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Abstract. The relationship between the number of edges and the diameter of digital
convex polygons was studied in the papers (6], (2], [3], [4]. This paper gives a linear
algorithm (w.r.t. the number of vertices) for a simple approximate construction of
optimal digital convex polygons, that is, those digital convex polygons, which have
the smallest possible diameter for a given number of edges. The algorithm partly
uses the efficient construction [2] of a special sequence of optimal digital convex
polygons. It constructs in a simplified manner the suboptimal (with error tolerance
equal to 1) digital convex polygons. The proofs of this suboptimality can be found
in the paper [4].

1. INTRODUCTION

A diwgital convez polygon is a convex polygon, all the vertices of which have
integer coordinates,

This paper presents an asymptotically optimal algorithm for the construction
of optimal or suboptimal [4] digital convex n-gons, where n is a given natural
number. The optimality of polygons is considered here exclusively in the following
sense: the constructed n-gon should have the smallest possible diameter (the edge
size of the minimal inscribed square with the edges parallel to the coordinate axes).
The vertices of the constructed n-gons are listed in the positive ordering.

The construction is aimost optimal in the sense that the achieved value for the
diameter of the constructed polygon is at most for one greater than the theoretical
minimum. The paper [3] contains an eract construction of optimal digital convex
2s-zons. However. in [4], which considers the construction of optimal digital convex
n-gons for arbitrary n. the emphasis is put on the simplicity of the construction.



T4 D. M. Acketa, 5. Matié-Kekié, 1. D, Zunié

In some cases (for n of the form 4s + 2) the already known construction of op-
timal digital convex polygons is therefore replaced by a simpler one, which gives
suboptimal digital convex polygons.

Time complexity of the proposed algorithm is linear w.r.t. the number of ver-
tices of the required polygon. An efficient construction of the Farey sequence s
used. The algorithm for construction of optimal digital convex 4s-gons is an easy
generalization of the algorithm proposed in [2] for the construction of digital convex
polygons in a special sequence P(t). The point of the algorithm proposed here is
the efficient use of a family of so-called Basic polygons, which are introduced in
[4] in order to cover the cases when the number n of edges is not divisible by 4.
The algorithm also incorporates an efficient determination of the parameter { of
the Farey sequence.

2. PRELIMINARIES

The diameter (in the sense of city block distance) of a digital convex polygon
P is the maximal one among the values |z; — z;| and |y; — y;|, where (z;, ;) and
(z;,y;) are two arbitrary vertices of P.

Let Ymin and zmex respectively denote the minimal y-coordinate and the max-

imal z-coordinate of the considered digital convex polygon P. The SE-arc (south-
east arc) of P is the sequence of consecutive edges (V;,Viy1), 0 <1 < k-1, where:

— V; denotes a vertex (z;,y;) of P

— Z0 S 215 Y0 = Y1 = Ymini k-1 < Tmaxi Tk = Tmax-
The NE-arc, the NW-arc and the SW-arc of a digital convex polygon are defined
in an analogous way.

Given an edge e = [(z),¥1), (22, y2)] of a digital convex polygon, the edge slope
of ¢ denotes the fraction:

EL2l e NBor SWare, 28 . ¢ SE or NWeare,
1 = vl She

while bd-length of the edge e is the sum |2y — z3| + |y; — y2l.

If two digital convex polygons P, and P, have edge-slope-disjoint corresponding
arcs, then there exists the uniquely determined third digital convex polygon P,
called the sum of P; and P,. Each arc of the polygon P; includes all the edges
of the corresponding ares of P, and P,, sorted so that the convexity condition is
preserved.

A class P(t), t = 1,2,..., of optimal digital convex polygons was introduced
in [6]. The edge slopes of edges of each arc of the polygon P(t) are all different
fractions of the form ¢/p, where the natural numbers p and ¢ are relatively prime
and p+ ¢ < t. In addition, the edge slope of the first edge in each arc of P(1) is
e:ual to 0/1. The number of edges of P(t) is denoted by n(f). It is easy to show
that

t
"(t) = "lZﬁ?{ﬂ), | m-—-

Jiml
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wl?«e #(#) denotes the number of integers between | and s which are relatively
prime with s (the well-known Euler function from number theory; eg. @(l) =
P(2) =1, p(3) = p(4) = 2, p(5) =4).

q Fn.rcy sequence of order ¢, (shortly F(t), [5]), is the strictly increasing sequence,
which includes all the fractions of the form b/a, where the integers a and b are
relatively prime and 1 < b < a <t. F(5) is listed in Example 1, Section 5.

3. CONSTRUCTION

Suboptimal (in some cases optimal) digital convex n-gons can be represented
as the sum (in the sense explained above) of three digital convex polygons, called
Initial, Basic and Additional polygon respectively.

The number of edges of both Initial and Additional polygon is divisible by 4.
Basic polygon has 9, 6 and 7 edges for n of the form 4s + 1, 45 + 2 and 4s + 3
respectively.

If the problem of determining a suboptimal digital convex n-gon is considered,
then let ¢ denote the integer such that the prolonged inequality n(t —1) < n < n(t)
satisfied. The bd-lengths of edges of the Basic polygon may be smaller than ¢,
equal to t and even greater than t. All the edges of Initial and Additional polygon
have bd-lengths smaller than t, respectively equal to t. The edges in the latter two
polygons are “packed” into quadruples of edges with the same edge slope in distinct
arcs (the edge slopes used in these quadruples must not be used in any arc of the
Basic polygon).

There exists a 1-1 correspondence between the elements of the Farey sequence
and edge slopes of the polygon P. Namely, the mapping

b/a — b/(a —b)

(which maps a member b/a of F(1) to the corresponding edge slope ¢/p) is a
bijection which preserves the ordering. Besides, note that the integers b and a
are relatively prime if and only if the integers b and a — b are as well.

In this way the listing of vertices of an arc becomes equivalent to the listing
of members of the Farey sequence, but the latter listing (in increasing order) is
possible in linear time |1]. Thus the sorting of vertices within each one of the arcs
is avoided.

4. ALGORITHM

Inpui: a naturai numbei n,

Ouiput: an optimal digitai convex ngou P that is, the one which 1 included to
a digital square of a minimal edge =ize.
Stages cf the algorithm.

|. Determining the natural number i so that n belongs to the hudl-open 1mterval

(nfs — i), mt)].
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2. Determining the case (numerated by one of the integers 0,1,... ,12) in depen-
dence of n, t and n(t).

3. Generating each one of the four arcs of the polygon P by one pass through the
Farey sequence F(t).

4.1. STAGE 1: DETERMINING THE NUMBER {

In accordance with the expression (»==), the number ¢, such that n € (n(t—1),
n(t)] is determined by summing up the summands of the form 4 = (s), for
s = 1,2,..., until the sum (equal to n(t)) becomes greater than or equal to the
number n.

On the other hand, the value of w(s) is determined by using the expression [5]:

1
o) =s(1=2) o (1=2),  where s=pP it
P1 Pu

is a prime factorization of the number s.

4.2. STAGE 2: DETERMINING THE CASE

The cases a.re mostly determined on the basis of n mod 4 and t mod 4. If n
mod 4 = 0 (case 0), then Basic polygon is not used. The remaining 12 cases are
specified by the following table:

Case n { Basic | Case n { Basic
1 4s +1 4k B1 7 4s +2 2k B35
2 4s+1 4k+1 Bl 8 4s+2 2k<+1 B5
3 4s+1 4k+1 B2 9 4s +3 4k B6
4 4s+1 4k+2 B3 10 45+3 4k +1 BT
5 4s+1 4k+3 B3 11 4s5+3 4k +2 B®
6 4s+1 4k+3 B4 12 4543 4k +3 B9

Cases 3 and 6 are used iff n = n(t) — 3 (the Basic polygons B1, respectively
B3, do not match in these cases), although the Basic polygons B2, respectively B4,
are valid for n 2 n{t — 1) 4+ 5. The alternative cases 2 and 5 respectively are used

instead for n € [n(t — 1) + 35, n(t) - 7).
2
The diameter ng of the sum of Initial and Basic polygon is equal to n(t = 1) +

(n mod 4) in ten cases, except for the cases 3 and 5, when it is equal to n{t +~ 1) +5.
The required n-gon uses exactly (n—ng)/4 edges of the Additional polygon in each
arc (this fact is used in the construction, in Stage 3). The value n(t — 1) (necessary
for determining ng) can be easily determined st the end of Stage 1 as n(t) - 4(1).

The list of Basic polygons is given in Table 1. The edge slopes od edges of SE-
arc, NE-arc, NW-arc and SW-arc, in this order, are listed for each Basic polygon
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Table 1. The list of Basic polygons

0
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Bz* =4y ' = Ml et = =
1" 3k+2' 2k +1 2 2% 2'* 2k 41" BT 9
p3: O E+1 2k 0 2%k+1 0 2% 3k+2 O
1" 3%k+2"2k+1" 2" 2% ' 2°%+1 E+1' 2
Be. 9 k+1 26+1 0 2k+3 0 2k+1 3k+4 0
. S 43 1 AT TR EELTYY
0 k 0 0 k 0
B5 : e =) ST F o R -
1 k+1 2 1 +1” 2
Be. ‘9. 0D 31 0 2% 0 &%
J 1’ ' g 1 oy’ 2" 3k+1
Bver O 0 342 0 2% 0 ki+l
' 1 1 E#1. YV 2417 9 3ki2
0 0 3k+2 0 2k+2 0 k+1
BS: g =4 ’ w1 BE . 9 +3
2 2" k+1 2" 2k+1 1" 3k+2
gol 9 0 3k+a 0 W32 0 kil
: 1"  ERl = = 1’ 2k+3° 2' 3k+4

The edge slopes of edges within an arc are listed in the increasing order. The first
edge of 2sach arc has the edge slope of the form 0/p.

The diameters of the Basic polygons B1, B2,..., B9 are in order:
Sk+2 5k+4, 5k+4, 546, E+2, 3k+2, 3k+3, 3k+4, 3k +5.

The edge slopes of Basic polygon can be stored in a double array indexed by
ordinal numbers of arcs and by ordinal numbers of edges within an arc. Such an
array is generated depending on the case and the number & (obtained from t).

4.3. GENERATING THE ARCS OF THE REQUIRED POLYGON

The construction of the required digital convex polygon P is separated into four
independent constructions of its arcs (SE-, NE-, NW-and SW-arc in turn). Each
arc is constructed by using only one pass through the Farey sequence F(!). First
edge of an arc of P is obtained by writing down the first edge of the corresponding
arc A of the Basic polygon. The sequence F(1) is initialized afterwards.
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The following scheme is used for the general step of the construction of an arc
of P:

— Construct the following member b/a of the sequence F(t) (this construction is
based on the recursive connection given in [5]; an implementation of a more
general construction is described in [1]).

— Determine the corresponding edge slope ¢/p with g:=p, p:=a —b.
— If the edge slope ¢/p is acceptable, then register the corresponding edge.

We proceed with a more detailed description of the boolean function acceptable
and the procedure register.

We primarily give the explanations for the cases 1-12. As above, let A denote
the current arc of the Basic polygon.

A necessary condition for the value TRUE of acceptable is that one of the
following two conditions holds with the edge slope ¢/p:

a) ¢/p is not used in the Basic polygon

b) ¢/p is used in A.

The condition b) is also sufficient. The same statement holds for the condition
a) whenever p + ¢ < t; the Initial polygon consists of exactly such edges.

However, when the condition a) is accompanied with p + ¢ = {, then the value
of a counter, denoted by ¢ and initialized by 0, is increased by 1. In accordance with
the above remark on the Additional polygon, the final requirement for acceptance
in that case is that ¢ < (n — ng)/4.

A particular attention should be paid to those edge slopes ¢,/py, u =
1,2,... ,w(A), of the arc A of the Basic polygon, which satisfy that p, + q, > ;
they are sorted in increasing order and stored in an auxiliary vector V (the initial
value of u 1s set to 1).

These edge slopes will never be addressed by some members of F(t), but they
should nevertheless be included into the polygon P. The proper moment for insert-
ing the corresponding edges into the arc of P which is being constructed — must
not be missed. The following loop is consequently activated with the procedure
regisier before writing down the edge with the edge slope ¢/p:

While ¢./p. < ¢/p, and u < w(A), the edge with the edge slope q,/p. 1s
writlen down and the value of the counter u is increased by 1.

The only condition for acceptance in Case 0 is: p+¢ < tor (p+¢ =1 and
c<(n—ng)/d).

The coordinates (zg, o) of the first vertex of the SE-arc of P are given
advance. Given a current vertex (z;, y;), an edge with the edge slope ¢/p is written
down by producing the next vertex (z;,:, ¥i+1) in accordance with the connections

Zisg1 =i+ zar and  yis1 = % + Y,

where the pair (z4i, yair) 15 equal to (+p, +4), (=9, +p), (=p, =) (g, —p). within
the SE-arc, NE-arc, NW-arc, SW-arc respectively.
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5. EXAMPLES

EXAMPLE 1. Given n = 35, it is calculated in Stage 1 that t = 5. It is further
determined in stage 2 that k = 1; Basic = B7 (Fig. 2); Case = 10; ng = 27.

The construction of the required 35-gon P in Stage 3, uses the sequence F(5):
1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5.

This sequence is bijected to the sequence
1/4,1/3,1/2,2/3,1/1,3/2,2/1,3/1,4/1,

which includes all the edge slopes q/p of edges of an arc of the polygon P(5) in
increasing order.

The coordinates of the initial vertex of P are arbitrarily taken to be (0,0).
This vertex is the common vertex of the SW-arc and the SE-arc. The vertices of P
are generated and listed in the positive orientations (SE-arc, NE-arc, NW-arc and
SW-arc are passed, in this order). The common vertex of two neighboring arcs is
followed by the denotation ----- :

2 3 2 2
3 Yy 2
2
)
2 B-
z 1
5 1
Fig. 1. B3for k=1 Fig. 2. BT for k=1

The end vertices of edges, the edge slopes of which belong to Initial and Addi-
tional polygon. are denoted by the letters “I” and “A” respectively. When the edge
slopes used in Basic polygon are considered, four different letters are used instead:
“B” for the beginning edge of the arc, “S”. “E” and “G" for the edges with edge
slopes smaller than. equal to and greater than ¢ respectively. Note that the letter
“S” is not present with Example 1, while the letter “G” is not present with the
Example 2.

The list of vertices of the constructed 35-gon P is given in Table 2.
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Table 2. The list of vertices of the constructed 35-gon P

B( 1, 0) AC 5, 1) ¢ 8. 2) 1( 10, 3)

I( 11, 4) AC1s,. T I1( 14, 9) I( 16, 12)=-=-~
B( 15, 13) AC 14, 17) 1( 13, 20) 6( 11, 25)

I( 10, 27) I( 9, 28) A( 6, 30) I( 4, 31)

I( 1, 32)-=--- B( 0, 32) A( -4, 31) I( -7, 30)

I( -9, 29) E(-12, 27) I1(-13, 26) A(-15, 23)
I(-16, 21) I1(-17, 18)==—— B(-17, 16) A(-16, 12)
I1(-15, 9) 1(-14, T) I1(-13, 6) A(-10, 4)

I1( -8, 3) G( -3, 1) 1( 0, 0Q)-====-

Table 3. The list of vertices of the constructed 57-gon P

B 1, ‘&) AC 7, 1) I 12, 2) I( 16, 3)
1( 19, 4) E( 24, 6) I( 26, 7) s( 29, 9)
A( 33, 12) I( 34, 13) I( 36, 16) I( 37, 18)
I{ 3as, 21) 1{ 39, 25) i( 40, 30)-=-=-- 3( 40, 32)
A( 39, 38) I( 38, 43) I( 37, 47) I( 36, 50)
I( 35, 52) s( 33, 55) A( 30, 59) I( 29, 60)
I( 26, 62) I( 24, 63) I( 21, 64) I( 17, 65)
I( 12, 66)-----B( 10, 66) A( 4, 65) I( -1, 64)
I( -5, 63) 1( -8, 62) 1(-10, 61) s(-13, 59)
A(-17, 56) 1(-18, 55) I1(-20, 52) I1(-21, 50)
E(-23, 45) 1(-24, 42) I1(-25, 38) I1(-26, 33)----=
B(-26, 31) A(-25, 25) 1(-24, 20) I1(-23, 16)
1(-22, 13) I(-21, 11) A(-18, T) I(-17, 6)
I(-14, 4) I1(-12, 3) I( -9, 2) 1( -5, 1)
IC 0, 0)-----

EXAMPLE 2. Given n = 57, it is primarily derived that t = 7; k = 1, Basic = B3
(Fig. 1); Case = 5; ng = 49. The list of vertices of the constructed 57-gon P is
given in Table 3.

6. COMPLEXITY OF THE ALGORITHM
THEOREM 1. The algorithm given in Seciton 3 is asymptotically optimal.

PROOF. The following asymptotic estimation for the number n(t¢) has been derived
in [2]:
12¢?

n(t) = + Oltlogt).

-y
“.‘

Since n(t — 1) < n < n(t), the number of adges of the constructed polygon P is of
the same order of magnitude (O(t*)). The presented construction of (optimal or
suboptimal) digital convex polygon P is asymptotically optimal in the sense that
the number of elementary steps of the construction is also of order O(2°). Such a
conclusion can be derived by analyzing the stages of the algorithm:
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STAGE 1. Factorization of a natural number s requires O(/%) elementary steps [5].
Calculating 2(s) on the basis of the formula given in 4.1. requires v additional
elementary steps, where v is obviously bounded from above by log,(s) and
consequently by /s. It follows that calculating @(s) for s = 1,2,... ,t, and

consequently the calculating of n(t) and t itself requires O(t\/1) elementary
steps.

STAGE 2. Distinguishing the cases on the basis of n mod 4, t mod 4 and comparing
n with already calculated n(t)—3 can be obviously performed in constant time.

STAGE 3. Given a member of the Farey sequence, the calculation of the next
member is performed in a constant time [1]. On the other hand, the necessary
calculations concerning ¢q/p and related to each member of the Farey sequence
can be also performed in a constant time; they include only the search of edges
of a fixed Basic polygon (the number of edges in that polygon is bounded from
above by 10 in all the cases).

The sequence F'(t) is passed four times during the generation. Thus the num-
ber of elementary steps used in Stage 3. is asymptotically equal to the 4-fold
number of members of the sequence F(t). The latter number has been esti-
mated as 3t*/7? 4+ O(tlogt) ([5], Theorems 330 and 331).

Since the complexity of Stages | and 2, is smaller than O(#?), it follows that the
number of elementary steps of the whole algorithm is asymptotically equal to the
number of edges of the constructed polygon. O
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