Yugoslav Journal of Operations Research
2 (1992), Number 2, 207-218

PROVIDING HELP IN A NATURAL LANGUAGE QUERY
INTERFACE TO RELATIONAL DATABASES

Sanja PETROVIC

Mihajlo Pupin Institute,
P.O. Boxr 15, 11000 Belgrade, Yugoslavia

Abstract. The aim of this paper is to present a possible help prototype for IBM
SAA LanguageAccess — a natural language query interface to relational databases.
The role of help is to assist the user in formulating queries. It is done by extracting
and presenting information, syntactic and semantic, about natural language terms
and the concepts beliind them from a conceptual schema which links the natural
language to tables in a particular database. The presented help functions have been
prototyped using IBM Prolog.

Key words and phrases: natural language interface, relational databases
P guag

1. INTRODUCTION

The recent years have seen an extraordinary acceleration of interest in the
application of natural language processing to relational databases inquiry. Natural
language queries achieve a high degree of acceptance, particularly among users
who are not prepared to learn the syntax of formal query languages. Moreover, in
order to obtain information from relational databases, the user must be familiar
with database structure. Using the natural language interface in a database system
frees the user from learning the syntax of formal query languages and details of the
database structure.

As database systems are of wide-spread use, research on the natural language
interface has flourished during the past years [1]. An example is the known IBM
SAA LanguageAccess — a multilingual natural language query interface to IBM
relational databases DB2 and SQL/DS [2]. The product is developed at IBM
Nordie Laboratories in cooperation with IBM research laboratories all over the
world. LanguageAccess translates a natural language query into SQL statements
which are then interpreted in the usual way.

However, the receiving advantage to have the natural or human language query
mechanism must be paid off. Words of a natural language are inherently vague and
refuse formal definition. The phrases in a natural language are often ambiguous
and clear understanding depends on a large amount of contextual information. For

208 S. Petrovié

this reason, some authors have claimed that a real natural language query interface
to a relational database requires an almost complete array of the capabilities of
human intelligence to succeed [3].

The aum of the paper is to brighten one specific aspect of the natural lan-
guage interface problem, to portray a Help function which can assist the user 1n
fnr:'niug correct natural language queries. A prototype of this Help function for
extracting and presenting information about natural language terms that can be
used in queries and natural language fragments based on these terms, 1s present-
ed. The paper 1s organized in the following way. In the next section an overview
of LanguageAccess features will be given briefly. Section three describes the cus-
tomization process which is the task of linking the vocabulary that will be used 1n
natural language queries with database tables. The conceptual schema, as the out-
put of the customization process, will be described. Section four is devoted to the
Help functions. The role of Help will be demonstrated using a number of examples.
Particular attention i1s paid to the specification and design of Help functions.

2. AN OVERVIEW DESCRIPTION OF NATURAL LANGUAGE INTERFACE
TO RELATIONAL DATABASE IN LanguageAccess

With LanguageAccess the user can retrieve database information in his own
language. The user does not need to learn either the syntax of SQL statements or
database structure details. For example, consider a case of a relational database
covering employees in a firm. In order to retrieve information about managers who
manage more than ten employees by means of SQL, the user of database system has
to look at the structure of the database EMPLOYEE and construct the following
SQL statement

SELECT NAME, SALARY

FROM EMPLOYEE

WHERE NUMBER =
SELECT MGR
FROM EMPLOYEE
GROUP BY MGR
HAVING COUNT(*) > 10

However, by using LanguageAccess the user can get the same information in a
more friendly way, such as: List the name and salary of the managers who manage
more than ten employees,

To iterpret such a sentence a very complex system is required. LanguageAc-
cess has three related parts: a customization tool, a natural language engine and a
query interface. We shall briefly explain each of them [5].

) The customization tool. Each application must be customized before
the user can use LanguageAccess. The task of customization is to link natural
language words and phrases to a predefined set of database tables which appear
in the application domain. Customization is done from the user-friendly graphical
interface in the customization tool [6].

Providing help in a natural language query interface to relational databases 209

2) The natural language engine. It is the kernel of the system which
interprets questions using a linguistic analysis component and produces the SQL

statements with information about the requested form of the answer: chart, report,
etc.

The processing stages of the natural language engine are presented in Figure 1.
Their tasks are:

— The mput sentence is parsed in the syntactic analysis stage. Till now, anal-
ysis grammars for a number of languages have been prototyped: English, German,

French, Spanish, Italian and Swedish. LanguageAccess is commercially available
for English and German.

— Semantic analysis produces an interpretation of the input question which

still has no references to database organization but is determined by facts asserted
during the customization process.

— (eneration of the SQL statement

— (seneration of natural language paraphrases for the interpretations of the
question. If the input question is ambiguous, one paraphrase for each interpretation
is produced. The user selects the paraphrase which represents the desired meaning
of the question. For example, the question: Which senior managers work at the
head office? is paraphrased as: Find senior managers that work at departments
named head office. Each interpretation is converted to one or more SQL statements.
After selecting a paraphrase, the corresponding SQL statement is executed.

syntactic analysis

!

semantic analysis

P

paraphrasing generation of the
SOQL statement

Figure 1. Processing stages in the natural Janguage engine

Looking at the engine structure, two parts can be distinguished: the language
dependent part, such as analysis grammar, generation grammar used in paraphras-
er, and a language independent part. This gives the multilingual capability of the
engine.

3) The query iuterface lets users enter questions in natural language, con-
firming interpretations and viewing the answer. A very interesting and useful fea-
ture of LanguageAccess is resolution of pronouns, both inter- and intra-sententially.

210 S. Petrovié

The latter enables the user to use a pronoun instead of the noun referred to in the
previous sentence. For example, the user can ask: List employees of the Comput-
er Science Department. After getting the answer the user can continue with the
question: Who s their manager? relating thewr to the subject of the preceding

question.

Besides the questions concerning the database content, the user can ask,
through natural language, about the database tables themselves. For example,
the user can ask: which database tables exist, who 1s their creator about words
and their part of speech, etc. This meta-knowledge is stored automatically in
relational database tables during the customization process and becomes part of
LanguageAccess application. |

3. CUSTOMIZATION PROCESS AND CONCEPTUAL SCHEMA

A conceptual schema 1s a collection of facts created as a result of the cus-
tomzation process. The schema defines the words that can be used in natural
langnage questions in order to retrieve particular data from the database.

* The conceptual schema is used by various parts of the engine to analyze ques-
tions in natural language, interpret them and generate paraphrases and SQL state-
ments, The conceptual schema is used by the help function, also. A description of
the main stages of the conceptual schema will be presented.

The customization process is accomplished in an interactive way through three
stages [6]. The first stage describes the planning steps of the customization process.
These planning steps are:

— ldentification of the user and the database that contains the information
the user i1s interested for.

— Listing the questions the user wants to ask.

— Determination of the number of conceptual schemas. More than one con-
ceptual schema is needed if different groups of users want to ask their own questions

or some users request information that other users do not have the authority to
access,

— Lasting the words that each conceptual schema must contain.

— Analysis of the database tables which includes specification of: tables’ keys,
inclusion dependencies and join paths between tables and exclusion of the columnns
containing data the user will not want to ask questions about.

— Analysis for the entities that the conceptual schema will contain. An entity
1s representation of an object in the domain of the application. To eacl entity one

or more terms are assigned. A term is the word or phrase in the natural language
which will be used in the questions.

The objective in the second stage of the customization process is to download
information from the database, to select the tables and columns that the conceptual
schema will use and define dependencies among columns.

Providing Lelp in a natural language query interface to relational databases 211

In the third stage of the customization process the conceptual schema is de-
veloped. The main steps in developing the conceptual schema are:

1. NAMING entities.

2. (CLASSIFYING each entity as a subclass or instance of at least one other
class. A classified entity is added to the hierarchy of classes which contains both
built-in and customizer defined classes.

3. CREATING TERMS for each entity that users want to refer to. The first term
assoclated with the entity is considered as the primary term which will appear in
the paraphrase of the question. The other terms are synonyms to the primary term
and may be used in questions, too.

Each term belongs to one of the four possible categories: noun, verb, adjec-
tive or proper name.

a) Noun. Each table or column used in the conceptual schema is an entity
which belongs to the category noun, because it represents people or things. Other
nouns in the conceptual schema represent:

— composite entities consisting of two or more entities. For example, the noun
inlerview consists of two entities: first name and last name. Constituent entities
specify the order of the corresponding data values which can be used in questions
or given in paraphrases if the question concerns the composite entity.

— An SQL expression performed on one or more columns. For example, the
noun duration represents end date minus start date.

After specifying terms for the noun, the customizer is asked to define the noun
gramunar: singular and plural forins of the noun and pronouns which refer to it.

b) Verb. A verb represents an action or event which is linked to a noun. For
example, the verb work 1s linked to the noun employee. The customizer specifies
the verh grammar 1.e. forms of transitivity of the verb.

¢) Adjective. An adjective represents a category that applies to a noun entity.
For example, adjective sentor applies to an employee if the age of experience is
greater than a given number of years.

d) Proper name. A proper name is a category which designates a particular
being or thing, typically encoded data values. Head-Quarters (HQ), instance of
department with a predefined number, 1s an example of a proper name.

4. Specifying sYNTAX for entities. Syntax prescribes the usage of terms in a
natural language question. It is obligatory for verbs and optional for other cate-
gories, We shall briefly discuss verh syntax.

The syntax for the verb determines how the verb will be used in questions. In
English, a verh phrase can be used without a direct object, with one or two direct
objects or with one direct and one indirect object. For some verh phrases it is
also possible to select prepositions which will be used with the verb. For example,
suppose that the verhb work has to be used in the context: employee works for

212 . Petrovid

manager. The verh complement window contains four alternative phirases with the
verlb: who works, who works what, who works what to whom and who works whom
whom. As the verh work hias no direct object, the customizer selects the first option,
Alter defining the verh complement, the st of possible prepositions is proposed to
the custormzer, The following preposition complement form should be selected from
Lhe List |:rn]mru'||; .'mmrhmfy works fur' t-mmr'!hmy. Virh syntax H]H*l'ilir-ﬁ how the
prepositions selected Gt into a phrase, I there are two prepositions defined, syntax
definition specifies whether they can be used interchangeably or not. Finally, the
following verh syntax should be selected; who works for something.

b Speciying RELATIONSHIPS between entities and prepositions for relation
ships. The proposed hst of possible relationships between two entities depends upon
the class of each entity, type of terms of each entity and their syntax. Relation-
ships determine the context in which terms defined can be used, Let us continue
the example with the verh work. Assume that the custonuzer has selected the
relationship: Who works”? between the verh work and its subject employee and re-
lationship: What does someone work for? between work and manager (Figure 2),
In that ease, the user can nsk questions such as: Who works for Brown?, List
employees whe work for Brown ete,

Who works?

employee ¢ work

syntax:
gubcld;;T who works for someone

Who does someone work for?
manager

Figure 2. Syntax, prepositions and velationships defined for the verl work

A subelass mherits relationships associated with its class, For example, if
manager s delined as o subclass of employee, manager inherits the relationship
bhetween employee and work (Figure 2). So, the user is allowed to CXPross: manager
works, although it s not stated explicitly in the conceptual schema.,

The conceptual schema s presented as a collection of Prolog facts. For ex-
ample, nominative role of the noun employee to verb work is presented with a
predicate: nom(work, employee).

A simple conceptual schema with a few terms from each of the four possible
categories 18 presonted in Figure 3. A brief explanation of entities and relationships
among them is following. Sentor is defined as an adjective with one meaning
which is applicable to noun employee. "This implies that sentor is applicable to all
subelagses of r'ulplnyrr: clerk and Hianager, Verh mianagte e connected with two

Froviding help in a natural language query interface to relational databases 213

nouns: manager and department. Manager and department have nominative and
accusative role, respectively, to verh manage. The accusative role of department is
inherited by its instance HQ. Relationships between work, employee and manager
are already explained in the paragraph about verh syntax. Employee is connected
to salary via relationship measured by. There is relationship possesses between
employee and department, and vice versa.

s S
i

semor

Figure 3. An example of conceptual schema

The conceptual schema contains word specific to one application. However,
there are words which may be useful in all applications regardless of their domains,
like preambles and polite words, measure words, pronouns, etc. As an example,
preambles and polite words like: can you, please, would you etc. are suitable to be
used in many questions. The entities representing such words are already defined
and kept in the so called base schema. Similarly, the meta schema contains words
which can be used to obtain the meta-knowledge about databases themselves. The
two latter schemas are an incorporated part of the engine.

4. THE HELP FUNCTIONS

The user is not completely free in formulating questions in natural language.
The conceptual schema determines the forms of the questions the user can ask.
Only terms associated with entities in the conceptual schema and general terms
from the base and meta schema are allowed to be used in questions in the context
which is specified by the definition of entities and relationships between them.
This is not a strong restriction, because a proper customization results in a wide

214 S. Petrovié

variety of possible questions. The required answer can usunally be retrieved through
syntactically different questions.

In order to ask correct questions, the user often needs help. The purpose of the
help is to inform the user about the contents of the conceptual schema in a form
of a natural language report. This help 1s based on a sophisticated search through
the facts of conceptual schema guided by the meaning of these facts.

Help can be invoked by the user in two cases:
1) before asking the question if the user needs help in asking a correct question.

2) after asking an incorrect question if the user wants assistance to detect the
source of the error.

Six Help functions were proposed:

. The HI function finds general terms from the base and meta schema. Terms
are classified into a number of categories: nouns, adjectives, adverbs, prepositions,
pronouns, etc.

2. The H2 function lists teris from the conceptual schema which belong to a
selected category noun, verb, adjective, proper namer or all of them.

3. The purpose of the H3 function is to find all relationships which connect
an input term with other terms. If the mput term is a verb or i1s related to a
verb, other relationships associated with the verb are also given. For example, if
the input term is work, the output is employees work for managers instead of just
one relationship: employees work. The output of this function consists of natural
language fragments based on the relationships found. The proposed fragments show
the user the contexts in which the input term can be used.

4. The goal of the H4 function is to help the user to join two terms in the
queries. The output of the function is a list of natural language fragments which
contains two mmput terms.

If there are no relationships which connect both terms, the user can ask for the
lists of relationships associated with each term separately. These lists are actually
the output of the H3 function.

H. 'The 5 function offers the user sample queries based on the imput natural
language fragment produced by the H3 function. Sample queries are based on

patterns which present different types of possible queries. These queries can be
processed by the analysis grammar.

6. The H6 function helps the user in the case the query cannot be processed.
A list of query terms which belong to the conceptual schema is given to the user.

By invoking the 13 function the user will be informed about the context in which
these terms can be used.

These proposed functions are described in more details below.

H1 function. Base and meta vocabulary terms are described by base and

meta schema facts. The H1 function examines these facts and generate the base
and meta terms.

Providing help in a natural language query interface to relational databases 215

e H2 function. Function H2 collects all terms which belong to the input
category from the conceptual schema facts.

« H3 function. Function H3 searches through conceptual schema facts in
order to find all entities which are connected through relationships with the entity
related to the input term. Besides relationships explicitly presented by conceptual
schema facts, all inherited relationships have to be taken into account. Relation-
ships are picked up by using the Prolog’s backtracking facility. Collected relation-
ships are presented to the user in the form of natural language fragments. For
each set of relationships, syntactic patterns of the natural language fragments are
defined by a linguist.

Output of the H3 functions consists of;
1) natural language fragment,
2) hist of synonymns for the terms used in fragments,

3) hist of facts, either from the conceptual schema or inherited ones, which
determine the fragment.

The following examples should clarify the most important inheritance rules
and present some patterus for natural language fragments. Examples are based on
the conceptual schema given in Figure 3.

EXAMPLE 1. Input term is adjective sentor.

Senior modifies nouns employee, clerk and manager. The following natural lan-
guage fragments are proposed to the user:

m cmployees may be senor,
m clerks may be sentor,
(senzor modifies clerks — subclass of employee),
m managers may be senwor,
(sentor modifies manager — subclass of employee).

EXAMPLE 2. Input term is verb manage.

Verb patterns join two or more relationships assigned to the verb to form a mean-
ingful natural language fragment.

In our example, the user can use the following fragments in this questions:
] . |

w managers manage depariments,
a managers manage HQ,
(H(Q) 1s successor of department and inherits relationsliips assigned to it),
g departments are managed,
m H({ is managed.

EXAMPLE 3. Input teri 1s noun manager.

Searching for the relationships assigned to the input noun is organized 1 two parts.
In the first part from the relationships which connect the noun manager to other
nouns, the following fragments are generated:

216 S. Petrovié

w managers have employees,
w employees have managers,
w managers have departments,
(relationship inherited from employee — of manager),
a departments have managers,
@ managers have salaries
(relationship inherited from employee).

In the second part the H3 function searches for the verbs related to the input
noun. Noun manager can be used with the verbs work and manage in the following
context:

® managers manage departiments,
m managers manage HQ,
m cmployees work for managers,
m clerks work for managers
(elerks inherits relationships assigned to its ancestor — employee).

« H4 function. The H4 function proposes natural language fragments which
contain two wmput terms. Fragments are formed i two ways:

1) as the output of H3 function,
2) by concatenating two fragments produced as the output of H3 function.

The following example should demonstrate the usefulness of H4 function. Let
us assume that the following query is asked: List all departinents which code in
Prolog (conceptual schema entities are given in Figure 4). The query is composed
of correct terms but cannot be processed because there are no relationships between
entities related to department and code. Additional relationships associated to the
entities related to the terms in the query must be included so that the query can
be processed. The user should invoke the H4 function with department and code
as input terms. The H4 function will concatenate two fragments associated with
department and code:

w departments have programmers and
w programmers code tn Prolog
and will form the resulting fragment:
w departments have programmers that code in Prolog.

e H5 function. A set of several queries patterns is assigned to each pattern
of natural language fragment.

For example, for the natural language fragment:
w manaegers manage departiments

the output is the following list of queries:
w Which managers manage departments?
w What department was managed by manager?
w Tell me which managers manage departments.

Providing help in a natural language query interface to relational databases 217

possesses

employee department

subiclass

PCEpO N

nommatve n

programmer

language

mtance

Prolog

Figure 4. Correct question based on the conceptual schemais: List all departments
which have programmers that code 1n Prolog.

« H6 function. The H6 function uses the Prolog facility to manipulate strings
and hsts. The input string which presents a query is transformed into a list of
words. In order to find terms, composed of one or more words, which belong to the
conceptual schema, the list is examined in a recursive manner.

H., CONCLUSION

This paper presented a Help function for a natural language interface to rela-
tional databases. The modular design of the proposed functions and the choice of
Prolog as a programming language give many advantages like: rapid prototyping,
additional tuning and robustness of code.

The design and prototyping was made for the English language. It seems that
very similar Help can be made for other natural languages by changing the patterns
of natural language fragments.

Acknowledgement. This work was perforined while the author was with
IBM Nordic laboratory in Lidingo, Stockholm, arranged through IAESTE — the
International Association for the Exchange of Students for Technical Experience.
Special thanks for helpful advice and valuable suggestions go to Dr. Mohammad
Sanamrad — Project Manager in Natural Language Department, Brian White and
Jane Brown — who provided the linguistic help.

REFERENCES

(1] A. Barr, E. A. and Feigenbaum, eds., The Handbook of Artifictal Intelligence, Volume I, Pit-
man Books Limited, 1981,

218 S. Petrovié

(2

3

International Business Machines Corporation: IBM SAA LanguageAccess General Informa-
tron, GH19-6G80, 1990.

. Graham, and P. L. Jones, Erpert Systems, Knowledge, Uncertainty and Decision, Chapman
and Hall, London, 1988,

D.C. Tsichritzis, and F.H. Lochovsky, Data Base Management Systems, Academic Press,
1977.
M. Sanamrad and 1. Bretan, IBM SAA LanguageAccess. A Large-Scale Commercial Product

Implemented 1 Prolog, Proceedings of the 1st Int. Conference on Practical Applications of
Prolog, London, April 1992,

[6] International Business Machines Corporation: IBM SAA Language-Access Customization Tool

User's Guide, 1990,

