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0. INTRODUCTION

The purpose of this expository paper is to present our work on the traveling
salesman problem and its variations and to announce our book [23] on the same
subject. One of the reasons for this is that a part of results 1s either unpublished
or published in Serbo-Croatian language (see the list of references).

Section | presents definitions and necessary facts related to the traveling sales-
man problem. Section 2 introduces several variations of basic problem calling all
of them non-standard problems. Section 3 contains the results classified in several
subsections.

1. TRAVELING SALESMAN PROBLEM

Suppose a salesman, starting from his home city, 1s to visit exactly once each
city on a given list of cities and then to return home. It is reasonable for him
to select the order in which he visits the cities so that the total of the distances
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traveled in his tour is as small as possible. This problem is called traveling salesman

problem (TSP).

TSP is a typical problem of combinatorial optimization. There 1s an extensive
ltterature on and an impressive theory of TSP. The theory includes algorithins and
heuristies (with an emphasis on complexity questions) for solving TSP as well as
several variations and related problems. There are applications of TSP in operations
research and engineering. A nice monograph [58] summaries various aspects of the
work that has been done concerning TSP. See also a recent expository article [52].

Finding a shortest traveling salesman’s route to pass n cities in such a way
that each city is visited exactly once represents traditional formulation of TSP. It
is assumed that nonnegative distances ¢z, j) = c;; between the cities 7,7 (1 <7 <
j < n) are given by the distance matriz C = ||e;;||} and also that traveling salesman
starts his trip from arbitrary city. If the traveling salesman does not returu to the
starting city then minimal traversed route is called an epen route or simply a path.

We introduce some graph theory interpretations. Standard graph theoretical
notions will be used without corresponding definitions. Let (¢ be a weighted digraph
on n vertices. To each arc (7, j) of & a length (weight or cost) ¢;; is assigned. We
define ¢;; = +oo if the arc (i, j) does not exist in (7. The matrix ' = ||r,;_],-||':I IS
called the distance (wetght or cost) matriz of (. The length (werght or cost) ((H)
of a subgraph H of (v i1s defined to be the sum of lengths of arcs of H. In particular,
the length of a path is the sum of lengths of arcs from which 1t consists. A path
(cycle, circuit) consisting from k arcs (edges) 1s called a k-path (k-cycle, k-circuit).
A TSP is called symmetric if the weight matrix 1s symmetric. Otherwise it is called
asymmetric. In a symmetric TSP the (weighted) digraph (7 is considered as an
undirected (weighted) graph .

A cycle (circuit, path) passing through each vertex of (7 exactly once is called
a Hamitonian cycle (circurt, path). Of course, a Hamiltonian cycle (circuit) 1s an
n-cycle (n-circuit) and a Hamiltoman path is an (n — ] )-path. A salesman tour (or
route) is now a Hamiltonian cycle, circuit or path. TSP can be reformulated in the
following way:

PROBLEM 1. In a wewghted digraph (graph) find a Hamiltonian cycle (circuil or
path) ef a munumal length.

The basic model of TSP enables a variety of applications, if “city” is replaced
by the most different kind of objects such as: production job (process), machine,
ete. Also, distance can be interpreted as a cost or, more generally, a preference
measure between objects [46]. Thus the solution of the TSP then produces a total
ordering of the objects which minimizes the number of disagreements.

On the other hand, there 1s a possibility to include additional constraints
caused by practical reasons: the number of salesmen, the number of cities visited
by each salesman, structure of corresponding graphs, etc. (see Section 2 and [58]).
Solutions of these combinatorial optimization problems can be explained as ordering
of a set of objects according to various criteria.
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Now we recall general 1deas for finding the best solution in problems of combi-
natorial optimization via a standard branch and bound procedure. It will be applied
i 3.4.1 to a multi-TSP and in 3.5 to a generalized TSP. In 3.2 it will be modified
for finding A-best solutions. For the sake of simplicity, we restrict ourselves to the
following optimization (say minimization) problem on weighted graphs (networks).

Let A be the set of all subgraphs of a graph (v (with weights inherited from (7).
Let F C A be the set of all subgraphs of ¢ which posses some additional proper-
ties. The set F 1s specified in our problem and the subgraphs from F are called
feasible. 1f we seek 1n F the elements with the weights as in our problem, then these
requirements give rise to some typical N P-complete problems. In order to solve
such a problem by a branch and bound technique, let furthermore R (F C R C A)
be a set of subgraphs for which there exists a polynomial time algorithm (say «) for
finding the optimal element in R. The set R corresponds to some relaxed variant
of our problem (some feasibility conditions need not hold anyvmore).

To describe the algorithm (search procedure), we first mmtroduce a search tree
T as an auxihary tool. T 1s as well, a rooled tree with the root at a vertex r;
all other vertices are the descendants of r. If f i1s any vertex (father), then its
out-neighbors (sons) are denoted by sy,...,s,. Each vertex, say f, corresponds
to some subset R(f) of R and to a subproblem of the original problem (usually
obtained by including and/or excluding some edges of ¢ from the solution). The
root r corresponds to the whole set R. If f is a father and the solution of the
relaxation task on the corresponding subproblems is not feasible and its length 1s
smaller than the current lower bound (set at the beginning), then after branching
at f by some branching rules (which “destroy” some “unfeasible details” in the
solution of the relaxation task), the set R(f) is split into mutually disjoint subsets
R(s1),...,R(s,) yealding new subproblems and new vertices in the search tree 7'
By solving the relaxation problem at some tree vertex by the use of the algorithm
v, we obtain a lower bound for a feasible solution at this vertex (if any). A global
upper bound is provided at beginning by taking any feasible subgraph (usually
found by some quick heuristic). The branch and bound algorithm terminates when
all subproblems in the search tree T are exhausted.

As usual, we distinguish between a problem and an instance of a problem.
Informally, in an instance we are given the “input data” and have enough imforma-
tion to obtain a solution; a problem 1s a collection of all instances. For more formal
treatment of this notions see [69]. Under case of a problem we shall mean subclass
of a problem e.g. a subset of the set of instances so that corresponding instances
have a common property or, all of themn are generated in a sumilar way. For example,
in Section 3.4.2 a well-solved (polynomial) case of the TSP on bandwidth-limited
graphs is considered.

We turn now to complexity questions.

As 1s well-known, the traveling salesman problem is N P-hard. Existing algo-
rithms for N P-problems have an exponential complexity. As is known, algorithms

complexities are estimated on the basis of the necessary elementary steps in the
worst particular case (instance) of the considered problem. However, the experience
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shows that exponential algorithm for N P-problems behave as polynomial ones for
a great number of instances. An exponential running time appears in a relatively
small number of instances which will be referred to as hard mstances.

Hard instances require a lot of computing time. Hence, we might have some
mmterest to recognize such instances before the algorithm starts. If we establish on
the basis of a certain index that an instance 1s hard, we could give up of finding the
exact solution and to try to find a suboptimal (approximative) solution (by means
of some quick heuristics). Here we assume that there exist an efficient (polynomial)
algorithin for determining the index in question. Such indices, called complexity
indices, are considered in Section 3.1.

2. VARIATIONS AND SPECIAL CASES

Under the term non-standard traveling salesman problems (non-standard
TSP), which appears in the title of this paper, we do not understand a formally
defined notion. Our mtention is simply to collect under this title several variations
and special cases of the (standard) TSP.

We formulate the m traveling salesmen problem (m-TSP or multi-TSP):

PROBLEM 2. Grven a weighted graph G and a posilive integer m, find a spanning
collection of m disjoint paths (salesmen’s tours) with munvmal length.

Variations of this problem include limitations on the number of cities visited
by each of the m traveling salesmen. In particular, it is interesting to consider the
case when each salesman visits a constant number of cities. So we get the following
problem:

PROBLEM 3. Given a weighted digraph (graph) G on n = km (k,m inlegers)
vertices, delermine m disjoint (k — 1)-paths with a mintmal lotal length.

Considerable interest has been shown for well-solved cases of traveling sales-
man problem (TSP). According to [45], there are two broad categories of well-solved
cases of TSP. In one category are the problems that are special because of restric-
tions on the matrix (' of arc lengths; for example, ' may be upper triangular or
circulan! matrix. In the second category are the problems in which TSP is to be
solved over a network (graph) with particular structure, but with no restriction on
the lengths of arcs.

Let (7 be a loopless directed graph (digraph) on vertices 1,2,... ,n. (i is called
a bandwidth-lunited graph if there exists a positive integer s(s < n — 1) such that
for any arc (7, j) in ¢ we have |i — j| < s. The smallest such integer s is called the
bandwidth of (¢ and i1s denoted by w. Problem 3 considered on a bandwidth-limited
digraph represents a well-solved case of TSP.

We shall formulate a generalized traveling salesman problem (GTSP) after
giving some definitions.

Let (7 (s,n > 2) be a weighted, complete, multipartite digraph (in the fol-
lowing — mp-digraph). Parameter s is the number of groups of vertices, called
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superveriices, and n is the number of vertices within each supervertex. Arcs join
vertices between different supervertices, while there are no ares between any two
vertices within a supervertex. Note that associated distance matrix €' is a block ma-
trix with s* square blocks of order n. Each block contains arcs lengths (distances)
between vertices in the corresponding supervertices. Diagonal blocks contain only
a sufficiently large positive constant e.g. +00 (connections within a supervertex).

The GGTSP can be stated as

PROBLEM 4. Find a mimimum cost s-cycle which includes exactly one vertez from
each supervertexr in an mp-digraph.

In almost all problems of combinatorial optimization, it can be of interest to
find not only the best solution, but also some other (namely suboptimal) solutions.
Usually, to specify them, we use the following criteria:

1. metric criterion (lengths of all other solutions differ from the length of the
optimal one at most by a given number, say ¢);

e

. ranking criterion (a given number, say k, of best solutions is to be found:
they are usually refered as k-best solutions).

We shall restrict ourselves (without loss of generality) to the following, still
very general, problem.

PROBLEM 5. Lel a wewghted graph G and a set F of ils (weighted) subgraphs be

guen. Find all subgraphs H from F whose weghts satisfy one of the crileria given
by 1 and 2.

3. A SURVEY OF RESULTS

We shall present several non-standard traveling salesman problems. The non-
standardness i1s caused by topological limitations (TSP is to be solved over a net-
work (graph or digraph) with particular structure) or by modification of the objec-
tive function (e.g. multi-TSP, k-best solutions etc.).

- Complexity indices for TSP, by which we can, under some conditions, distin-
guish between “easy” and “hard” instances, are described in Section 3.1.

An algorithmn for finding suboptimal solutions for TSP (see Problem 5) is
presented in Section 3.2.

Section 3.3 contains a treatment of a TSP on digraphs with chained structure.

A multiple TSP with limitations on the number of cities each salesman should
pass (1.e. Problem 3 from Section 2) is treated in 3.4. General case 1s considered in
3.4.1 while Section 3.4.2. is devoted to a multi-TSP in which the cost matrix has
a limited bandwidth.

A generalized TSP on a complete multipartite digraph is considered m Sec-
tion 3.5. This generalization simultaneously combines the decision of vertex selec-
tion and vertex sequencing. The generalized model assumes the vertices have been
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grouped into disjoint verter sets which we shall call supervertices. The Generalized
Traveling Salesman Problem (GTSP) is then to find a minimum cost cycle which
imcludes exactly one vertex from each vertex set 1.e. supervertex. It is generalized
because TSP is a special case of GTSP; it is GTSP with vertex sets of cardinality
one,

We report in 3.6, following [17], on the implementation of a programming
package, called TSP-SOLVER, for the traveling salesman problem. Various variants
of TSP can be treated by TSP-SOLVER: both symmetric and asyminetric cases,
one- or multiple-TSP, one or first k-best solutions, bandwidth limited distance
matrix and others special cases, algorithms and heurnistics. The system 1s user-
friendly and offers the user, among other things, some possibilities to mtervene
during the solving a problem.

We hope to be able to complete soon the book [23] in which we shall present
non-standard TSP with more detail.

3.1. CoMmMPLEXITY INDICES FOR TSP

This section contains no real results; it describes intuitively based i1deas and
numerical results partly justifying them.

There are no theoretical results described in the literature which would indi-
cate the existence of eflicient complexity indices for a particular instance of N P-
problems, in spite of the fact that this type of problems is of an obvious practical
importance. More generally, we do not see how a theory of complexity indices for
istances of N P-problems can be based on known results. However, discussion on
easy and hard cases (sets of instances) can be found, for example, in [3], [39], [49],
|58].

The tdea on complexity indices has been initiated in [60] in relation to the
traveling salesinan problem. The indices offered have been mtuitively justified and
their validity supported by some experimental results. After that in a series of
papers [19], [20], [21], [18] the problem of the complexity indices has been studied
and 1t 1s partially theoretically justified or experimentally verified. The largest
eigenvalue of the adjacency matrix of a minimal spanning tree has been introduced
in [19] as a complexity index for the traveling salesman problem and its validity
supported by some results from the theory of graph spectra [24]. Complexity indices
based on the assignment problem are considered in [21]. The most comprehensive
treatment of this research is given in [14] and [32]. The following text surveys
shortly these works.

In solving TSP one usually uses one of the numerous variants of the branch
and bound algorithm [58]. Principally speaking, the most known relaxations used
in branch and bound algorithins for the traveling salesman problem are the task of
finding a minimal spanning tree and the assignment problem. In the first one we
solve a vartant of traveling salesman problem in which the length of a Hamiltonian
path is optimized. Actual running time necessary for a particular problem to be
solved depends, of course, on the algorithm chosen. Hence, for each variant of
branch and bound method a complexity or even more indices can be introduced.
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To illustrate best our main idea on complexity indices we have selected the
minimal spanning tree relaxation in spite of the fact that other relaxations perform
better. We also bound ourselves to the symmetric case, i.e. we assume that we are
given a complete undirected graph without loops with weights (lengths) defined on
edges. A minimal spanning tree of the graph is a spanning subgraph of ¢ which is
a tree and in which the sum of weights of edges is minimal.

If a minimal spanning tree is a path, it represents also a solution to TSP.
However, a path is also a tree with a minimal branching extent (in an intuitive
sense). The main idea of [60], further developed in [19], is based on the expectation
that branch and bound algorithm will run the longer the more minimal spanning
tree deviates from a path, 1.e. the greater “branching extent” it has. Accordingly,
any graph invariant characterizing well the “branching extent” in an intuitive sense,
can be considered as a complexity index for the traveling salesman problem.

In [60], [19] the following invariants have been considered:

D the number of vertices of degree 2 in the minimal spanning tree;

A1 the largest eigenvalue of the adjacency matrix of the minimal spanning tree.

The quantity D is maximal (D = n — 2, where n is the number of vertices)
if the tree reduces to a path, but it attains its minimal value D = 0 on a great
number of trees. The largest eigenvalue Ay reflects more precisely the branching
extent of a tree. (GGiven n the number of vertices of a tree, the quantity A, varies
between 2 cos # and /n — 1, both bounds being attained on exactly one tree (a
path and a star, respectively). Since the path P, has the least branching extent
in the intuitive sense and the star K ,,_; has the maximal one, the quantity X,
has at least a good property that it characterizes extremal trees in the above sense.
Any invariant which is considered as a branching extent parameter should fulfill

this criterion.

Complexity index D is based on vertex degrees while the index A; is based
on the spectrum of the minimal spanning tree. These two kinds of indices can be
related as shown in [20].

As already said, there are no strict theoretical results described in the litera-
ture supporting the idea that the discussed invariants really can serve as complexity

indices for the TSP. Therefore some experiments using a computer have been un-
dertaken [20], [14], [21], [18].

A number of instances of the TSP have been generated by means of a random
generator. For each instance we have computed the considered mdices and the
number N of the solved relaxation tasks when running the branch and bound
algorithin,

The input graphs had a symmetric weight matrix. Weights were generating
using a uniform distribution in the interval (0,1}. Partial results are given below in
the form of tables. A table is given for each group of graphs with a fixed number of
vertices. The first and the second data column give the linear correlation coefficient
hetween mentioned indices and quantities N and log N. Finally, the Spearman rank
correlation coeflicient is given in the third column.
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Table 1: 200 graphs n:; 8 vertices Table 2: 100 graphs on 12 vertices
N log N | N (Spearman) N log N | N (Spearman)
D | 0.361 | 0.605 0.500 D | 0.293 | 0.529 0.439
A | 0.433 | 0.598 0.514 A1 | 0.378 | 0.543 0.502
Sa | 0.501 | 0.612 0.536 Sq | 0.469 | 0.587 0.5453

The presented results show that correlation coefficients, generally speaking,
decrease when the nuinber of n vertices increase. This 1s to be expected since the
information about the problem, contained in a minimal spanning tree, obviously
decreases when n increases. (A complete graph on n vertices contains %u(n — 1)
edges while spanning tree only n — 1 edges; hence the proportion of the edges
in the tree compared with the total number of edges 1s 2/n). Therefore more
sophisticated complexity indices should be introduced. A reasonable idea would be
to study several spanning subgraphs consisting of the “short” edges of the input
graph and to use invariants of such subgraphs as complexity indices [14], [18].

Let (v be a weighted graph on n vertices with m edges. Let edges e;,€9,... , em
of (¢ be ordered by non-decreasing weights. Let (i be the graph having the
same vertices as (v and edges ey,e9,... e (k= 0,1,... ,m). Let P be a graph
property. A P-crilical spanning subgraph of (7 is the first graph in the sequence
(7, (71, ... Gy having property P. P-critical spanning subgraphs of (7 for various
properties P are called short edge subgraphs of (.

Consider the following spanning subgraphs of G:

H; containing n — 1 shortest edges;

Hy critical connected;

H3z critical for property of having at most 2 vertices of degree 1;
H4 critical for property of having all vertex degree at least 2;
Hy critical 2-connected;

Hg critical Hamiltonian.,

Intuitively, one can expect that short edge subgraphs contain important infor-
mation about the complexity of a TSP task. Generally speaking, graph theoretical
invariants of short edge subgraphs can serve as complexity indices. Short edge sub-
graphs could be considered as weighted graphs in which case the weights could be
used to define some subgraphs and than again some invariants of these subgraphs
could be examined.

Note that the minimal spanning tree is not a short edge subgraph in general
cise,

P-critical spanning subgraphs could serve for forming complexity indices for
LSP f the property P can be checked by a polynomial algorithm. Namely, we
gradually add short cdges and keep checking property P until it appears. Since,
checking whether a graph is Hamiltonian is an. N P-problem short edge subgraph
Hyg seems to be not suitable for our purposes.
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It 1s expected, in an intuitive sense, that every “measure of size” of short edges
subgraphs Hy—Hj; can serve as complexity index of a particular instance of the
TSP. It can simply be the number of edges in the considered subgraph. As matter
of fact, every short edge subgraph can be interpreted as an approximation of the
search space needed to find optimal solution of the TSP. Measure of size of that
search space is obviously dependent on relaxation which is used in the branch and
bound algorithm. In the variant with minimal spanning tree as the relaxation, it is
reasonable to study the number of trees in short edges subgraphs as a complexity
index.

Beside the number of edges and the number of trees the following invariants of
short edges subgraphs are considered as complexity indices: diameter, the number

of cuts points, the number of components and the number of vertices of degree
1 [18].

3.2. k-BEST SoLuUTIONS oF TSP

In this section we describe an algorithm for finding k-best solutions of TSP
(see Problem 5 in Section 2) following [30].

Our algorithm for finding best suboptimal solutions represents a modification
of the branch and bound algorithm described in section 1. It consists of two phases.
In Phase I our strategy is to branch the search tree until we find the best solution
(global minimum). In the course of branching we split at each tree vertex the
corresponding subspace of the search space into parts where the expected subgraph
(obtained by algorithm «) is less non-feasible (Rule 1). The Phase II relies to the
search tree from the former phase. We now use to branch at each tree vertex whose
lower bound is minimal possible. To split the corresponding search space we have
to choose between two different rules: if the solution of the relaxation problem is
not feasible we branch as earlier (Rule 1); otherwise, we split the search space by
destroying a feasible solution; e.g. by letting each of its edges to be forbidden in
turn within subspaces (Rule 2). The termination of search is encountered after
reaching one of criteria from section, or by exhausting the search space.

These algorithms have been implemented within the programming package
TSP-SOLVER (see Section 3.6).

Depending on the TSP instance characterized by distance matrix (symmetric
or asymmetric) and by tours (open or closed) we can have four types of TSP
problems. With each possibility, we use the 3-optimal heuristic (see, for example,
(58] for finding the initial upper bound and the following relaxations:

1. Minimal spanning tree (Prim’s algorithm [70]) for a symmetric TSP with
an open tour:

2. Minimal 1-tree (a modification of Prim’s algorithm [58], p. 371) for a sym-
metric TSP with a closed tour;

3. Minimal rooted tree (for the algorithm see [46]) for an asyminetric TSP
with an open tour;
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4. Assignment problem (see [6]) for an asymmetric TSP with a closed tour;

Implemented programs have shown a satisfactory performances for the TSP in-
stances up to 20 vertices.

For other approaches to the problem of finding k-best solution in various prob-
lems see (8], [31], [47], [57], [59], [65].

3.3. A CHAINED TSP

Let (i be a digraph whose adjacency matrix has the form

A By sl 0
0 A, B, 0
A= .
() =geig Bm-1
1 LR | R ¢ Am
where Ay, Aa, ... . A,, are square blocks of order n. Subgraphs of (+ with adjacency

matrices Ay, Aa, ..., Ay, are denoted by Gy, (g, ... , Gy, respectively. Digraph @7
is called a chamed digraph. If arcs of (¢ carry some weights the corresponding TSP
1s called a chamed TSP.

We can form an auxiliary weighted digraph F with weights on both vertices
and arcs in the following way. The vertex set of F' i1s union of disjoints sets
X1, X2, ..., X Elements (vertices of F') from X; are in a biunique correspon-
dence with Hamiltonan paths of the digraph (/; ( = 1,2,...,m). The weight
of a vertex from X; is the length of the corresponding Hamiltonian path in ;.
For any i = 1,2,... ,,m — | we have arcs goring from each vertex from X; to each
vertex of X;4,. The weight of the arc between z € X; and y € X;4 is equal to
the (p, q)-entry of B; if pis the ending vertex of the Hamiltonian path in (; which
corresponds to x and ¢ 1s the starting vertex of the Hamiltonian path in (7; 4, which
corresponds to y.

A chained TSP is reduced in [61], [62] to the problem of finding a shortest
path i F' which starts 1in one of vertices from X'y and terminates in one of vertices
of X,, where the length of path 1s the sum of weights of all vertices and arcs from

the path. Some eflicient procedures for finding such a path and k-best solution are
given in [61], [62] as well.

A dynamic programming algorithm for the chained TSP is given in [15].
3.4. A SPecIAL MuLTI-TSP
We shall consider Problem 3 from Section 2, namely

PROBLEM: Grven a weighted digraph (graph) (¢ on n = km (k, m integers) verieces,
determine m disjoint (k — 1)-paths with a minumal total length.
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Note that Problem 3 is quite different from Problem 2. Problem 2 is usu-
ally solved by a transformation which reduces it to the ordinary TSP [2]. This
transformation cannot be applied successfully to Problem 3.

We describe in 3.4.1 some branch and bound algorithms for this problem fol-
lowing the report [13]. Note that in [34] our problem has been formulated in terms
of integer programming.

Other relevant references are [1], [7], [41], [42], [43], [50], [55], [71], [73].

In 3.4.2 we shall consider our problem on a digraph with limited bandwidth.

3.4.1. General Case

Consider first the case when the weight matrix of (7 is symmetric.

DEFINITION 3.1. A graph whose components are trees is called a forest. A forest
with s edges is called an s-forest.

The solution of our problem is a collection of m disjoint (£ — 1)-paths, hence an
s-forest with s = m(k — 1). Therefore we accept the problem of finding a minimal
s-forest as the relaxation task in our branch and bound algorithm. We propose the
following algorithm for finding a minimal s-forest.

ALGORITHM. Starting from the O-forest, chose for 1 =0,1,...,5s—1 a shortest edge
transforming an i-forest into an (1 + 1)-forest. The obtained s-forest 1s a minunal
s-forest.

The correctness of the algorithin is verified by the following lemma.

LEmMA 3.1. Let I be a spanning i-forest (1 =0,1,...,s—1) i a graph G which
ts a subforest of a manimal s-forest. Let u be a shortest edge which transforms the
i-forest I imlo an (i+ 1)-forest. Then there extst a mimumal s-forest which contains
the i-forest I and the edge u.

Proof. Suppose at the contrary, that no minimnal s-forest contains the i-forest
I and the edge u. Consider a minimal s-forest S.

The graph S + u 1s either an (s + 1)-forest or contains a circuit €. S + u
contains at least one edge v (v # u) which does not belong to I but belongs to C
if €' exists. If C does not contain such an edge v, all edges of ' belongs to I and
the edge u would have not transformed I into an (7 + 1)-forest.

Now the graph S = S + u — v is again an s-forest whose length {(S") is not
greater than the length [(S) of S. The case {(S’") < I(S) would contradict the fact
that S 1s a munimal s-forest. The other case [(S") = {(.S) means that S 1s a minimal
s-forest containing [ and w, thus contradicting the assumption at the beginning of
the proof.

This completes the proof. ]
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Since the O-forest is contained in any minimal s-forest, we conclude using
Lemma 3.1 that the Algorithm gives a minimal i-forest for any 1 = 1,2,...  s.
For s = n — 1 we get a minimal spanning tree. In this way the Algorithm is a
generalization of the Kruskal’s minimal spanning tree algorithm [51], [58].

(‘onsider the solution of a relaxation task during the work of our branch and
bound algorithi. If it is not a collection of m disjoint (k — 1)-paths and its length
is stnaller than the current upper bound we apply the following branching rules to

produce new subproblems:
1. we “destroy” a vertex of degree greater then 2, if it exists; otherwiseRca

we “destroy” a path with a maximal number of edges. 2.

REMARK. If the branching rule consists only from 1, our branch and bound algo-
rithim would solve m-TSP without limitations on the numberof cities visited by
each salesman (Problem 2).

Now we consider m-TSP with an asymmetric weight matrix. We start with
some definitions.

DEFINITION 3.2. A tree in which each edge is directed 1s called a directed tree.

DErFINITION 3.3. A directed tree is called a rooted directed tree if the following
conditions are fulfilled:

|. There is a vertex » with no incoming arcs;

2. Exactly one arc terminates in each of other vertices.
Vertex a 1s called the root.

DEFINITION 3.4. A digraph whose week components are rooted oriented trees is
called an arborescence. An arborescence with s arcs is called an s-arborescence.

In solving m-TSP with an asymmetric matrix we can use a branch and
bound algorithm in which the relaxation task is the task of finding a minimal
s-arborescence where s = m(k — 1). An algorithm for finding a minimal s-
arborescence has been described in [16] but we do not reproduce it here.

REMARK. An algorithm for finding a minimal arborescence (without specification
of the number of arcs in 1t) in a weighted digraph with possibly negative arc weights
was developed by J. Edmonds [40], [63]. This algorithm cannot be directly applied
to problem of finding a minumal s-arborescence. However, it was a starting point
in developing our algorithm.

Branching rules are analogous to those ones in the symmetric case:
. we “destroy” a vertex of out-degree greater than |, if it exists; otherwise

2. we “destroy” a path with a maximal number of arcs.

Following [12] we describe the role of the assignment problem in solving m-

TSP.

In order to apply the assigniment problem as a relaxation task to m-TSP we
perform a transformation to the original weighted digraph G.
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We form a new weighted digraph H by adding m new vertices to digraph G.
New vertices are joined by arcs to all vertices from G in both directions. Weights
of all new arcs are mutually equal, otherwise arbitrary.

A solution of m-TSP in (i can be extended to a linear factor in H consisting
of m (k + 1)-cycles each containing exactly one of m new vertices. Such cycles are
called feastble and any other cycle i1s called unfeasible.

A branch and bound algorithm for m-TSP on (i acts on digraph H. The
relaxation task 1s the assignment problem and the corresponding algorithm from
(6] can been used. Branching rules are formulated so that unfeasible cycles are
“destroyed”.

At the end of this section we mention same heuristics.

In [34] a modified furthest insertion heuristic, known for an ordinary TSP,
has been proposed for m-TSP. Many heuristics for TSP could be extended to m-
TSP. Possible extensions we classify within the following two groups of heuristics
according to [12] and [22].

I. Using any heuristic for the ordinary TSP we determine a circuit (or cycle)
and split it by deleting m edges (arcs) into m paths in such a way that we
obtain a shortest possible solution. |

2. Using any heuristic for the ordinary TSP by which a path is gradually
angmented we construct a (k — 1)-path. Then we delete the vertices from
the so constructed path and apply the above step to the remaining digraph
until we construct m (k — 1)-paths.

3.4.2. Bandundth limited TSP

Let (7 be a bandwidth-limited digraph (for the definition see Section 2) on N
vertices. Following [13] and [27] an algorithm for solving Problem 3 on ¢ will be
described.

In [64], [72] (see also [45]) a polynomial algorithm for symmetric TSP on
bandwidth lunited graph is described. It is based upon dynamic programming ap-
proach. Our algorithim extends the basic ideas of this algorithm for an asymmetric
TSP and generalizes it for m (m > 1) traveling salesmen.

Let vertices of digraph ¢ be represented as in Fig. 1 for a fixed j (w < j < N).

A;
¥

B; Cj

Q 0O o SR Q o (o] O

Jew=t o e d=wdl v d . dad FED e N

—
N ©

Fig. 1
Let us define the sets:
A;={1,2,...,]—w~—- 1},
By ={i —wyi—wtl,...,3};
Ci={j+1,j+2,...,N}.
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The algorithin is based on the fact that, due to the bandwidth w of the digraph
(7, there are no arcs from vertices of A; to the vertices of Cj.

Consider m disjoint paths in digraph (. Let H be a digraph which has the
same vertices as (v and only arcs from paths mentioned. Let H; be the subgraph
of digraph H induced by the set A; U B;. Digraphs H and H; contain four types
of vertices with respect to the values of vertex indegrees d~ and outdegrees d*:

l. isolated vertices: d~ =0, d* =0 (type 1),
| (type 2),

3. terminal vertices: d~ =1, d¥ = 0 (type 3),

2. starting vertices: o~ =0, d*

4. internal vertices: d~ =1, d¥ =1 (type 4).

Degrees of vertices in A; are the same in H; and H since in both ¢ and H
arcs between A; and € do not exist.

Let us add vertex j + 1 to H;, so that the digraph H;, is obtained. Vertex
j+ 1 is adjacent with 0, | or 2 vertices in B;. Various possibilities of joining vertex
j+ 1 and a vertex b € B; that yield a legitimate subgraph H;4,, depend not only
on in-(out-)degree of vertex b, but also on paths in H; containing vertices in B;.

The set B; contains w+ 1 elements. Let 27 be the i-th vertex in B; (x] has an
absolute position j —w — 1+ in (7). For a vertex ¢! € Bj, let u! € {1,2,3,4} be
its vertex type. Let t = (ul, vl , w!) be an assigned triple of nonnegative integers
defined as follows:

L. if .r‘,f is 1solated (internal) vertex, then u; = l(u‘; =4 andivl =i =

-y

= 2(u! = 3); v] is the number of
arcs in a path with one endvertex x7, and w] is position (ordinal number)
of the other endvertex of the corresponding path. (If the other end of the

path is in A;, we have w! = 0).

-l

2, iof u:f 1s starting (terminal) vertex, the u

Triple sequence T; = (85,43, . .. ,t;i,ﬂ) describes the set B;, hence the digraph
H; in the extent necessary for further analysis.

Let H; be the set of all subgraphs H; and 7; be the set if corresponding triple
sequences 7. Let us define an equivalence relation on the set H;.

DEFINITION 3.5. For a given j, two subgraphs H}, H are equivalent (H] ~ H!) if
the corresponding triple sequences are equal 1.e. T] = T7".

Reduced sets H; CH;, T; C -'f] of subgraphs H; and the corresponding triple
sequences T respectively, induced by ~ are formed as follows: find the shortest
subgraph H; € H; in each equivalence class, include it in H;, and mclude at the
same time its ‘description’ i.e. corresponding T} € 7;.

The following algorithm A solves the given problem (M-TSP): (All subgraphs
Hj are represented by corresponding triple sequences Tj).

1. step Initialization: Determine initial set M, 4, (see Section 4 in [27]).
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2. step: For j=w+ 1, w+4+2,...,N do:

Add vertex j+ 1 to every H; € H; thus obtaining H; 4y € H;,. (For
various possibilities of adding vertex j + 1 that yield legitimmate subgraphs
H; 4\ see Section 3 in [27]).

Sort triple sequences Tjy, € 7;4, lexicographically. Sets of mutually
equal triple sequences correspond to equivalence classes of subgraphs H; 4.
Keep the shortest subgraph H;;; in each equivalence class, thus forming
reduced sets 7j4, and H; 4.

3. step: Inset Hy find the subgraph Hy of the shortest length. Stop: Digraph
H = Hy is an optimal solution.

It was proved in [27] that the described algorithm is polynomial of degree at
most w + 2.

Note that standard branch and bound algorithms for TSP remain of an expo-
nential complexity when applied to a bandwidth-limited graph [27].

However, a disadvantage of our polynomial algorithm when compared with the
exponential branch and bound algorithm consists of the fact that it works a constant
amount of time for all instances of our problem. Branch and bound algonthms are
sensitive on the distribution of arc lengths so that there are problem instances
which are quickly solved while for some “hard” instances an “exponential” time is
necessary.

Experuments on computer with the above algorithm implemented have shown
a bad performance. The number of generated triple sequences is enormons for quite
modest values of N and w. Big memory requirements have implied the usage of
virtual memory and this contributed to higher execution times.

Therefore we have developed some procedures for reducing the nummber of gen-
erated triple sequences. The basic idea for these procedures consists in the following.
Some subgraphs H; can have so big length that they do not have any chance to be
extended to an optimal solutions. Such subgraphs will not be extended any more
when putting next vertex into consideration [27].

3.5. A GENERALIZED TSP

In this section we consider Problem 4 from Section 2, i.e. a generalized TSP

(GTSP).

Two branch and bound algorithms for solving GTSP have been almost sinul-
taneously and independently published in [37] (see also [38]) and [68]. We shall
shortly describe these two algorithms.

We note that an early attempt in solving the GTSP was based on a transfor-
mation by which GTSP is reduced to the TSP [74]. Namely, starting with given
mp-digraph ¢ a new digraph G’ is constructed in which every Hamiltonian cycle
corresponds 1o exactly one s-cycle and vice versa. More precisely, there exists a
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bijection between the set of all Hamiltonian cycles in G and s-cycles in the mp-
digraph (+. Requirement that traveling salesman enters and leaves supervertex at
the same vertex is also assured by the transformation.

This transformation increases the dimension of the problem sn times. Compu-
tational results on VAXS800 using this transformation and then solving the TSP
(with one of the most efficient branch and bound algorithm for the asymmetric TSP
[5]), show that the GTSP can be solved on small mp-digraphs with s,n < 5. The
explanation is the following. The transformation is of such nature that the applied
branch and bound algorithm for TSP (based on assignment problem as relaxation)
forms two subceycles within each supervertex. Afterwards, subcycles “patching”
gets into an exhaustive search.

Although computationally inferior this transformation helped to prove the ex-
pected fact that the GTSP is N P-complete [23].

In [37, 38] a branch and bound algorithm for the GTSP using minimal rooted
directed tree as relaxation is presented (see Definition 3.3). This algorithm is
referred to the “open” variant of GTSP i.e. finding minimum cost (s — 1)-path
which contains exactly one vertex from each supervertex.

Let d*(x) denote the out-degree of vertex z in a digraph. A path is a rooted
directed tree with property that out-degree of all vertices is equal to 1, except for
a single vertex t, called terminal vertez of the path, for which dfi(t) = 0.

Minimal rooted directed tree can be determined by Edmond’s algorithm of
complexity O(n?) [40]. In solving relaxation task the variant of Edmond’s algo-
rithim with a fictive equi-distanced vertex added to the input mp-digraph was used
[46]. This variant enables to find a minimal rooted directed tree without prior
specification of the root.

A characteristic of Edmond’s algorithmn i1s that in forward phase it finds a
minimal rooted directed tree by successively including minimal entering arcs for
each vertex 7. In the case that a cycle is formed, all the vertices of the cycle are
merged in a new vertex called pseudo-vertez. In the next iteration, the algorithm
continues on the new digraph with reduced number of vertices: the formed pseudo-
vertex and all the (remaining) vertices which are outside of the merged cycle. All
the vertices in the new reduced digraph are treated equally.

At the mitialization step of the algorithm this merging enables to transform
supervertices into pseudo-vertices, and thus the dimension of digraph is reduced.
So, task of finding a minimal rooted directed tree is reduced to a digraph with only
s vertices,

In the second, backward phase, Edinond’s algorithin is maodified in such a way
that expanding pseudo-vertices is done only to the level of supervertices (ie. a
pseudo-vertex which corresponds to a supervertex is not expanded).

For rooted trees two branching scheme are applied. The first one is applied
when the rooted tree is not a path. In that case, branching rules iinplemented in any
branch and bound algorithm for the standard TSP with rooted tree as relaxation
can be used. The following branching rule is applied to the first supervertex I with
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d*(I) = k (k > 2): successively including exactly one leaving arc while all other
arcs were excluded from consideration. In this way k + 1 new subproblems in the
search tree are generated. The last generated subproblem corresponds to the case
when all leaving arcs from supervertex I are excluded.

In the case, when the rooted tree is a path, then supervertices (i.e. correspond-
ing pseudo-vertices) are expanded in order to get into their structure, looking for a
supervertex with discontinuity. If there is no discontinuity — in each supervertex
arc enters and leaves the same vertex, this feasible solution i1s kept as candidate
for the optimal one. In other case, three subproblems are generated by successive-
ly excluding exactly one arc which takes part in forming discontinuity. The last
subproblem is obtained by excluding both arcs.

We note that depth-search variant of the branch and bound is used, in order
to obtain as quickly as possible a feasible solution.

A different approach, based on a Lagrangian relaxation for the G'TSP, is de-
scribed in [68]. Namely, GTSP is modeled as an integer program in which con-
straints are partitioned in two groups. The “complicated constraints” are dropped
and brought into the problem’s objective function. This results in obtaining a
Lagrangian relaxation for the GTSP. (For a general framework of Lagrangian re-
laxation see [66).)

The presented approach is a sequence of three separate procedures: determin-
ing good lower bounds by solving Lagrangian relaxation, arc/vertex elimination
and branch and bound enumeration. Instead of optimal solving the Lagrangian
relaxation using a direct method, the first procedure approximates lower bhounds
using an iterative subgradient algorithm [46], [66]. The subgradient approach com-
pared to direct methods uses little storage. This procedure also includes a heuristic
for determining upper bounds. These bounds are than used in the second proce-
dure to identify and remove many nonoptimal arcs and vertices. With the problem
well-bounded and reduced in size, the third procedure uses inplicit enumeration to
guarantee an optimal solution.

Other relevant details of both branch and bound algorithms are described in
(23]. Also, the efliciency of these two algorithms is compared. It seems that larger
problems can be solved with the approach proposed in [68].

3.6. TSP-SOLVER A PROGRAMMING PACKAGE FOR TSP

A programming package for traveling salesman problem (TSP) has been 1m-
plemented at University of Belgrade, Faculty of Electrical Engineering in 1989 and
1990. The package is called TSP-SOLVER.

Programming package TSP-SOLVER is implemented on a VAX computer un-
der operating system VMS and using programming language FORTRAN. A Form
Management System (FMS) has been used to create menus for the communication
with the user. There are about 500 subroutines linked into several executable task

units (subsystems). Subsystems communicate each to other through files with data
(M-files) on particular TSP instances.
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Subsystems of the system TSP-SOLVER are GENER, SALES, STATIS and
EXTER.

§ GENER b other packages |

- Hmmem =

S = AT
[ saLes [— exter —1 ararn |
AR oo R IR .
o it A
| T i

Fig. 2

GENER creates, modifies and verifies M-files. Creation of M-files makes use

of random number generators. M-files created by other programs (outside TSP-
SOLVER) are verified before treating by SALES.

SALES contains several algorithims and heuristics for TSP implemented. Input
data are taken from one or more M-files. Output is directed again to M-files or/and
other output devices.

STATIS perforins statistical treatment of data in M-files including results of
working of SALES.

EXTER is a subsystem to link the system TSP-SOLVER to the previously
developed package GRAPH [10], [25], [28], [29]. EXTER transforms data from
TSP-SOLVER into formats used in GRAPH. Results of the working of GRAPH the
subsystem EXTER can put in corresponding M-files. A user can also via subsystem
EXTER inspect the actual work of SALES by interrupting a process, inspecting
imtermediary results, changing modes of the work, 1.e. strategy of further work.

Information flow between subsystems is given in Fig. 2. All presented infor-
mation exchanges are realized via M-files except for the linkage between EXTER
and GRAPH where the medium is a special file used by GRAPH.

System TSP-SOLVER is in spirit similar to the system TRAVEL [4] but
has much more algorithms and heuristics implemented. Experiments with TSP-
SOLVER will be described in other papers. Here we describe subsystems in some
detail.

A TSP 1s defined by a weighted graph represented by the corresponding dis-
tance matrix (DAM). The following types of the distance matrix can be treated in
package TSP-SOLVER. |

1° asymmetric DM corresponding to the complete directed weighted graph;

2° symmetric DM corresponding to the complete undirected weighted graph;

3° band DM where there exists a positive integer w (w < n — 1) such that
DM(1, j) is finite and non-negative for |i — j| < w. All other entries of the
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DM are equal to 4+o0. The value w is called the bandwidth:

4° the weighted graph has a chain structure (chain-like DM ). Such a graph
consists of an ordercd sequence of complete directed subgraphs in which
cach node of a subgraph is connected by an are to cach node of the iinme-
chately following subgraph;

H® DM 1s cuchidean, i.c. satislies the triangular invﬁualit.ios DM(2,3)+ DM(7,
k) > DM (2, k) for all 7, j, k.

The following algorithms and heuristics have bheen implemented.

19 symmetric TSP: branch and bound algorithm by Volgenant and Jonker [75]
and two others based on minimal spanning tree and l-tree as relaxations:
J-optimal and nearest neighbor beuristics.

2° asvinmetric TSP: branch and bound algorithim by Carpaneto and Toth [5]
and two others based on minimal assignation [6] and oriented rooted tree
[46] relaxations; 3-optimal and nearest neighbor heuristics.

3° branch and bound algorithins for a given number of best suboptimal solu-
tions for cases 1° and 2° [11], [12].

4° multiple TSI’: symunetric and asymmetric; branch and bound algorithms
with minimal forests‘[12] and oriented rooted forests [12] as relaxations, a
heuristic [rom [22].

asymmetric TSP with band distance matrix: one ore more salesmen, a
polynomial algorithm [13].

6° chain-like TSP, asymmetric, a dynamic programming algorithin [15] and
an algorithm nsing suboptimal solutions for subgraphs [61], [62].

Subsystem EXTER is an interface between TSP-SOLVER and GRAPH.

Some (non-weighted) graphs can be created in EXTER from TSP instances
treated with TSP-SOLVER (e.g. minimal spanning trees, minunal assignation
graphs and other subgraphs of “short” edges, etc). These graphs can be further
treated by the systemn GRAPII, part ALGOR for graph theoretic algorithms (e.g.
we can find vertex-degrees, diameter, eigenvalues etc.). These results can be sent
to the corresponding M-files through EXTER and further elaborated by STATIS.

Interesting “short edge” graphs can be also created from intermediary dis-
tance matrices during the work of a branch and bound algorithm. Conmmtinication
between EXTER and SALES is realized via a global sherable commoen arca.

Facilities described in this section enable; among other things, the study of
complexity indices for TSP [14], [19], [20], [21], [32] and were, in [act, motivated
by such investigations.
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