In this paper, a multi-item inventory model with space constraint is developed in both crisp and fuzzy environment. A profit maximization inventory model is proposed here to determine the optimal values of demands and order levels of a product. Selling price and unit price are assumed to be demand-dependent and holding and set-up costs sock dependent. Total profit and warehouse space are considered to be vague and imprecise. The impreciseness in the above objective and constraint goals has been expressed by fuzzy linear membership functions. The problem is then solved using modified geometric programming method. Sensitivity analysis is also presented here.