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Abstract: In this work, we review the stochastic decomposition for the number of 
customers in M/G/1 retrial queues with reliable server and server subjected to 
breakdowns which has been the subject of investigation in the literature. Using the 
decomposition property of M/G/1 retrial queues with breakdowns that holds under 
exponential assumption for retrial times as an approximation in the non-exponential case, 
we consider an approximate solution for the steady-state queue size distribution. 
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1. INTRODUCTION 

Retrial queues are characterized by the feature that any arriving customer who 
finds all servers (and eventually all waiting positions) occupied may repeat his demand 
after a random amount of time. They are used to solve many practical problems in 
computer and other communication networks. A review of the main results can be found 
in [3], [5], [6], [8]. There are different approaches to study retrial queues. We place 
emphasis on the stochastic decomposition because it leads to simplifications when 
solving complex models. Stochastic decomposition property takes place in various retrial 
models, in particular in retrial queuing systems with server vacations [2]; in retrial 
models with batch arrivals [12] as well as with priority customers [7], [10]. Some 
applications of the decomposition property for M/G/1 retrial queues have been performed 
in [4]. 

In this paper, we review the stochastic decomposition for the number of 
customers in M/G/1 retrial queues with reliable server and server subjected to 
breakdowns which has been the subject of investigation in the literature. Assuming the 
decomposition result for retrial queues with breakdowns and exponential retrial times 
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established in [1] as valid for retrial queues with breakdowns and general retrial times, 
we consider an approximate solution for the steady-state queue size distribution. 

This paper is organized as follows. Model's description is given in the second 
section. The third section contains a survey of the existing decomposition results. In the 
fourth section, we consider an approximation method for the computation of the steady-
state queue size distribution. In the last section, we show through numerical results how 
the approximation method works for the M/G/1 retrial queue with breakdowns. 

The details of proofs which are available in the literature are omitted, and 
interested readers are referred back to the original papers.  

2. MODELS 

We consider single-server queuing systems with no waiting space. Primary 
customers arrive at the service facility according to a Poisson process with rate 0λ > . An 
arriving customer receives immediate service if the server is able to start a service time; 
otherwise he leaves the service facility temporarily to join the retrial group (orbit). Any 
orbiting customer persists to ask for service until he gets served. The retrial times are 
arbitrarily distributed with distribution function ( )T x  having finite mean 1/θ . The 
service times follow a general distribution with distribution function ( )B x  having finite 

mean 1/γ  and Laplace-Stieltjes transform ( )B s . The input flow of primary customers, 
service times and retrial times are assumed to be mutually independent. 

Model 1: We assume that the server is reliable. Let ( )C t  be the state of the 
server at time t . In such a case, ( )C t  is 0 or 1 depending on whether the server is idle or 
busy. 

Model 2: We assume that the server is subject to Poisson active (when he is 
busy) and passive (when he is idle) breakdowns with rates μ  and η , respectively. The 
time duration of active and passive interruptions follows random variables bD and iD  

with distribution functions ( )H x  and ( )G x  and Laplace-Stieltjes transforms ( )H s  and 

( )G s , respectively. The variables bD  and iD  hold the assumption of mutual 
independence. The customers whose service is interrupted by an active breakdown are 
obliged to leave the service facility either to join the orbit with probability c , or to leave 
the system with probability 1 c− . The state of the server at time t , ( )C t , can be 0, 1 or 2 
depending on whether the server is, respectively, idle-up, busy or down. 

3. STOCHASTIC DECOMPOSITION 

In the first time, we review the decomposition results which were established for M/G/1 
retrial queues with reliable server (model 1). Consider a non-Markovian process about 
the number of customers in the system at time t , { }( ), 0N t t ≥ . Let ( )oN t be the number 
of customers in the orbit at time t . Then, ( ) ( ) ( )oN t C t N t= + . The above process has an 
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embedded Markov chain { }( )nN ξ +  ( nξ  is the time when the server enters the idle state 
for the n-th time). We assume that the system is in steady state, which exists if and only if 

1λρ
γ

= <  [6]. From [12], we have that the steady-state distribution of ( )nN ξ +  is also the 

steady-state distribution of ( )N t . 
Stochastic decomposition for the number of customers in the M/G/1 retrial 

queue with reliable server was first observed in [12]. Assuming ( ) 1 xT x e θ−= − , the 
authors derived the following result about stochastic decomposition for the generating 
function ( )Q z of the steady-state distribution of { }( )nN ξ +  as n → ∞ : 

(1 )(1 ) ( ) ( )( ) ,
(1)( )

z B z zQ z
B z z
ρ λ λ

λ λ
− − − Φ=

Φ− −
  (1) 

where 

0

1 ( )( ) exp .
( )

z B xz dx
x B x

λ λ λ
θ λ λ

⎧ ⎫− −⎪ ⎪Φ = −⎨ ⎬
− −⎪ ⎪⎩ ⎭

∫  

The first factor on the right-hand side of (1) is known as Pollaczek-Khintchine equation 
for the number of customers in the ordinary M/G/1 queue with infinite waiting space, and 
the second is the generating function for the number of customers in the retrial queuing 
system given that the server is idle. 

A few years later, Yang and al. [11] demonstrated that the structure of 
( ) (1)zΦ Φ may contain any hint on the structure of the generating function for general 

retrial time distribution. 
Stochastic decomposition becomes more interesting in M/G/1 retrial queues 

with breakdowns (model 2). Assuming ( ) 1 xT x e θ−= − , we consider a non-Markovian 
process about the state of the server, ( )C t , and the number of customers in the orbit, 

0 ( )N t , at time t , { }0( ), ( ), 0C t N t t ≥ . The latter has an embedded Markov chain 

{ }( )o nN ξ +  ( nξ is the time when the server enters the idle-up state for the n-th time). From 
[9], we have that the system is stable if 

( )1
1 [ ] 1.b

B µ cµ E D
µ

ρ λ
λ

− ⎛ ⎞⎛ ⎞= + + <⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

Aissani and Artalejo [1] introduced an auxiliary queuing system with infinite waiting 
space, breakdowns of the server and option for leaving the system after an interruption to 
establish the stochastic decomposition for the generating function ( )zϕ of the steady-

state distribution of  { }( )o nN ξ +  as n → ∞ : 
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0

0

( )( ) ( ) ( )( ) ,
( ) (1)
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z z P

η λ λ λ λ ηϕ − − − + Ω=
− Ω
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where 
1

0
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with 

( ) ( )
1 ,

1 [ ] 1i

K
E D

ρ
λ η η ρ

−=
+ + −

 

1 ( )( ) ( ) (1 ) ( ) .B z µz B z µ c cz µH z
z µ

λ λλ λ λ λ
λ λ

− − +Ω = − + + − + −
− +

 

The first factor on the right-hand side of (2) is the generating function of the steady-state 
distribution of the embedded Markov chain at idle-up epochs. It is related to the auxiliary 
system (without retrials). The remaining factor, 0 0( ) (1)P z P , is the generating function 
for the number of customers in the orbit given that the server is idle-up. 

We assume that the decomposition result (2) for exponential retrial times is also 
valid for general retrial times. 

4. APPROXIMATE SOLUTION 

In the first time, we introduce some notations. Let nς  be the time at which the n-

th fresh customer arrives at the server; n
iX  be the time elapsed since the last attempt 

made by the i-th customer in the orbit until instant nξ + . Let lim ( )o nn
q N ξ +

→∞
=  ; lim n

i in
X X

→∞
= . 

When 0q > , we have a vector 1 2( , ,..., )qX X X X=  of expended retrial times of the q  
orbiting customers present at an arbitrary time when the server is able to start a new 
service time (when the server enters the idle state for model 1 et the idle-up state for 
model 2). We denote  by  1 2( , ,..., )q qf x x x  (or ( )qf x ) the joint density function of q  and 

X . Define , lim ( ( ) ; ( ) )i j ot
p P C t i N t j

→∞
= = =  and , lim ( ( ) ; ( ) )i j n o nn

r P C i N jς ς− −

→∞
= = =   

0,1,2,...;j =  0,1i =  (model 1) and 0,1,2i =  (model 2). 
Now, we consider the decomposition results (1) and (2). One can see that the 

steady-state distribution of the embedded Markov chains (we denote by { }, 0kd k ≥ ) is a 
convolution of two distributions: the steady-state queue size distribution for a model 
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without retrials (we denote by { }, 0ka k ≥ ) and the steady-state joint distribution 

{ }0, , 0kp k ≥ . 

Obviously ( )kd P q k= =  for 0k ≥ . Since Poisson arrivals see time averages, 
we have 0, 0,k kp r=  for 0k ≥ . Suppose that there are 0k >  customers in the orbit at an 
arbitrary time when the server is able to start a new service time. In such a case, we have 

0

( ) ;k kd f x dx
∞

= ∫         0,
0

( ( ; ) 0) ( ) ;k kr P k x f x dxδ
∞

= =∫  

where ( ; ) 0k xδ =  if the next served customer is not one of the k  orbiting customers, 
otherwise ( ; ) 1k xδ = . Since expended retrial times 1 2, ,..., kX X X  of the k  orbiting 
customers depend on each other in a very complicated way, a derivation of an explicit 
formula for the joint density function ( )kf x  is difficult, if not impossible. 

An approximation to ( )kf x  was proposed in [11] for retrial models with reliable 

server: ( )
1

( ) 1 ( ) .
k

k
k k i

i
f x d T xθ

=

≈ −∏  It is based on the intuitive consideration that the 

mean retrial time is very small relative to the mean service time (for retrial models with 
breakdowns, we add that the mean retrial time is also very small relative to the mean time 
duration of interruptions). 

Using the above approximation, it was established that 0, ,k k kr d b≈  where 

( )
0

1 ( ) k t
kb m t e dtλλ

∞
−= −∫    with  ( )

0

( ) 1 ( ) .
t

m t T u duθ= −∫  

We assume that { }, 0ka k ≥  is already known. Under this assumption, we can 
express the results (1) and (2) in the following common form: 

0,
0

1
1

k

k i k i
i

d a r
ρ −

=
=

− ∑  (3) 

with 

0, ,k k kr d b≈  (4) 

0
1.k

k
d

∞

=
=∑  (5) 

The set of equations (3)-(5) gives an approximate solution to { }0, , 0kr k ≥  and 

{ }, 0kd k ≥ . Let { }0,ˆ , 0kr k ≥  and { }ˆ , 0kd k ≥  be the approximations to { }0, , 0kr k ≥  and 

{ }, 0kd k ≥ , respectively. From (3)-(5), it is easy to find the following computational 
procedure: 

0
ˆ ˆ ,k kd g d=       0,1, 2...;k =   (6) 
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0, 0
ˆˆ ,k k kr g b d=       0,1,2,...;k =  (7) 

0

0

1ˆ ;
k

k

d
g

∞

=

=
∑

 (8) 

where 

0 1;g =       
( ) ( ) 1

1
1 1

k

k i k i k i
ik

g a b g
bρ − −

=
=

− − ∑           1,2,....k =  

Once system steady-state probabilities are evaluated, various performance 
measures can be calculated. Let N  be the number of customers in the system at an 
arbitrary time when the server is able to start a new service time. Then, we have 

0

ˆ[ ] ;k
k

E N kd
∞

=
≈∑       ( )22

0

ˆ[ ] [ ] .k
k

Var N k d E N
∞

=
≈ −∑  

Let oN  be the number of customers in the orbit at an arbitrary time. Then, we have (for 
models without breakdowns)   

[ ] [ ] ;oE N E N ρ= −    ( ) ( )22
0, 1 0, 1

0

ˆˆ ˆ[ ] [ ]o k k k o
k

Var N k r d r E N
∞

+ +
=

= + − −∑ . 

 
 

5. NUMERICAL RESULTS 

In this section, we examine the performance of the approximation discussed in 
the preceding section in the case of M/G/1 retrial queue subjected to breakdowns. We 
consider the following service and retrial time distributions: exponential (E), two-stage 
Erlang (E2), and two-stage hyper exponential (H2). Throughout this section, we let the 
mean service time 1/ γ  be a unit time, the rate of active breakdowns μ  as well as the 
rate of passive breakdowns η  be 0.02, the mean time duration of active interruption 

[ ]bE D  as well as the mean time duration of passive interruption [ ]iE D  be 0.2, the 
recovery factor c  be 0.9. 

Tables 1, 2 and 3 present the approximation outcomes calculated according to 
(6)-(8) against those from a simulation study (at 95-percent confidence intervals) for the 
M/M/1, M/E2/1 and M/H2/1 retrial models with breakdowns, respectively. From the 
simulation results given in tables 1, 2 and 3, we can see that the mean system size at an 
arbitrary idle-up epoch [ ]E N  is an increasing function of the second moments of both the 
service time distribution and the retrial time distribution. This property also takes place in 
the approximate results. 

Concerning M/G/1 retrial queues with reliable server, it was shown that the 
performance of the approximation is not affected very much by the type of service time 
distribution (or its coefficient of variation cs) [11]. In tables 1, 2 and 3 we observe that 
the approximate results are close to the simulation ones when there are M/M/1 and 
M/E2/1 retrial models with breakdowns for which the coefficient of variation of service 
times 1cs ≤ . In the case of M/H2/1 retrial model with 2cs = , the approximation method 
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works well as long as the traffic intensity ρ  is relatively low (see { }0.1;0.3λ ∈ ). On the 
other hand, the approximation fails when the traffic intensity is high (see 0.6*λ = ): the 
difference between the two solutions is highly significant. 
 
Table 1: The M/M/1 retrial model with breakdowns (cs=1) 

                         Retrial             times        
E                                E2                                H2 

cv=1                          cv≈0.7 cv=1.5 

λ            θ     
                  

E[N]         E[N]         E[N]         E[N] 
approx      simul        approx      simul 

E[N]         E[N] 
approx      simul  

0.1         1 
              3.3 
              10 
0.3         1 
              3.3 
              10 
0.6         1 
              3.3 
              10 

0.1262      0.1253      0.1234      0.1224       
0.1181      0.1179      0.1173      0.1166 
0.1158      0.1157      0.1155      0.1150 
0.5684      0.5710      0.5410      0.5501 
0.4765      0.4761      0.4677      0.4656 
0.4498      0.4495      0.4468      0.4457 
2.4414      2.4725      2.3006      2.3493 
1.7988      1.7947      1.7492      1.7411 
1.6117      1.6082      1.5945      1.5884        

0.1320      0.1303 
0.1201      0.1191 
0.1165      0.1158 
0.6126*    0.6771* 
0.4943      0.5004 
0.4562      0.4582 
2.5707*    3.2444* 
1.8710*    2.0144* 
1.6414      1.6510 

 
Table 2: The M/E2/1 retrial model with breakdowns (cs≈0.7) 

                         Retrial             times        
E                                E2                                 H2 

cv=1                          cv≈0.7 cv=1.5 

λ            θ     
                  

E[N]         E[N]         E[N]         E[N] 
approx      simul        approx      simul 

E[N]         E[N] 
approx      simul  

0.1         1 
              3.3 
              10 
0.3         1 
              3.3 
              10 
0.6         1 
              3.3 
              10 

0.1241      0.1232      0.1213      0.1200 
0.1160      0.1153      0.1151      0.1141 
0.1136      0.1134      0.1134      0.1129 
0.5399      0.5480      0.5118      0.5211 
0.4474      0.4454      0.4383      0.4344 
0.4204      0.4198      0.4174      0.4143 
2.2434*    2.3065*    2.0957*    2.1656* 
1.5927      1.5872      1.5401      1.5303  
1.4031      1.3976      1.3849      1.3781 

0.1300      0.1283 
0.1180      0.1165 
0.1143      0.1137 
0.5859*    0.6528* 
0.4659      0.4740 
0.4272      0.4302 
2.3925*    3.1457* 
1.6733*    1.8225* 
1.4364      1.4475 

                 
According to the idea of the approximation, the retrial intensity and the type of 

retrial time distribution (or its coefficient of variation cv) seem to be the important factors 
affecting its performance. Regarding M/G/1 retrial queues without breakdowns, it was 
shown that the approximation performs well as long as the mean retrial time is less than 
the mean service time and the coefficient of variation of retrial times is fairly close to that 
of the exponential distribution ( 4cv < ) [11]. We have examined the effects of the retrial 
intensity and those of the type of retrial time distribution on the performance of the 
approximation in the case of M/G/1 retrial queues with breakdowns. From numerical 
results shown in tables 1, 2, 3 and also 4, we can see that the approximation deteriorates 
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as the mean retrial time 1/θ  approaches the mean service time 1/ γ . It fails when 1/θ  
is not sufficiently small relative to 1/ γ  and the traffic intensity is relatively high (the 
failure of the approximation is denoted by *). We can also see that the accuracy of the 
approximation deteriorates as the retrial time distribution departs from the exponential 
distribution in the sense that its coefficient of variation 1cv > . Further, we have observed 
that the approximate results are close to the simulation ones, when the coefficient of 
variation of retrial times 3cv <  (for example, see table 4). 
 
Table 3: The M/H2/1 retrial model with breakdowns (cs=2) 

                         Retrial             times        
E                                E2                                 H2 

cv=1                          cv≈0.7 cv=1.5 

λ            θ     
                  

E[N]         E[N]         E[N]         E[N] 
approx      simul        approx      simul 

E[N]         E[N] 
approx      simul  

0.1         1 
              3.3 
              10 
0.3         1 
              3.3 
              10 
0.6*       1 
              3.3 
              10 
              50 

0.1326      0.1342      0.1301      0.1337 
0.1250      0.1264      0.1242      0.1261 
0.1228      0.1237      0.1225      0.1236 
0.6813      0.6929      0.6574      0.6724 
0.5960      0.5998      0.5884      0.5938 
0.5712      0.5743      0.5686      0.5720 
3.1686      3.4969      3.0530      3.3042   
2.6031      2.8536      2.5635      2.8139 
2.4384      2.7224      2.4248      2.7035  
2.3735      2.6733      2.3708      2.6234    

0.1378      0.1419 
0.1268      0.1293 
0.1234      0.1245 
0.7178*    0.7971* 
0.6106      0.6227 
0.5765      0.5830 
3.1990      3.7919 
2.6379      2.9054  
2.4542      2.8039 
2.3771      2.7232 

 
Table 4: The M/M/1 retrial model with breakdowns 

               Retrial             times       
H2                                H2                              
cv=2                          cv=3 

λ            θ     
                  

E[N]         E[N]         E[N]         E[N] 
approx      simul        approx      simul 

0.3         3.3 
              10 
              20 
              30 
              50 
0.6         10 
              20 
              30 
              50 

0.5154*   0.5804*    0.5631*    0.7963* 
0.4649      0.4714      0.4870*    0.5635* 
0.4510      0.4543      0.4632      0.4909* 
0.4462      0.4476      0.4545      0.4666 
0.4424      0.4414      0.4476      0.4496 
1.6791*    1.8045*    1.7656*    2.4285* 
1.6023      1.6340      1.6549*    1.9077* 
1.5749      1.5949      1.6123*    1.8109* 
1.5535      1.5564      1.5775*    1.6628* 

                  
We conclude that increasing the traffic intensity and increasing the coefficient 

of variation of service time distribution as well as the coefficient of variation of retrial 
time distribution have an adverse influence on the performance of the approximation. 
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