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Abstract: A mathematical model for a volume flexible manufacturing system is 
developed in a family production context, assuming that there exists a dedicated 
production facility as well as a separate management unit for each of the items. The 
possibility of machine breakdowns resulting in idle times of the respective management 
units is taken into account. The production rates are treated  as decision variables. It is 
also assumed that there is a limitation on the capital available for total production. An 
optimal production policy is derived with maximization of profit as the criterion of 
optimality. The results are illustrated with a numerical example. Sensitivity of the 
optimal solution to changes in the values of some key parameters is also studied 

Keywords: Inventory, shortage, volume flexibility, family production, machine-breakdown, idle-
time. 

1.  INTRODUCTION 

In the Classical Economic Production Lot Size (EPLS) model, the amount 
ordered becomes available at a constant supply rate. That means, the production rate of 
the machine is assumed to be predetermined and inflexible [10]. A fixed rate of 
production is inconvenient in many respects. Firstly, a production rate much higher than 
the demand rate leads to rapid accumulation of inventories resulting in higher holding 
costs and other related problems. If the machine production rate is less than the demand 
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rate, the management has to face stock-out situations. These inconveniences arise due to 
inability of the manufacturing system to adjust its production rate in keeping with the 
market demand variability. But the machine production rate can easily be changed [17]. 
The treatment of machine production rate as a decision variable is especially appropriate 
for automated technologies that are volume flexible [18].  

Nowadays managers of modern manufacturing companies have mainly four 
systems of improving production efficiencies. These are MRP (materials requirement 
planning), OPT (optimized production technology), JIT (just-in-time), and FMS (flexible 
manufacturing system). FMS offers the hope of eliminating many of the weaknesses of 
the other approaches [2]. Volume flexibility (i.e., the manufacturing flexibility that is 
capable of adjusting the production rate with the variability in the market demand) is a 
major component in a FMS. Volume flexibility is a real necessity in many practical 
situations. Management may be interested in reducing machine production rates to avoid 
rapid accumulation of inventories. This deliberate reduction of production rates is 
consistent with the Just-In-Time manufacturing philosophy which has been successfully 
applied in many Japanese manufacturing companies. Again, reduction in the production 
rate may sometimes be an inevitable option for the management to cope with a declining 
market demand. It is, therefore, necessary that a manufacturing system should be capable 
of adjusting the production rates during the production runs. This requires that the 
production units should have automated technologies. An immediate outcome of volume 
flexibility is variability in unit-production-cost which varies with the production rate.  

The models of Adler and Nanda [1], Sule [19],[20], Axsater and Elmaghraby 
[3], and Muth and Spearmann [13] were concerned with learning effects on the optimal 
lot size. Proteus [15], Rosenblat and Lee [16] and Cheng [4] extended the models to the 
imperfect production processes. Schweitzer and Seidmann [17] first enlightened the 
researchers about the concept of flexibility in the machine production rate and discussed 
optimization of processing rates for a FMS. Obviously, the unit production cost becomes 
a function of the production rate in the case of a FMS. Khouja and Mehrez [11] and 
Khouja [12] extended the EPLS model to an imperfect production process with a flexible 
production rate. Silver [21] discussed, assuming a common production cycle for all 
items, the effects of slowing down production in the context of a manufacturing 
equipment dedicated to the production of a family of items. Gallego [9] extended the 
model of Silver [21] by applying different production cycles for different items. Moon, 
Gallego and Simchi-Levi [14] discussed controllable production rates in a family 
production context. 

In the present paper, we consider a volume flexible manufacturing system in a  
family production context. It is assumed that different machines {Ai, i =1,2,....n} are 
dedicated to the production of different items i with different production rates {Pi,  
i=1,2,....n}. The management of production in machine Ai is vested with the management 
unit Bi,. It is assumed that a machine may become out of order during its working time. 
As a result, there is a mean time for every machine between its failures/breakdowns. 
During a breakdown of a machine, there is demand although there is no production. In 
such a situation, the demand is met until the inventory level falls below the quantity 
demanded. When inventory level becomes less than the demand, the concerned 
management unit Bi is rendered fully idle. This type of situation is quite likely to occur 
when the customer is a wholesaler having the demand of a big lot-size and the concerned 
management unit cannot meet this demand because the stock-size is less than the quantity 
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demanded. We, therefore, take into account the idle time of each management unit; this 
idle time leads to an additional cost for the lost man-hours. It is also assumed in this 
model that the capital available for manufacturing the items is limited. The unit-
production-cost for the machine Ai is taken to be a function of its production rate Pi  and 
its functional form is constructed on some realistic considerations. The production rates 
{Pi, i =1,2,....n} are decision variables in the problem. We look for an optimal production 
policy which maximizes the total profit. Solution of the problem is illustrated with a 
numerical example. The algorithm for deriving the numerical solution is given in 
Appendix. 

2. FUNDAMENTAL ASSUMPTIONS AND NOTATIONS 

2.1. Assumptions: 

1. The model is developed for multiple items. 
2. Demand rate for each item is constant. 
3. Production rate per unit time is considered as a decision variable. 
4. Invested capital for production is limited. 
5. Machine-breakdown is considered during the production period. 
6. Idle time to the management unit is considered. 
7. Unit production cost for the i-th item (i=1,2,...,n) is a function of the production rate.  
8. Shortages are allowed during the idle-time.  
9. Time horizon is infinite. 

 
 

2.2 Notations: 

( )iQ t  - is the on-hand inventory of  i-th item at time 't'.  

iP  - is the production rate per unit time for the i-th item. 

iμ  - is the mean time between successive breakdowns of the machines {Ai, i =1,2,....n}.  
ψi(ti) - is the probability density function of  ti. 
 im  - is the mean time of repair of  i-th machine.  
τi - is the mean duration of a breakdown of machine {Ai , i =1,2,....n}. 
φi (τi) - is the probability density function of  τi . 

i
hC  - is the cost of carrying one unit of i-th item in inventory per unit time. 
i
sC  - is the shortage cost per unit time of  i-th item. 

ηi(Pi)  - is the cost for production of a unit of  i-th item (i=1,2,...n).  
i
pS  - is the selling price per unit of i-th item . 

 Di  - is the demand rate of  i-th item (i=1,2,....n) per unit time. 
Wi   -  is the cost per unit of idle time of the management unit Bi. 
CAP  - is the total capital available for production of all the items. 
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3. FORMULATION OF THE MODEL 

The production cycle begins with zero stock. Production starts at time t = 0 and 
the stock reaches a levels {Qi(ti), i = 1,2,......n} at times {t = ti , i = 1,2,....n} after 
adjusting demand rates {Di , i = 1,2,....n}. At times {t = ti , i = 1,2,....n}  machines {Ai , i 
= 1,2,....n} become out of order. Then , repairing of machines {Ai, i = 1,2,....n} starts and 
takes times {τi , i = 1,2,....n} to comeback into working state . Here {ti , i = 1,2,....n} and 
{τi, i = 1,2,....n}  are random variables which follow probability distribution functions  
{ψi , i = 1,2,....n} and {φi , i = 1,2,....n} respectively. During repairing period  two cases 
may arise: one is Scenario 1.a (see Fig) which is very simple and unrealistic case, second 
is Scenario 1.b (see Fig) which is very common in the manufacturing  firms or industries.  
Consequently, our main object is to analyze the Scenario 1.b (see Fig). 

 

 
 
 
 
 
                                                                          
                                                       Di 
                             (Pi - Di ) 
                                         Qi(ti) 
                                                    x          
            Inventory                                                                    Idle Time = 0 
                                                                       
                        t = 0 
                                                                        t= ti   τi                     Time 

                                      Scenario-1.a 
 
                                                                                       
 
 
                                                                          
                                                      Di 
                                Pi - Di 
                                         Qi(ti) 
                                                             τi 
            Inventory                                                                       (τi - x )  = Idle Time 
                                                                         
                         t = 0                        t= ti       x                      Time 

 
                                                                                                                x = (Pi - Di ) ti / ( Di) 
                                           Scenario-1.b 
 

Figure. Pictorial Representation of the Model 
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The governing differential equations for the inventory system are: 

( )
, 0 , (0) 0 ; 1,2,... .

dQ ti P D t t withQ for i ni i i idt
= − ≤ ≤ = =  (1) 

The solution of the Eq.(1) is  

( ) ( ) ,0 ; 1, 2.... .Q t P D t t t for i ni i i i= − ≤ ≤ =  (2) 

We can conclude that the idle times of the management units {Bi i =1,2,...n} due 
to a breakdown of the machines {Ai , i = 1,2,...n} are (see Scenario 1.a & Scenario 1.b )  

( )
0 ,

( ) ( )
, .

Q ti iif iDiui Q t Q ti i i iifi iD Di i

τ

τ τ

≥

=
− <

 

The expected cost per breakdown of the machine  {Ai,  i = 1,2,...n}, during idle time, is 

( )
( ) ( ) ( )

0 ( )

Q ti i iE W d t dtic i i i i i i i iDQ t ii i
Di

τ φ τ τ ψ

⎧ ⎫
⎪ ⎪∞ ∞⎪ ⎪= −∫ ∫⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (3) 

and the expected shortage cost for i – th item, during idle time, is  

( )
( ) ( ) ( ) .

0 ( )

Q ti i i iE C D d t dtsc s i i i i i i i iDQ t ii i
Di

τ φ τ τ ψ

⎧ ⎫
⎪ ⎪∞ ∞⎪ ⎪= −∫ ∫⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

 (4) 

Now, the total inventory of i-th item is  

( ) [0, ] [0, ]

( )
0 0

2 21 1( )2 2
2 2( ) ( )21 1( ) , , .2 2

Inv t Inventory during t Inventiry during xi i i
t xi

P D t dt D t dti i i

P D t D xi i i i

P D t P D ti i i i i iP D t x see the Figi i i D Di i

= +

= − +∫ ∫

= − +

− −
= − + ∴ =

 

Therefore, the expected inventory cost, for i-th item , is  
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( ) ( )
0

21 ( ) ( )2 0

2 21 ( ) ( ) .2 0

iE Inv t t dtinc i i i i i

iC P D t t dti i i i i ih

iCh P D t t dti i i i i iDi

ψ

ψ

ψ

∞
= ∫

∞
= − ∫

∞
+ − ∫

 (5) 

The production cost per unit of  i-th item ( i=1,2,.....n) is taken to be 

( )
giP r Pi i i i iPi

η α= + +  (6) 

This cost is based on the following factors: 
 

1. The material cost  ri per unit is fixed. 
2. As the production rate increases, some costs like labour and  energy costs are equally 

distributed over a large number of units. Hence the per-unit production cost (gi /Pi) 
decreases as the production rate (Pi) increases. 

3. The third term (αi Pi), associated with tool/die cost is proportional to the production 
rate. Empirical observations indicate [18] that the tool or die costs increase as the 
machine production rate is increased. In their analysis of the drilling operation, 
Conrad and Mc Clamrock [5] showed that "a 10% change in processing rate causes a 
50% change in tool cost". Also, the probability of machine failure increases with the 
increase of machine production rate. Thus increased production rate accelerates the 
deterioration of the quality of the production process. It is, therefore, quite likely that 
imperfect output occurs at higher production rates. In such a situation, there are two 
options before the management. The imperfect items might be finished to perfect 
ones at additional costs or the imperfect items might be sold at a lower price causing 
some loss of profit. Whatever might be the situation, it is seen that tool/die costs 
increase at higher production rates. 

 
Here we consider the density functions 

.

/1( ) ,

/1( )

ti it ei i
i

mi iei i mi

μ
ψ

μ
τ

φ τ

−
=

−
=

 

Because, reliability of spare parts of a machine follows exponential probability 
distribution function. Therefore the expected total profit per breakdown, including the 
inventory and shortage cost, is 
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1 2( , ,..., )

.

21{ ( )} ( ) ( ) ( )21 10 0

21 ( )2
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n ni iS P P t t dt C P D t t dtp i i i i i i i i i i i i ihi i
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− −
−
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2( )

{ ( / 1)}1

n
P Di i i

iC D W m Dn s i i i i
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μ

μ μ

−∑
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 (7) 

Also the total expected production cost is 

( ) ( )
1 0

( )
1

n
E P P t t dtprc i i i i i i ii

n
P Pi i i ii

η ψ

η μ

∞
= ∑ ∫

=

= ∑
=

 (8) 

As the capital for manufacturing the items is limited, the constraint 

( )
1

n
P P CAPi i i ii

η μ ≤∑
=

 must be satisfied.  

 
Therefore, we have to maximize the profit function 

( , ,....... )1 2
subject to the constraints:

( ) ,
1

, ,.............. .1 1 2 2

ETP P P Pn

n
P P CAPi i i ii

P D P D P Dn n

η μ ≤∑
=

≥ ≥ ≥

 (9) 
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The above problem can be solved by using Interior Penalty Function Method (see 
Appendix). 

 
 

4. NUMERICAL EXAMPLE 

Let i=1,2,3 i.e., three items, three machines and three management units are 
considered here. We consider the following sets of parameter values in appropriate units: 

 
Item 
 No.(i) 

Wi µi mi ri gi 
iα  Di i

hC  
i
sC  

i
pS  CAP 

1 40 8 1/2 0.8 6.25 0.01 20 0.05 2.00 1.50  
2 35 8.5 1/ 2.5 1.2 7.50 0.008 40 0.06 2.50 1.90 1500 
3 30 9 1/3 1.3 8.00 0.006 35 0.03 3.00 2.10  

 
Solving the problem numerically with the help of computer, we find that the 

optimum solution is  

* * * *23.80297 , 42.73013 , 39.78868 , 171.7912,max1 2 3
12.7913, 28.7277 , 19.98437.

P P P ETP
i i iE E Escic inc

= = = =

= = =∑ ∑ ∑
 

 
 

5. SENSITIVITY ANALYSIS 

We now carry out an analysis of the sensitivity of the optimum solution to 
changes in the values of the parameters of the system. Changes in * * * *, , , ,max1 2 3P P P ETP  

* * *, ,andE E Escic inc∑ ∑ ∑ are shown in Table 1 for percentage changes in the values of 
the parameters. 

From Table 1, the following points emerge: 
*( 1, 2,3.)P ii =  are more or less sensitive to changes in ( 1, 2,3.)W ii = . 
*( 1, 2,3.)P ii =  are moderately sensitive to changes in .( 1, 2,3.)iiμ =  
*( 1, 2,3.)P ii =  are fairly sensitive to changes in ( 1, 2,3.).m ii =  

, ,i i iE E Escic inc∑ ∑ ∑  are fairly sensitive to changes in ,( 1, 2,3.)W ii =  ( 1, 2,3.),iiμ =  

( 1,2,3.)m ii = . 

*
maxETP  is slightly sensitive to changes in ,( 1, 2,3.)W ii =  but moderately sensitive to 

changes in 1 2,m m  and 3m  while fairly sensitive to changes in ( 1, 2,3.).iiμ =  
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Table 1: Sensitivity Analysis of the Parameters: 
Change 
In % 

∗
1P  ∗

2P  *
3P  maxETP  ∑ i

icE
 

∑ i
scE  i

incE  

+50%   
+25%  W1 
-25% 
-50% 

-06.71 
+00.56 
-00.76 
-01.34 

+01.26 
-00.08 
-00.10 
+00.16 

-01.14 
-00.12 
+00.26 
+00.24 

-02.02 
-00.76 
+00.75 
+01.57 

+22.52 
+08.89 
-08.47 
-18.94 

+02.59 
+00.19 
+00.71 
-06.62 

-08.82 
+01.11 
-02.22 
-02.78 

+50%   
+25%  W2 

-25% 
-50% 

-00.12 
-00.06 
-00.42 
-00.15 

-00.26 
+00.08 
-00.43 
-00.50 

+00.37 
-00.19 
+00.40 
+00.46 

-01.70 
-00.87 
+00.78 
+01.65 

+23.81 
+11.06 
-09.42 
-21.46 

+08.93 
-05.58 
+02.04 
+02.14 

-01.59 
-07.42 
-02.35 
-01.35 

+50%   
+25%  W3 

-25% 
-50% 

-00.23 
+00.01 
+00.06 
-00.27 

-00.53 
-00.06 
-00.62 
-00.03 

+00.96 
+00.12 
+01.10 
+00.50 

-00.55 
-00.29 
+00.32 
+00.75 

+09.61 
+04.26 
-02.36 
-07.98 

+01.62 
+00.13 
+01.70 
-00.46 

+01.07 
+02.42 
+02.54 
+01.60 

+50%   
+25%  µ1 

-25% 
-50% 

-09.73 
-04.59 
+02.21 
+06.22 

-04.67 
-02.31 
+00.65 
+00.81 

-09.13 
-04.79 
+03.00 
+03.49 

-10.91 
-00.45 
-04.74 
-10.73 

+76.26 
+23.22 
-00.48 
+05.33 

+89.60 
+28.85 
-05.35 
-03.64 

-82.29 
-47.52 
+21.83 
+25.13 

+50%   
+25%  µ2 
-25% 
-50% 

nf 
-13.27 
+00.33 
+00.21 

nf 
-04.67 
+02.20 
+04.29 

nf 
-11.19 
+03.38 
+03.41 

------- 
-24.96 
-09.64 
-20.71 

------ 
+138.9
1 
-03.83 
+01.38 

--- 
+136.36 
-05.24 
+01.21 

----- 
-93.21 
+29.88 
+29.18 

+50%   
+25%  µ3 

-25% 
-50% 

nf 
-13.69 
+00.05 
+00.35 

nf 
-05.14 
+00.69 
+00.90 

nf 
-11.19 
+04.61 
+07.56 

--- 
-20.91 
-17.76 
-36.89 

------ 
+153.3
1 
-03.23 
-01.22 

------ 
+149.05 
-04.17 
-00.22 

------ 
-95.47 
+18.94 
+17.07 

+50%   
+25%  m1 
-25% 
-50% 

+02.92 
+00.45 
-02.80 
-03.94 

-00.86 
-00.20 
+00.10 
-00.20 

-07.66 
-00.34 
+01.50 
+00.42 

-05.84 
-02.88 
+02.44 
+04.69 

+34.32 
+18.33 
-12.53 
-25.34 

+18.62 
+09.27 
-06.40 
-12.26 

+06.53 
-01.39 
-07.49 
-06.75 

+50%   
+25%  m2 
-25% 
-50% 

-00.60 
-00.30 
+00.18 
-00.12 

+00.80 
+00.15 
-01.34 
-02.01 

-00.48 
+00.02 
+01.74 
+01.97 

-10.65 
-05.26 
+04.95 
+09.43 

+35.65 
+18.40 
-14.22 
-28.03 

+44.57 
+22.95 
-18.30 
-36.38 

+08.06 
-08.65 
+02.65 
-07.27 

+50%   
+25%  m3 

-25% 
-50% 

-00.67 
-00.31 
-00.19 
+00.31 

-01.04 
-00.82 
-00.02 
+00.12 

+01.42 
+01.03 
-00.14 
+00.06 

-05.59 
-02.69 
+02.21 
+04.08 

+20.62 
+10.84 
-01.72 
-13.11 

+29.36 
+15.20 
-06.23 
-19.63 

-01.00 
-00.70 
-06.23 
-19.63 

 
"nf" – denotes no feasible solution. 

 
6. CONCLUSIONS 

If the production rate is fixed, the following situations may arise: 
 

1. Inventory becomes high when the production rate is high. Although the idle-time 
cost is low in this case, it cannot offset the inventory costs. 

2. Inventory cost is low, but the idle time for the management units is high in the case 
of a low production rate. 

3. The predetermined production rate cannot appropriately cope with the fluctuations in 
the market demand. In the present model, the remuneration of a management unit 
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depends upon its efficiency which, in turn, depends upon the kind of items it deals 
with. Therefore, the costs per unit of idle time are different for different management 
units. Hence the production rate must be adjusted so that the above costs are 
minimized and the profit maximized. 

 

The following features are observed from the optimum solution in the numerical 
example: 
1. As the mean time to repair ( 1, 2,3.)m ii =  of a machine ( 1, 2,3.)A ii = decreases, the 

corresponding production rate  ( 1, 2,3.)P ii =  increases. 

2. The production rate iP  of the machine iA  increases with the increase in its mean 
duration of a breakdown. 

3. The production rate of a machine increases with the increase in the selling price of 
the item produced by machine. 

4. The production rate of a machine increases as the idle-time cost of the concerned 
management unit decreases. 

5. The production rate of a machine increases as the mean time between its successive 
breakdowns increases. 

 
Keeping in mind the above points, this model helps owners of the family firms 

to produce optimal lot size which profits maximum. The ideas of the present model are of 
importance today as more and more volume flexible production systems are being 
introduced nowadays to cope with the fluctuations in the market demands arising out of 
globalization. 
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APPENDIX 

The primal problem is reformulated below:  
Primal Problem (General Form)  

min ( )
Such that

( ) 0 , 1,2,...... .j

f X

G X j m≤ =

 

where ( ) , ( )jf X G X  are continuous functions of nX R∈ . 
 

Interior Penalty Method: (see Ref[7],[8]) 
This method generally deals with an unconstrained minimization problem: 

1

1min ( , ) ( )
( )

m

k k k
j j

X r f X r
G X

χ
=

= − ∑  

where kr  is a positive penalty parameter. 
If kχ  is minimized for a decreasing sequence of values kr , the following 

theorem proves that the unconstrained minima * ( 1,2,...... )kX k m=  converges to the 

solution *X  of the primal problem stated above. 
 

Theorem: If the primal problem has a solution, the unconstrained minima *
kX of 

( , )k kX rχ   for a sequence of values  1 2 ............ kr r r> > >  , converges to optimal solution 
of the primal problem. 
 

The Iterative Procedure: 

Step 1. Start with an initial feasible point 1X , satisfying all the constraints with strict 
inequality sign, 

i.e.,  1( ) 0jG X <   for  j= 1,2,...m. and an initial suitable value of   

1 1 1
1 1

1, ( ) /
( )

m

j j

r r f X
G X=

= ∑ . Set k=1. 

Step 2. ( , )k kMinimize X rχ  by using any method of unconstrained minimization(we use 

here the  Devidon Fletcher -Powell Method) and obtain the solution *
kX . 

Step 3. Test whether 
* *

* *1
1 1 2*

( ) ( )
( )

k k
k k

k

f X f X
X X

f X
ε ε+

+
−

≤ − <  where 1ε  and 2ε  are 

arbitrary small positive numbers. If it is satisfied, then terminate the process; otherwise, 
go to the next Step. 
Step 4. Find the value of next penalty parameter r as 1k kr Cr+ =  where 0<C<1.  

Step 5. Set the new value of k=k+1, take the new starting point as *
1 kX X=  and go to 

Step 2. 


