPLEX CHAIN OF MATHEMATICAL MODELS

The complex development task 1s realized by a chain of gradually devel-
oped MM. First, WRS was decomposed: (a) spatially (divided into subsystems);
(b) temporally (by time intervals or the periods of quasi-steady and unsteady flow);
(¢) according to the hydraulic function (the weirs operation MM, network flow MM,
inflow estimation MM, etc.); and (d) according to numerical aspects.

The chain of control models consists of the following groups:

(a) Sumulation models: the quasi-steady flew MM; unsteady flow MM; and the
weirs-operation MM. These models can be used in a real-time manner if appropriate
information is added to the existing models.

(b) Estimation models: the MM for input estimation (forecasting); and MM
for level estimation at recipients — the Danube and Tisza Rivers (which are the
boundary conditions).

(c) Optimization models: MM with embedded criteria for evaluation of the
WRS state variables.

(d) Ezpert system (model): the hghest development level in the chain of MM.

Weir operation model structure. Simulation of the weir operation is based
on the well-known hydraulic relations for any possible type of flow that may occur:
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submerged outflow, free overflow, submerged overflow and broad-crested weir flow.
The model 1s of the type

sz(zkizr‘tzul'i?"‘la) (l)
where 2p = the water level upstream of the weir; z, = the water level downstream
of the weir: z,; = the water level of the i-th control weir; m = the coeflicient

of discharge/overflow derived from measurements at weirs; ¢ = the coefficient of
submergence: o = (2k, 2,, z4;); and Q = discharge. Adjustments to the coeflicients
and constants were done on the basis of the 1n situ measurements.

Canal How model structure. Canal and river flow models were developed
for steady and unsteady flow conditions for the Danube-Tisza-Danube Rivers case.
The steady flow MM was based on the Manning equation. The model in the form of
parametric functions determined the upstrearn water level for the given downstream
water level. This model 1s numerically simpler than the unsteady flow MM. It
is more expedient in simulation, which 1s important for operations management.
Under the steady flow conditions the Manning equation is generally given as:

: = F(Q, A, R,n, Az) (2)

where A = the cross-section area; z = the water level; R = the hydraulic radius; Q
= discharge; n = channel roughness; and Az = the length of the channel section.
Similarly to weir-operation equations, the coeflicient (n) values were determined
from the field measurements. Numerous measurements gave a good agreement
with the model results. The weir operation and steady flow model were combined
into one model which determines the system’s behavior for any weir operation
condition. '

3. UNSTEADY FLOW MODEL

The unsteady flow MM 1s developed also for flood conditions in the WRS. The
model 1s complex due to its specific control characteristics: (a) there are various
control options for redirecting flood flows to different recipients, depending on the
conditions at weirs; (b) the main canals are intersected by a numerous number
of streams and irrigation canals with variable directions and quantities of flow;
(c) there are strict constraints imposed on water levels at the certain points, some
of them being based on international agreements; and (d) high efficiency of the
model 1s required due to its frequent use in the system’s operation. The St. Venant
conservation of momentum and continuity equations, for the case of lateral inflow,
are given in the matrix form

" 0Q/0x T
(et nghsin BT /ag)en | Lsife =g ;
2Q/A* 1/A g 0] |0z/0z |~ [-W-Q (3)
LO%/0t |
and !
W:—-Q 'aA+fJ- Q|n

A 0r Y ATRars (4)
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where 2 and ¢ are the independent spatial and temporal variables, z is the water
surface elevation, @) is the discharge, q is the lateral inflow, A is the wetted cross-
sectional area, R is the hydraulic radius, n is the Manning coeflicient, and ¢ is the
gravitational constant.

The above system can be summarized in the operator form

A(Q,Co,) + A(z,C:,) = 0
A(Q,Co,)+ A(z2,C.,) =0

where A is the differential operator in the form

)f +C 2-(% LGy C= [, CaCs, O] (6)

where the parameters are defined in the matrix form

A(f,C) = €

Co, = [1,0,0,0]; Co, = [2Q/A% 1/A, W, 0]

7
= [0-, B,O,Q]; :32 — [9’010}0]_ ( )

This system of partial equations is solved using the Preismann scheme (implicit
finmite difference method) [5], also known as the four-point scheme

f f=¢l0 5+ -0fu)+(U=)lf* +(1-0)f]
d ¢ : 1—9
Lo L - A S - ) ®)
0 l
7 - m(:‘;‘f- L)+ 2 - ), )

The relation A(f, (') of Eq. (6) may be rewritten in the discretized form
A(f,C)= Difi*t + Dipfili + B i=Tn (9)

where expressions for D;, D;,, and E; are rather complex and will not be given
here.

Figure 2 gives the three-dimensional interpretation of “hydraulic surfaces”
where the four-point scheme represents a projection of the hydraulic surface on
the -t plane. The 2-t plane is discretized into rectangles, using the off center
points M for each “hydraulic surface” in the space (z,t, f).

Using Eq. (9) for A(f,C), the system of Egs.(5) can be rewritten in the de-
veloped form as a system of 2n — 2 algebraic equations with 2n unknowns. Two
additional relations come from the boundary conditions, wlereas the values (of
unknowns and coeflicients at each x point), at the initial time step are determined
from the initial condition. The steady-state conditions are assumed for the initial

condition.

The resulting algebraic system of equations is

A- X =« (10)
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{b)
- j.l
§o1 . (. 4+1) 129 (1¢1, J+1)
4
(1-0)at r.ltﬂ rJ-O
at +—1 -~ =
| i af 2
f- At ;" :
5
J _}1—' e — - :..: l.t
3 b l"ﬂxl—-l - l'l"“]ﬂ!l—-i (1+1,J)

'} Ax el

Figure 2. The three-dimensional discretization of the “hydraulic surfaces”
(a), and detailed four-point scheme (b).

where A = the two-dimensionalnonlinear-coefficient (¢;;) matrix, X = the one-
dimensional (column) matrix whose elements are Q and z values, and a = the
one-dimensional matrix consisting of the free terms.

As the main canals of WRS are intersected by numerous natural water courses.
irrigation canals and intakes, the flow-regime is very complex. The computational
scheme shown in Fig.3 considers two adjacent cross sections between which the
discharge changes for the amount Q,,. As the two cross sections (i) and (i+1) are
very close, the solution of the problem is based on the continuity equation and the
equal water surface elevations

G =T 4@ =49 (11)
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Figure 3. Inflow/outflow scheme at a confluence.

This 1s used at each location of flow variation: locations of river inflows into
the main canals (Q,, > 0), locations of drainage-canal inflows (Q,, > 0), and
locations of irrigation turnouts (Q,, < 0). The problem is solved numerically by
introducing the two quadruplets of coeflicients [=1 0 1 0] and [0 — 1 0 1] into the
matrix A, and the respective pair of values (Q,r,0) into the matrix of the system
of Eqgs. (10). This 1s done for all locations with flow division/confluence. Obviously
such numerical approach leads to an increased number of equations.

Consequently, the algebraic system of Eqs. (10) as augmented by using Eq. (11)
may be represented in the matrix form of IMig. 4.

X X X 5 6 L Bl e [

x b
7R 0 X
STELGE I, o > % X
SO T 5 e Q | X
[P T T P 6 =
. G=1..0 1 Q" | = g4
S Wi D Z 4
L+ 1
ST AU X : <
0 oG -m > X
0 0 i S x o

Figure 4. The matrix fornn of the system of equations.

The iterative algorithm applied here was an original generalization of the Ver-
wey’s variant of the Preissmann’s scheme [2]. According to the Verwey’s procedure,
a svmmetric scheme is to be used (¢ = @ = 1/2). The authors applied a generalized
procedure, allowing various values for the weighing coeflicients, ¢ and 8, to be used.
Iterations are computed in the (¢, f) planes, perpendicular to the z-axis (Fig.2) at
points #;, i = 1,2,... , N (N is the total number of cross sections along the reach).
The following equation is used

A =0 filg )+ (0=0)- F (12)
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where, k' = the index of iteration 7, f/ = fi(z]).

The system of equations is solved as the coefficients are computed at the points
Ml-(h] (i =1,2,...,N =1) of the (z, f)-plane perpendicular to the t-axis at the
points (J +0) - Al

eIy K) 48 2z
fENRE S o PO = ) N, (13)

The MI-(M points are projections of the M; points of the discretized “hydraulic
surfaces” f on the iteration surface K used to approximate the area f.

Using Eq. (13) and solving the system of Eqgs. (10) new approximate values are
obtained :Eh W and QEM'JH for all points (i) of the time interval (j + 1)At and

the procedure is repeated until the required accuracy is achieved, i.e., until

luﬂ.xlzf-'r“j'l'l - z}K'—”‘H]l <6 (14)

where | <1< N, and § = the required model accuracy (e.g., 6 = 1 cin).

To start the iterative procedure for the non-linear functions (for the first iter-
ation) it is assumed that

J O o gl A e e T — ) T (15)

Numerical aspects. Having in mind the purpose of the model, which had to
determine the optimal strategy of weir management for {lood control purposes, the
MM operability was expressed by the speed of iterative computations. Cholesky
scheme, suitable for large sparse systems of equations, is applied. However, an
original algorithm for compacting matrices and changing their indices is developed
within this particular MM. Instead of the matrix of size (2n — 2) x (2n — 2) a
(2n — 2) x 4 matrix i1s used. The upper and lower auxiliary triangular matrices,
from the Cholesky scheme, of the dimension (2n —2) x (2n —2) are also compressed
and re-indexed with new dimensions (2n — 2) x 3. This procedure shortened the
computations while preserving the same accuracy. Thus, the total number of the
matrix elements 1s significantly reduced, from 12 x (n — 1) x (n — 1) elements
originally, to 20 x (n — 1) after the transformations (a total reduction of 0.6 x
(n — 1) elements). To illustrate how large the reduction is, let us assume that the
nuwmber of computation points (i) was 101; the actual number of matrix elements
would be reduced sixty times after applying the transformations. It sets free the
computer memory from the storage of large square matrices with a large number of
zero elements, and eluninates operations with these elements, leading to a radical
improvement in MM operability.

The essence of this original procedure is illustrated in Fig. 5 on the example of
an eight-dimensional coefficient matrix A, which, after the compacting and change
ol indices, becomes A. Similarly, both the lower triangular-matrix B and the upper
triangular matrix (' after transformations become B and €' respectively. In the
new foru, coeflicient matrices A, B and ' are used for further computations.
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Figure 5. Matrices A, B, and € and “compacted matrices” A, B and C.
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Solving the system of Eqs.(10) gives a direct solution (x4) for the given error
term AX. With the proposed algorithm, a correct solution () is obtained as

Xe = Xa+ AX. (16)
Correction AX 1s obtained by solving the following system of equations
A-AX = Ac (17)
using the same direct procedure, where
(18) Aa=a—- A - Xy.

The original procedure leads to the solution of the system of four-diagonal equa-
tions.

The introduced modification have proven to be very useful: the computation
procedure is correct and effective even for the real-time control of the system. For a
general picture, a computation for a specified hydrologic input for the very complex
southern subsystem of the Danube-Tisza-Danube systemtakes only 20 seconds.

4. USE OF SIMULATION MODELS

Introduced 1n operation control, these simulation models provide the answers
to any kind of questions important for the control process, such as:

(a) What will happen in WRS if, for any hydrologic situation, specific weir
management instructions are initiated?

(b) How to manage the weirs to establish some required states of WRS in order
to meet different demands for various purposes?

(¢) How to redistribute flows in WRS in flood periods, respecting the assigned
constraints at each critical section?

(d) How to operate the system in hypothetical emergency situations (weir gates
are not operational, dike breach, etc.)?

(e) How sensitive 1s WRS to a control error or an error in flood forecast?

To summarize, a simulation MM provides for the operating strategy for the nor-
mal or emergency operation. The model answers to possible questions are prompt
and clear.

Three graphs, representing the relationship Q = f(x,t) for the three control
situations of the southern subsystem are given in Fig.6-8. The first case, (a),
represents a flood control period, when the water i1s intensively released from WRS
even through the inlet weirs of the subsystem (Q,; < 0) (Fig.6); the second case,
(b), 1s the one when the inlet weir is closed (this weir separates two subsystems,
(Qui = 0) (Fig.7); the third case, (c), is opposite from the case (a), the flood
control problem in a recipient is alleviated by directing water from one river towards
another river, i.e., the outlet recipient (Q.; > 0) (Fig.8).

Due to its operability, the siimulation model enables a very efficient support to
the decision-making as presented in Fig.9. Three different gate maneuvers within



Maodelling of unsteady flow as a support to the operational control of a WRS 229

Figure 6. Graphical representation of the results: The water is intensively
released from WHKS.
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the WRS are simulated for the flood conditions. The states in the Danube-Tisza-
Danube WRS in one critjcal section are compared to the constraint defined by
a plane which represents the extreme levels not to be exceeded. Iigure9a shows
that the tested manoeuvre of the gates is not adequate since the constraint plane
“breakthrough” is rather high (pay attention to the function z = z(z, f) beyond
the constraint plane). The breakthrough is lower for the case (b); while for the
case (¢) it is rather marginal, while, after the fourth iteration, the control which
completely respects the constraint, has been found. This picture is not presented
since it represents the plane z = z(z, f) without any “breakthrough™.

Figure 9. Results of the three different tested manoeuvres of the gates
within WRS for one flood situation.

The very nature of the simulation MM makes it possible for it to be very easily
transformed into an optimization model by introducing some criteria for evaluation
of control actions. Having in mind the multipurpose character of WRS, various
criteria can be formulated to approach the optimization problem as a multi-criteria
optimization task. During the period of flood protection and intensive drainage, the
WRS goals are reduced to: (a) demand for the weir control that would minimize
the ‘levels (z,,ax) at the critical WRS sections; and (b) to minimize the cost of
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the drainage system operation (7') and damage from the excessive floods (R). For
these two goals the following two criteria for evaluation of control actions can be
formulated as

(a) z — min; (b) (T"+ R) — min. (19)

For a given hydrologic situation in the river basins, by varying the control decision
within the permissible range, v € U, different matrices, containing the maximum
discharge and water level values, the corresponding damages and pumping costs can
be obtained and memorized. By searching these matrices one can determine the
best control options in agreement with the defined criterion for control evaluation.
Since the search 1s the main optimization tool, used to discriminate among different
alternatives, this process is actually “suboptimization”. However, a large numbers
of alternatives can be generated in a short time period, so the suboptimal solution
can be obtained very quickly, and with the required accuracy.

In order to improve the WRS efliciency during the period of flood conditions
and intensive drainage, external estimators should be introduced into the analy-
sis. These are hydrologic models, external to the MM of the considered WRS, for
predicting the flood flows at each key inflow point of the WRS. The models are com-
bined: generation of flood is modelled by parametric hydrology methods, whereas
unsteady flow in rivers and canals 1s modelled by solving St. Venant equations. The
estimation model structure is not presently considered. Using the game theory one
can show that the introduction of external estimators into the management process
will significantly improve the quality of management.

Finally, mtegration of all the mentioned models in one management algorithm
will make a complex expert system for management. This will lead to the most
detailed and most efficient utilization of all its potentials. The development of the
expert system 1s under way.
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