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Abstract: The minimization of a particular nondifferentiable function is considered. The 
first and second order necessary conditions are given. A trust region method for 
minimization of this form of the objective function is presented. The algorithm uses the 
subgradient instead of the gradient. It is proved that the sequence of points generated by 
the algorithm has an accumulation point which satisfies the first and second order 
necessary conditions  
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1. INTRODUCTION 

A motivation for the idea of the trust region method is to circumvent the 
difficulty caused by non-positive definite Hessian matrix in the well known Newton 
method. In this case the following quadratic function ( ) ( )kq δ , obtained by truncating the 
Taylor series for ( )( )kf x δ+ , given as follows 

( ) ( ) ( ) ( ) ( )1( ) ( )
2

Tk k k k T kf x q f g Gδ δ δ δ δ+ ≈ = + +  

does not have a unique minimum and the method is not well defined.  
We used the following notation: denote by 

( ) ( ) ( ) ( ) ( )( ), ( ) ( )k k k k kf f x g g x f x= = = ∇ , where ∇  denotes the gradient operator 

1 2

, ,...,
T

nx x x
⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

, ( ) ( )( )k kG G x=  denotes the Hessian at ( )kx , and a vector refers to a 
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column vector. Another obstacle is that the region about ( )kx  in which the Taylor series 
approximates the function does not include a minimizing point of ( ) ( )kq δ .  

A more realistic approach therefore is to assume that it can be defined some 
neighborhood ( )kΩ of ( )kx  in which ( ) ( )kq δ  agrees with ( )( )kf x δ+  in some sense. Then 
it would be appropriate to choose ( 1) ( ) ( )k k kx x δ+ = + , where the correction ( )kδ  minimizes 

( ) ( )kq δ  for all ( ) ( )k kx δ+ ∈Ω . This is the reason for the name of the method – the trust 
region method (referred to the neighborhood ( )kΩ ).  

It is usual to consider the case in which { }( ) ( ) ( ):k k kx x x hΩ = − ≤ and ( )kδ  is 

the solution of the subproblem ( ) ( )kmin q
δ

δ subject to ( )khδ ≤ . 

Denote by ( )( ) ( ) ( ) ( ) ( ) ( 1)k k k k k kf f f x f fδ +Δ = − + = −  the actual reduction and 

by ( )( ) ( ) ( ) ( )k k k kq f q δΔ = −  the predicted reduction. Then the ratio 
( )

( )
( )

k
k

k

fr
q

Δ
=
Δ

measures the accuracy with which ( ) ( )kq δ  approximates ( )( )kf x δ+ . 

Naturally, accuracy is better when the ratio is closer to unity. Optimality conditions, the 
trust region algorithm and the convergence proof are given in [4]. 

A generalization of this case is made for the minimization of the function 
( ) ( ) ( ( ))x f x h c xΦ = +  where : nf R R→  and : n mc R R→  are twice differentiable 

functions and : mh R R→  is a convex function. Optimality conditions, the trust region 
algorithm and the convergence proof are given in [5].  

The issue of this paper is a generalization of the previous case. We consider the 
following nonlinear programming problem: 

1
( ) ( ) ( ( ))

n

p

i
x R i
min x f x h c x
∈ =

Φ = +∑�  (1) 

where : , :n n mf R R c R R→ →  are smooth (that is continuous and 
continuously (Fréhet) differentiable) functions and : , 1,2,...,m

ih R R i p→ =  are convex 
but non-smooth functions. It is supposed that interiors of domains have non-empty 
intersection for these functions ( , 1, 2,...,ih i p=  ). This condition is used to apply the 
Moro-Rockafellar theorem. 

In Section 2 some basic results necessary for further work are given. In Section 3 
and Section 4 necessary and sufficient conditions for the solution of the problem (1) are 
given, respectively. Finally, in Section 5 a global model algorithm is given and its 
convergence is proved. 

 
2. PRELIMINARIES  

The next definition and few lemmas and theorems will be necessary in this work. 
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The concept of the subgradient is a simple generalization of the gradient for 
nondifferentiable convex functions. 

 
Definition. A vector ng R∈  is said to be a subgradient of a convex function : nf R R→  
at a point x  if the next inequality 

( ) ( ) ( )Tf z f x z x g≥ + − ⋅  (2) 

holds for all nz R∈ . The set of all subgradients of ( )f x  at x  is called the subdifferential 
at x  is denoted by ( )f x∂ . 

The above definition has a simple geometric interpretation: since f  is convex 
we can find a supporting hyperplane at the boundary point ( , ( ))x f x  that supports the 
epigraph of ( )f x . The slope of the hyperplane is a subgradient g  of ( )f x  at the point x . 

 

Lemma 1.  Let : nf R R→  be a differentiable function defined at nx R∈ . Then: 

{ }( ) ( )f x f x∂ = ∇ . (3) 

Proof. Follows directly from the Definition. 

Obviously, the gradient ( )f x∇  is the only possible subgradient. Furthermore, a 
point x  is a global minimum of a convex function ( )f x  if and only if zero is contained in 
the subdifferential ( )f x∂ . Geometrically, it means that we can draw a horizontal 
hyperplane which supports the epigraph of f  at ( , ( ))x f x . This property is a 
generalization of the fact that the gradient of a function differentiable at a local minimum 
is zero. 

Lemma 2.  Let :f S R→  be a convex function defined on a convex set nS R⊆  and 

intx S′∈ . If ( )kx x′→ , where ( ) ( ) ( )k k kx x sδ′= + , ( ) 0kδ > , ( ) 0kδ →  and ( )ks s→ , then: 

( )

( )

k
T

kk g f

f flim max s g
δ ′→∞ ∈∂

′−
= , (4) 

where ( )f f x′ ′= . 

Proof. See [5] or [8]. 

Theorem 1. (Moro-Rockafellar) 

Let 1 1:f C R→ , 2 2:f C R→  be convex functions defined on convex sets 

1 2, nC C R⊆  respectively and 1 2int intC C ≠ ∅∩ . Then for all 1 2x C C∈ ∩  the following 
identity: 
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1 2 1 2( )( ) ( ) ( )f f x f x f x∂ + = ∂ + ∂  (5) 

holds. 
Proof. See [1]. 

Theorem 2.  Let C  be a closed convex set in nR  and x̂ C∉ . Then there exists a 
hyperplane H  which separates the sets C  and { }x̂ . 

Proof. See [1]. 

Theorem 3.  Let  : m nG R R→  be a Fréchet-differentiable function and let : ng R R→  be 
a convex function continuous at the point 0 0( )y G x= . For the function : mf R R→  
defined by ( ) ( ( ))f x g G x=  follows that: 

0 0 0( ) ( ) ( ( ))f x G x g G x′∂ = ∂ . (6) 

Proof. See [1]. 

Lemma 3. Let :f S R→  be a convex function defined on a convex set nS R⊆ . Then 
( )f x∂  is bounded for SintBx ⊂∈∀ , where B is a compact set. 

Proof. See [1] or [7]. 

 

3. THE FIRST ORDER NECESSARY CONDITION  

Lemma 4. Let ( )kx  be a sequence such that ( )kx x′→ , ( ) ( ) ( )k k kx x sδ′= +  where ( )ks s→ , 
( ) 0kδ > , ( ) 0kδ →  and let ( )x′ ′Φ = Φ� �  and ( ) ( )( )k kxΦ = Φ� �  be the values of the  function 

defined in (1) at the points x′  and ( )kx , respectively. Then  
( )

( )

k

kk
lim

δ→∞

′Φ −Φ
=

� �

1 i i

p
T T

ihi

s g max s A
λ

λ
′∈∂

=

′ ′+∑  (7) 

(where ( )f f x′ ′= , ( ) ( )g g x f x′ ′ ′= = ∇  and ( ) ( )( )k kc c x= , ( ) ,c c x′ ′=  
( ) ( )A A x c x′ ′ ′= = ∇ , ( ( ))i ih h c x′ ′= ). 

Proof.  By Taylor expansion of ( )( )kf x  we have ( ) ( ) ( ) ( )( )k k T k kf f g sδ ο δ′ ′= + +  and 
( )

( )

k
T

k

f f g s
δ

′− ′→  (because f  is a smooth function). Similarly, we have 

( ) ( ) ( ) ( )( )k k T k kc c A sδ ο δ′ ′= + +  and since ( )kc c′→  we have 
( )

( )

k
T

k

c c A s
δ

′− ′→ . Then: 

( ) ( )
( )

1
( ) ( )

( ( ( )) ( ( )))
p

k k
i ik

i
k kk k

f f h c x h c x
lim lim

δ δ
=

→∞ →∞

′ ′− + −
′Φ −Φ
=

∑� �
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( )( )

( ) ( )
1

( ( )) ( ( ))kk p
i i

k kk ki

h c x h c xf flim lim
δ δ→∞ →∞

=

′′ −−
= +∑  

[ ]( ( )) ( )1

max
i i

p
T T

ih c xi

s g s
λ

λ
′∈∂ ⋅=

′= +∑ =
1 i i

p
T T

ihi

s g max s A
λ

λ
′∈∂

=

′ ′+∑     

where the last two equalities hold by Lemma 2 and Theorem 3, respectively.■ 

If we denote by *x  a local minimum of Φ� , then ( ) *kΦ ≥ Φ� �  holds for all k large 
enough (where ( ) *kx x→ ). Now, if the notations * *( ( ))i ih h c x=  for 

1,2,...,i p= ; * *( ),f f x= * * *( ) ( )g g x f x= = ∇  and * * *( ) ( )A A x c x= = ∇  are used, then 
by (7) we have 

*

* *

1
0, : 1

i i

p
T T

i
hi

s g max s A s s
λ

λ
∈∂=

+ ≥ ∀ =∑ . (8) 

The condition (8) is the first order necessary condition for a local minimum of the 
function Φ�  (see [2]). The condition (8) means that the directional derivative is non-
negative in all directions. This can be stated alternatively as:  

*0∈∂Φ�  (9) 

where * * * * * *

1
: , , 1,2,...,

p

i i i
i

g A h i pμ μ λ λ
=

⎧ ⎫
∂Φ = = + ∈∂ =⎨ ⎬

⎩ ⎭
∑� . The set *∂Φ� , defined in this 

way, is not the subdifferential because Φ�  may be not a convex function, but it is 
convenient to use the same notation.  

Lemma 5. Let : nf R R→  be a smooth convex function and : n mc R R→ and 
: , 1,2,...,m

ih R R i p→ =  are monotone non-decreasing convex functions, such that the 
interiors of domains for , 1, 2,...,ih i p=  have a non-empty intersection. Then the 
conditions (8) and (9) are equivalent. 

Proof.  Under the above assumptions the function 
1

( ) ( ) ( ( ))
p

i
i

x f x h c x
=

Φ = +∑�  is convex. 

Namely, since we suppose that f  is a convex function, we have: 

* *

1
( ( ( )))( )

p

i
i

f h c x
=

∂Φ = ∂ + ⋅∑�  

= * *

1
( ( )) ( )

p

i
i

f h c x
=

⎛ ⎞
∂ + ∂ ⋅⎜ ⎟

⎝ ⎠
∑  (by Moro-Rockafellar theorem) 

= * *

1
( ( ))( )

p

i
i

f h c x
=

∂ + ∂ ⋅∑     (by Moro-Rockafellar theorem) 
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= * * *

1
( ( ))

p

i
i

g A h c x
=

+ ∂∑     (by Theorem 3)         

= * * *

1

p

i
i

g A h
=

+ ∂∑ .  

If *0 ( )x∈∂Φ�  and *ξ  is a vector from *( )x∂Φ�  then : 

*

* * * * * *

1 1
0

i i

p p
T T T

i i
hi i

s s g A s g A max
λ

ξ λ λ
∈∂= =

⎛ ⎞ ⎛ ⎞
= = + ≤ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

where * *
i ihλ ∈∂ , 1, 2,...,i p= . Hence, (9) implies (8). 

Suppose that *0∉∂Φ� . Since *∂Φ�  is a convex set, it follows that the point 0  and 
the set *∂Φ�  can be separated by a hyperplane. By Theorem 2 there exists a vector 

s ξ
ξ

= − , where 
*ξ Φ

min ξ ξ
∈∂

=
�

, such that *0,Ts ξ ξ< ∀ ∈∂Φ� . Then it follows that 

*
0T

ξ Φ
max s ξ
∈∂

<
�

, contradictory to (8).  

Hence the conditions (8) and (9) are equivalent .■ 

 
 

Another way to state the condition (9) is to introduce the Lagrangian function: 

1 2
1

( , , ,..., ) ( ) ( )
p

T
p i

i
L x f x c xλ λ λ λ

=

= + ∑� . (10) 

Theorem 4. If *x  is a minimum point of the function Φ� , then there exist the vectors 
* * * * * *
1 1 2 2, ,..., p ph h hλ λ λ∈∂ ∈∂ ∈∂  such that: 

* * * * * * *
1 2

1
( , , ,..., ) 0

p

p i
i

L x g Aλ λ λ λ
=

∇ = + =∑� . (11) 

Proof. The proof is obtained, since *~
Φ∂  is the set of the vectors * * * *

1 2( , , ,..., )pL x λ λ λ∇ �  for 

all ***
2

*
2

*
1

*
1 ,...,, pp hhh ∂∈∂∈∂∈ λλλ .■ 

 
4. THE SECOND ORDER CONDITIONS 

Now we can consider the second order conditions for the problem (1). The first 
step is a restriction of possible directions to those for which the function Φ�  has zero 
directional derivatives, so that the second order effects become important.  
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Consider the set: 

*

1 1 1
: ( ( )) ( ( )) ( ( ) ( ))

p p p
T

i i i
i i i

X x h c x h c x c x c x λ∗ ∗

= = =

⎧ ⎫
= = + −⎨ ⎬
⎩ ⎭
∑ ∑ ∑�  (12) 

where * , 1, 2,...,i i pλ =  are vectors from (11). Define H ∗�  as the set of normalized feasible 

directions with respect to the set X�  at the point x∗ . It means that if s H ∗∈ �  then there 
exists a sequence ( )kx x∗→ , ({ }( )kx  is feasible in X� ) such that 

( ) ( ) ( )

2
, 1, 0k k ks s s δ→ = → , ( ) 0>kδ  and ( ) ( ) ( )k k kx x sδ∗= + . It is possible to prove 

that these directions are closely related to the set of normalized directions of zero slope 
which is denoted by G∗� : 

*

*
2

1

: 0, 1
i i

p
T

i
λ hi

G s s g A max sλ∗ ∗

∈∂=

⎧ ⎫⎛ ⎞⎪ ⎪= + = =⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑�  (13)  

Lemma 6. H G∗ ∗⊆ ��  

Proof. Let s∈ H ∗� . Then there exists a directional sequence in X� , such that 
( )

2
, 1ks s s→ = . Using (1), (7), (12) and the Taylor expansions for functions f and c  it 

follows that: 

*

*

1 i i

p
T

i
λ hi

s g A maxλ∗

∈∂=

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑ =

( )

( )

k

kk
lim

δ

∗

→∞

Φ −Φ� �
=

( ) ( )

1
( )

( ( ) ( ))
p

k k
i i

i
kk

f f h c h c
lim

δ

∗ ∗

=

→∞

− + −∑
= 

=

( ) ( ) *

1
( )

( )
p

k k T
i

i
kk

f f c c
lim

λ

δ

∗ ∗

=

→∞

− + − ∑
= *

1

0
p

T
i

i

s g A λ∗ ∗

=

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
∑ ,  

where the last equality follows from (11). Hence, 
*

*

1

0
i i

p
T

i
λ hi

s g A maxλ∗

∈∂=

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
∑  for

2
1s = , 

implies s∈ G ∗� . So, H G∗ ∗⊆ �� .■ 
We suppose that the regularity condition 

H ∗� = G∗�  (14) 

is satisfied. Now, it is possible to state the second order conditions. We suppose that the 
functions f  and c  are twice continuously differentiable.  
Theorem 5. (Second order necessary conditions) 

If x∗  is a minimizing point of Φ�  then by Lemma 4 for all vectors 
* * * * * *
1 1 2 2, ,..., p ph h hλ λ λ∈∂ ∈∂ ∈∂ , which thus exist, if (14) holds, we have: 
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2 * * * *
1 2( , , ,..., ) 0 ,T

ps L x s s Gλ λ λ ∗∇ ≥ ∀ ∈ �� . (15) 

Proof. For any 
*

*
2

1
: 0, 1

i i

p
T

i
λ hi

s G s s g A max sλ∗ ∗

∈∂=

⎧ ⎫⎛ ⎞⎪ ⎪∈ = + = =⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑� , by (14) it follows that 

*s H∈ � .  

Taylor expansion of the function  * * *
1 2( , , ,..., )pL x λ λ λ�  about x∗  yields:  

( ) * * * * * * * ( ) * * * *
1 2 1 2 1 2( , , ,..., ) ( , , ,..., ) ( ) ( , , ,..., )k k T

p p pL x L x x x L xλ λ λ λ λ λ λ λ λ∗= + − ∇� � �  

2( ) * * * * ( ) ( )
1 2

1 ( ) ( , , ,..., )( ) ( )
2

k T k k
px x L x x x o x xλ λ λ∗ ∗ ∗+ − ∇ − + −�  

* ( ) ( ) * * * *
1 2

1

( , , ,..., )
p

T k k T
i p

i

f c s L xλ δ λ λ λ∗ ∗

=

= + + ∇ +∑ �  (16) 

2( ) ( ) 2 * * * * ( ) ( ) ( ) ( )
1 2

1 ( , , ,..., ) ( )
2

k k T k k k k
ps L x s o sδ λ λ λ δ δ∇ +�         

2* ( ) ( ) 2 * * * * ( ) ( ) ( )
1 2

1

1 ( , , ,..., ) ( ) ,
2

p
T k k T k k k

i p
i

f c s L x s oλ δ λ λ λ δ δ∗ ∗

=

= + + ∇ +∑ �   

where the last equality follows by (11), writing ( ) ( ) ( ) *k k ks x xδ = − . Then: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( ( ))
p

k k k k k k k k
i

i

x x s f x s h c x sδ δ δ∗ ∗ ∗

=

Φ = Φ = Φ + = + + +∑� � �  

 ( ) ( ) ( ) ( ) *

1 1

( ) ( ( )) ( ( ) ( ))
p p

k k k k T
i i

i i

f x s h c x c x s c xδ δ λ∗ ∗ ∗ ∗

= =

= + + + + −∑ ∑  

 ( )f x∗= ( ) ( ) ( )k k Ts f xδ ∗+ ∇ +
2( ) ( ) 2 ( ) ( ) ( )1 ( ) ( )

2
k k T k k ks f x s oδ δ δ∗∇ + +

1

( ( ))
p

i
i

h c x∗

=
∑ + 

+
2( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) *

1

1( ) ( ) ( )
2

p
k k T k k T k k k

i
i

s c x s c x s oδ δ δ δ λ∗ ∗

=

⎡ ⎤∇ + ∇ +⎢ ⎥⎣ ⎦
∑ = 

+Φ= ∗~ ( ) ( ) *

1

( ) ( )
p

k k T
i

i

s f x c xδ λ∗ ∗

=

⎡ ⎤
∇ +∇ +⎢ ⎥
⎣ ⎦

∑

( ) ( ) 2 2 * ( ) ( ) ( )2

1

1 ( ) ( ) ( )
2

p
k k T k k k

i
i

s f x c x s oδ λ δ δ∗ ∗

=

⎡ ⎤
∇ +∇ +⎢ ⎥
⎣ ⎦

∑  

+Φ= ∗~ ( ) ( )k k Tsδ * * * *
1 2( , , ,..., )pL x λ λ λ∇ � + ( ) ( ) 2 * * * * ( ) ( )

1 2
1 ( , , ,..., )
2

k k T k k
ps L x sδ λ λ λ δ∇ � +

2( )( )ko δ . 
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Since the first order necessary conditions are satisfied, we have that: 

( )kΦ� = +Φ∗~ ( ) ( ) 2 * * * * ( ) ( )
1 2

1 ( , , ,..., )
2

k k T k k
ps L x sδ λ λ λ δ∇ � +

2( )( )ko δ . 

Since x∗  is a minimum point of the function Φ� , it follows that ( )kΦ� ∗≥ Φ� for 
every k large enough and consequently,  

( )kΦ
~ - *~

Φ = ( ) ( ) 2 * * * * ( ) ( )
1 2

1 ( , , ,..., )
2

k k T k k
ps L x sδ λ λ λ δ∇ � 0≥ . 

Hence, dividing by ( )21
2

kδ  and taking the limit yields, it follows that: 

( ) 2 * * * * ( )
1 2( , , ,..., )k T k

ps L x sλ λ λ∇ � 0≥ , ( )ks s→ ⇒ 2 * * * *
1 2( , , ,..., )T

ps L x sλ λ λ∇ � 0≥ .■ 

 
Theorem 6. (Second order sufficient conditions) 

If the vectors * * * * * *
1 1 2 2, ,..., p ph h hλ λ λ∈∂ ∈∂ ∈∂  there exist such that (11) holds and 

if the inequality 
2 * * * *

1 2( , , ,..., ) 0 ,T
ps L x s s Gλ λ λ ∗∇ > ∀ ∈ ��  (17) 

is satisfied, then it follows that x∗  is a local minimum of the function ( )xΦ� . 

Proof. Assume the contrary: there exists a sequence ( )kx x∗→ such that ( )kΦ
~ ∗Φ≤

~ .  

By (11) and (7) it follows that 
1

0
p

T
i

λ h i

max s g Aμ λ
∗

∗ ∗

∈∂ =

⎛ ⎞
= + ≥⎜ ⎟

⎝ ⎠
∑ . Then it follows that 

1i i

p
T T

ih i

max s g s A
λ

λ
′∈∂ =

⎛ ⎞′ ′+ =⎜ ⎟
⎝ ⎠

∑ =′+′ ∑
=

′∂∈

p

i
i

T

h

T Asmaxgs
ii1

λ
λ

( )

( )

k

kk
lim

δ→∞

′Φ −Φ� �
.  

If 0μ >  then ( )kΦ ∗Φ>  which contradicts the fact that ( )kΦ ∗≤ Φ . So 0μ = , and 
hence G∗ ≠ ∅ , because s G∗∈ . 

Because of the definitions of the functions 1 2( , , ,..., )pL x λ λ λ�  and ( )xΦ�  it follows 
that: 

( ) * * * * * * * ( ) ( ) * * * *
1 2 1 2

1 1

( , , ,..., ) ( , , ,..., ) ( ) ( ) ( ) ( )
p p

k k T k T
p p i i

i i

L x L x f x c x f x c xλ λ λ λ λ λ λ λ
= =

− = + − −∑ ∑� �

( ) * ( ) * ( ) * * ( ) *

1 1

( ) ( ) ( ( ) ( )) ( ( ) ( )) ( ) ( )
p p

k k k k
i i

i i

x x h c x c x c x c x x xλ
= =

⎛ ⎞
=Φ −Φ − − − − ≤Φ −Φ⎜ ⎟

⎝ ⎠
∑ ∑� � � �

 
(where the last inequality follows from the subgradient inequality (2)). 
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From (16) it follows that: 

0 ≥ ( ) *( ) ( )kx xΦ −Φ� � ( ) ( ) 21
2

k k Tsδ= ∇ * * * *
1 2( , , ,..., )pL x λ λ λ� ( ) ( )k ksδ + ( )2( )ko δ . 

Hence, dividing by ( )21
2

kδ  and taking the limit yields 0 ≥ 2 ( , )Ts L x sλ∗ ∗∇ , 

which contradicts (17). The theorem is established.■ 

 

5. A GLOBALLY CONVERGENT MODEL ALGORITHM 

In this part of the paper we apply the trust region method to find a minimum of 
the function: 

1

( ) ( ) ( ( ))
p

i
i

x f x h c x
=

Φ = +∑�  

defined previously in (1). We suppose that the function ( )xΦ�  has a minimum point *x , 
and try to find this point by an iterative method. So, we suppose that we have the point 

( )kx at the k-th iterative step, and we are going to approximate the function ( )xΦ�  by 
Taylor expansion in some neighborhood of this point: 

( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) 2 ( ) ( )

1 1 1

1( )
2

p p p
k k k T k k T k T k k T k

i i i
i i i

f h g A f cψ δ δ λ δ λ δ
= = =

⎛ ⎞ ⎛ ⎞
= + + + + ∇ +∇⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑�  (18) 

where ( ) ( )( )k kA c x= ∇ , ( ) ( )( ( ))k k
i ih h c x= , ( ) ( )k k

i ihλ ∈∂  for 1, 2,...,i p= .  

We suppose that there exists some neighborhood ( )kΩ  of the point ( )kx  in which 
the approximation ( ) ( )kψ δ�  agrees with ( )( )kx δΦ +�  in some sense. Then it would be 
appropriate to choose ( 1) ( ) ( )k k kx x δ+ = + , where the correction ( )kδ  is a minimum of 

( ) ( )kψ δ�  for all ( ) ( ) ( )k k kx δ+ ∈Ω .  

We suppose that: 

{ }( ) ( ) ( ):k k kx x x hΩ = − ≤   (19) 

and ( )kδ is a solution of the problem:  
( ) ( )kminψ δ� subject to ( )khδ ≤ . (20) 

The radius ( )kh  has to be such that the agreement of the function ( )( )kx δΦ +�  and 
its approximation ( ) ( )kψ δ�  is satisfied in some sense. This can be quantified as follows. 
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Denote by  

( ) ( ) ( ) ( ) ( ) ( 1)( )k k k k k kx δ +ΔΦ =Φ −Φ + = Φ −Φ� � � � �  (21) 

the actual reduction of the function Φ�  and by 
( ) ( ) ( ) ( )( )k k k kψ ψ δΔ =Φ −�� �  (22) 

the predicted reduction of the functionΦ�  . Then the ratio: 
( )

( )
( )

k
k

kr
ψ

ΔΦ
=
Δ

�
�

 (23) 

measures the accuracy by which ( ) ( )( )k kψ δ�  approximates ( )kΦ�  (naturally, agreement is 
better if the ratio is closer to unity). 

The k-th step of the model algorithm is as follows: 

1. Given ( )kx , ( )k
iλ  for 1,2,...,i p=  and ( )kh , constants γ and β  such that 

( )0,0.5γ ∈  and 1γ β< < ;  

calculate ( ) ( ) ( ) 2 ( ) ( ) 2 ( ), , , , ,k k k k k k
if h g c A f∇ ∇  and ( )kΦ� and ( )kψ�  

2. Find a solution ( )kδ  of the problem (20) 

3. Evaluate ( ) ( )( )k kx δΦ +� , ( ) ( ),k kψΔΦ Δ� �  and ( )kr  

If ( )kr < γ  then set ( 1) ( )k kh γ δ+ = , (24) 

if ( )kr > β  and ( ) ( )k kh δ=  then set ( 1) ( )2k kh h+ = ;  

otherwise set ( 1) ( )k kh h+ =  

4. If ( ) 0kr ≤  then set ( 1) ( )k kx x+ = , ( 1) ( )k k
i iλ λ+ =  for 1, 2,...,i p= ; 

                else set ( 1) ( ) ( )k k kx x δ+ = + , ( 1) ( 1)( )k k
i ih cλ + +∈∂  for 1,2,...,i p=  

 
Now it is possible to prove the main result of this paper.  

Theorem 7. Let the sequence { }( )kx  be generated by the algorithm. Let 
( ) ,k nx B R k∈ ⊂ ∀ , where B is a bounded set and let the functions f  and c  be twice 

differentiable with bounded matrices of the second derivatives on the set B. Then there 
exists an accumulation point x∞  of the sequence in { }( )kx  which satisfies the first order 
necessary condition for the problem (1); i.e. the condition 

1

0,
i i

p
T T

i
hi

s g max s A s
λ

λ
∞

∞ ∞

∈∂=

+ ≥ ∀∑  (25) 
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is satisfied. 

Proof. Since the set B is bounded, it follows that every sequence in B has an accumulation 
point. Hence there exists a convergent subsequence ( )kx x∞→ . This sequence satisfies 
either: 
(i) ( )kr γ<  and ( 1) 0kh + → (and hence ( ) 0kδ → ) or 

(ii) ( )kr β≥ and ( )( ) 0kinf h > . 
 
We will prove that (25) holds in any case ((i) or (ii)). 
 
In case (i) we suppose that there exists a descent direction s  ( 1=s ) at x∞ , such 

that: 

1

, 0
i

p
T T

i
hi

s g max s A d d
λ

λ
∞

∞ ∞

∈∂=

+ = − >∑ . (26) 

Using Taylor expansion it follows that:  

( ) ( ) ( ) ( ) ( ) ( )2 ( ) ( )21( ) ( )
2

k k k k T k k T k kf x s f s g s W sε ε ε ο ε+ = + + +� ( ) ( ) ( )2( ) ( )k k kq sε ο ε= +� (27) 

(where ( ) 2 ( ) 2 ( ) ( )

1

p
k k k T k

i
i

W f c λ
=

= ∇ +∇ ∑�  and ( ) ( )( )k kq sε� ( ) ( ) ( ) ( )2 ( )1
2

k k T k k T kf s g s W sε ε= + + � ), 

and similarly : 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )k k k k T k k k k kc x s c A s l sε ε ο ε ε ο ε+ = + + = +  (28) 

(where ( ) ( ) ( ) ( ) ( )( )k k k k T kl s c A sε ε= + ). 
 
Hence by (27) and (28) we get  

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( ( ))
p

k k k k k k
i

i

x s f x s h c x sε ε ε
=

Φ + = + + +∑�  

= ( ) ( ) ( )2 ( ) ( ) ( )

1

( ) ( ) ( ( ) ( ))
p

k k k k k k
i

i

q s h l sε ο ε ε ο ε
=

+ + +∑�  

= ( ) ( ) ( ) ( ) ( )

1

( ) ( ( )) ( )
p

k k k k k
i

i

q s h l sε ε ο ε
=

+ +∑�  

= ( ) ( ) ( )( ) ( )k k ksψ ε ο ε+�  (29) 

If we put ( ) ( )k kε δ=  and take a step ( )kδ  from the sub problem (20) along s , 

then because of the optimality of ( )kδ  and (7), (18), (26) it follows that: 
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )k k k k k k k sψ ψ δ ψ εΔ = Φ − ≥ Φ −� �� � �  
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( ) ( ) ( ) ( ) ( )2( ) ( ) ( )k k k k kx sε ο ε ο ε= Φ −Φ + + +� �  

( ) ( ) ( )( (1)) ( ).k k kd dε ο ε ο ε= + = +  (30) 

So, (29) implies: 
( ) ( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )k k k k k k k k kψ δ ο ε ψ ο ε+ΔΦ = Φ −Φ = Φ − + = Δ +� � � � � �  

and hence 
( ) ( )

( )
( ) ( )

( )1 1 (1)
k k

k
k kr ο ε ο

ψ ψ
ΔΦ

= = + = +
Δ Δ

�
� �

 , because 0d > , which contradicts 

( )kr γ< .  

Thus 0d ≤  for all s  and hence (23) holds at x∞ . 

 
In the case (ii) we have that (1) ( )k

k

∞Φ −Φ ≥ ΔΦ∑� � �  (where the sum is taken over 

the subsequence) and by the assumption ( )kr β≥  it follows that ( ) 0kψΔ →� , because  

(1) ∞Φ − Φ� �  is constant. Since 
( )

( ) ( ) ( ) ( ) ( )
( )

k
k k k k k

kr r ψ β ψ
ψ

ΔΦ
= ⇒ ΔΦ = Δ ≥ Δ
Δ

� � � �
�

 and (1) ∞Φ −Φ� �  is 

constant, and (1) ( ) ( )k k

k k

β ψ∞Φ −Φ ≥ ΔΦ ≥ Δ∑ ∑� � � �  then it follows that ( )k

k

ψΔ∑ �  converges, 

and finally it follows that ( ) 0kψΔ →� . 

Let 
1

( ) ( ) ( ( ))
n

i
i

q h lψ δ δ δ∞ ∞ ∞

=

= +∑� � .  

Let h  satisfy the inequality ( )0 ( )kh inf h< <  and δ  be a minimum of the ( )ψ δ∞�  for all 

hδ ≤ . Since ( ) ( ) ( ) ( ) ( )( )k k k k kx x x x x x h inf h hδ δ∞ ∞− = − + ≤ − + ≤ < ≤  holds, 

the point x x δ∞= +  belongs to the set { }( ) ( ) ( ):k k kx x x hΩ = − ≤  for k large enough. 

Hence, by the definition of ( )kψΔ �  it follows that ( ) ( ) ( ) ( ) ( )( ) ( )k k k k kx xψ ψ δ ψ∞− ≥ = Φ −Δ�� �  
(because of the known fact that the minimum over the smaller set is not less then the 
minimum over the larger set). 

Taking the limit as k →∞  we have that ( )k ∞Φ →Φ� � , ( )kg g∞→ , ( )kA A∞→ , 
( ) 0kψΔ →� , and ( )kx x δ− → . By the continuity of the function ψ�  it follows that 

( ) 0 (0)ψ δ ψ∞ ∞ ∞≥ Φ − =�� �  holds. Notice that since 0δ =  minimizes ( )ψ δ∞�  for hδ ≤  it 

follows that 0δ = . Since 0δ =  minimizes ( )ψ δ∞� , it follows that the first and second 
order necessary conditions hold. So, at the point x∞  the first and second order necessary 
conditions are satisfied ((15) holds), that is 2

1 2( , , , ..., ) 0 ,T
ps L x s s Gλ λ λ∞ ∞ ∞ ∞ ∞∇ ≥ ∀ ∈ �� , 

where 
2

1

: 0 , 1
i i

p
T

i
λ hi

G s s g A max sλ
∞

∗ ∞ ∞

∈∂=

⎧ ⎫⎛ ⎞⎪ ⎪= + = =⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑� .■ 
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6. CONCLUSION 

Different numerical procedures for evaluating the subgradient in the fifth step of the 
model algorithm could give different variants of the proposed algorithm. It will be 
interesting to apply this algorithm to the primal-dual model given for instance in [3].  
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