Yugoslav Journal of Operations Research
< (1992), Number 1, 3-11

A COMPARISON OF ALGORITHMS
FOR THE MAXIMUM CLIQUE PROBLEM

Pierre HANSEN

GERAD and Ecole des Haules Etudes Commerciales
5255 Avenue Decelles, Montreal H3T 1V6, Canada

Nenad MLADENOVIC

Laboratory for Operations Research
Faculty of Organizational Sciences, University of Belgrade
Jove [lica 154, 11000 Belgrade, Yugoslavia

Abstract. Five recent practically efficient methods for solving the maximum dique
problem are briefly described and compared on randomly generated graphs.

Key words and phrases: Graph, dique, algorithm.

1. INTRODUCTION

Let G = (V, E) denote a graph with vertex set V = {v, vs,... ,v,} and edge
set £ = {ey,e3,...,e,} (see Berge [4] for basic definitions). A set C C V of
vertices is a clique if any two of them are adjacent, Le., if they are the end points
of an edge of E. A set S C V of vertices is a stable (or independent) set if any
two of them are not adjacent. A set T C V of vertices is a transversal (or vertex
cover) if any edge of £ contains at least one vertex of T. Clearly, a clique of G is
a stable set of the complementary graph G = (V,E) of G, in which a pair of
vertices is joined by an edge if and only if it i1s not so in G. Moreover, any minimal
transversal T of (G is the vertex complement of a maximal stable set S of G (to
which no vertex can be added without losing stability) i1.e., a vertex belongs to T
if and only if it does not belong to S.

Research of the first author supported by NSERC (Natural Sciences and Engineering Re-
search Council of Canada) grant to HEC, grant GPO 105574 and FCAR (Fonds pour la Formation
de Chercheurs et |'Aide a la Recherche) grant 92EQ1048.

Research of the second author done at GERAD during a sabbatical leave from Faculty of
Organizational Sciences, supported in part by CETAI, GERAD and NSERC grant 1o HEC.

1 P. Hansen, N. Mladenovié

A clique C (or a stable set S) is maximum if it has the largest possible
number of vertices. The clique number w(G) of G (respectively, the stability
number a(G) of G) is equal to the cardinality of a maximum clique (respectively
a maximum stable set). So finding a maximum clique is tantamount to finding
a maximum stable set or a minimum transversal in the complementary graph. A
(vertex) coloring of a graph G is an assignment of colors to the vertices of G such
that no two adjacent vertices get the same color. The cardinality of a coloring in
the minimum number of colors is called the chromatic number +(G) of G. For
every graph «(G) < ¥(G) holds.

Finding maximum cliques or stable sets, or minimum transversals are classical
problems in applied graph theory. They have many applications in various fields,
e.z., experimental design; information retrieval systems; signal transmission analy-
sis; computer vision: sociological structures: economy (see [2] and [8] for references).
Before discussing solution techniques let us mention two more recent applications
of the maximum stable set and minimum transversal problems.

The Forest planning problem, studied by Barahona, Weintraub and Epstein
[3], consists in defining cutting patterns for a forest that respect the habitat of
wildlife. This implies large zones should not be cut at the same time. Scenic
beauty may also be a reason for such dispersion constraints. The forest is first
partitioned into units. The decision variables specify whether cutting is performed
in a unit or not in a given time period. If it takes place, it is required that no
timber cutting be carried out in neighboring units in the same period. A graph G
that has one vertex per unit and per period is then constructed, This graph has
edges between any two vertices that represent the same period in neighboring units
as well as edges between any two vertices in the same unit. A managing alternative
corresponds to a set of vertices, such that there is no edge between any two of them,
1.e., to a stable set of G. Finding the largest number of units which may be cut in
the periods considered is a maximum stable set problem.

Non-convez quadralic programs with non-convex quadratic constraints arise in
many engineering contexts. They may be reformulated as bilinear programs with
bilinear constraints which are easier to solve. In the latter, variables can be par-
titioned into two sets such that any nonlinear term contains exactly one variable
from each set. Consequently, when any one set of variables is fixed, a linear pro-
gram is obtained. This allows solution through a generalized Benders decomposition
approach (e.g. Geoffrion [9], Floudas and Visweswaran [6]). Finding the reformu-
lation which has the smallest number of compiicating variables. i.e.. of variables
in the smallest of the two sets, can be done using the co-occurrence graph of the
quadratic program. This graph has vertices associated with the variables of the
quadratic program and edges joining vertices associated with variables appearing
jomtly in one term of the objective function or constraints. In practice it is usu-
ally sparse. and hence has a dense complementary graph. Hansen and Jaumard
14| show that a minimum set of complicating variables corresponds to a minimal
transversal of the co-occurrence graph (or to a maximum clique of the complemen-
tary graph of this co-occurrence graph). Therefore, to find a narrow reduction of

A comparison of algonthms for the maximum clique problem 5

a general quadratic program to a bilinear program, i.e., a reformulation with mins-

mum number of complicating variables, one must solve a maximum clique problem
in & dense graph,

The maximum clique problem is NP-hard and numerous heuristic or exact al-
gorithms have been proposed to solve it. The exact algorithms are usually enumer-
ative in nature. Recent, practically efficient exact algorithms have been proposed
by Balas and Yu (2], Friden, Hertz and de Werra [7], Carraghan and Pardalos [5]
and Babel and Tinhofer [1]. These algorithms all allow to solve large problems.
with 400 vertices or more when the graph G is sparse. Finding a solution for dense
graphs (i.e., when the density d, or number of edges divided by the number of
vertex pairs, is 30% or more) appears to be much more difficult. For d = 90% only
problems with up to 100 vertices have been reported to have been solved exactly.
Recently, Hansen and Mladenovi¢ [15] have proposed two algorithms for the max-
imum clique problem in dense graphs (a modification of the Carraghan-Pardalos
algorithm (MCP) and the so called “Dense CLique” DCL algorithm).

In this paper, five of those algorithms are briefly described (Section 2) and
compared (Section 3): Carraghan-Pardalos [5] (C-P); Balas and Yu (2] (B-Y);
Friden, Hertz and de Werra (7] (TA BAKIS); Modification of Carraghan-Pardalos
[(15] (MCP) and Dense clique [15] (DCL). The Babel-Tinhofer [1] algorithm has
not been included in the comparison as their code was not available to us and their
algorithm is quite close to TABARIS [T7].

2. PRINCIPLES OF THE ALGORITHMS

All algorithms considered here are based on the Branch and Bound (or Back-
track or Recursive programming) technique, where an exhaustive search tree is
constructed. The nodes of this tree are associated with subproblems induced by
current sets V; of visited and U; of unvisited vertices. The initial problem corre-
sponds to the root. The subproblems obtained by branching are associated with
the nodes of the tree. The shape of the tree depends on the vertex ordering. If
no further branching is possible, i.e., if a leaf in the tree is obtained, a solution is
found and backtracking takes place, after storing this solution if it is better then
the incumbent one. Any leal with greatest distance to the root corresponds to a
maximum clique. Lower and upper bounds on the size of the maximum clique for
the current subproblem may be computed and used to curtail the enumeration.
Moreover. local feasibility and optimality conditions are exploited: vertices not
adjacent to an included one are excluded and vertices all of whose neighbors are
included are included too.

Enumerative algorithm (C-P). Carraghan and Pardalos [5] present an enu-
merative. depth-first search algorithm in which a few simple tests are implemented
very efficiently. This algorithm performs a lexicographic search, i.e.. vertices are
first ranked (in order of non-decreasing degrees if the density is greater or equal
to 0.4 and in an arbitrary order otherwise) and always considered in that order.
Initially. indices of all variables are included in a list. at depth 1. At this level. step

6 P. Hansen, N. Mladenovié

i, for i = 1,2,... ,n, consists in including the i*" vertex in the list into the current
clique, increasing the level by | and copying those indices in the previous list which
correspond to vertices adjacent to the chosen one. This procedure is iterated Lo
greater and greater depths until the condition

depth + current list size — step < size of current best clique

is satisfied or the current list becomes empty (in which case the current best clique
size is updated). Then backtracking takes place, i.e., the level is reduced by 1 and
the step increased by 1 (if not yet at the end of the current list, in which case

backtracking occurs again).

Coloring triangulated graphs (B-Y). As the maximum clique problem is
NP-hard there is no polynomial algorithm to solve it for arbitrary graphs. Never-
theless there are polynomial algorithms for special classes of graphs. Perfect graphs
are one of them (recall G is perfect if w(H) = y(H) for all induced subgraphs A of
G) and a special class of perfect graphs is the class of triangulated graphs (G is tri-
angulated if every cycle of G of length at least 4 has a cord). The main ingredients
in the Balas and Yu [2] algorithm are: (i) finding a maximal triangulated induced
subgraph (in O(n+m) time) and its maximum clique (let us denote the cardinality
of this maximum clique by k); (i1) coloring the so-obtained triahgulated graph. Le.,
finding a maximal k-chromatic induced subgraph (again in O(m + n) time). In
other words, the strategy of this algorithm consists in finding maximal subgraphs
(subproblems, i.e., nodes in the search tree) for which the current lower bound is
also an upper bound, and which can thus be eliminated. Since no upper bound on
the value of each subproblem is available, the search strategy is depth-first.

Using Tabu Search (TABARIS). Glover [10, 11, 12|, has developed a
metaheuristic for solving difficult combinatorial optimization problems known as
Tabu Search. It combines local search procedures with a number of anti-cycling
rules which prevent being trapped in local optima. Moreover, exploitation of short.
medium and long-term memory allow as to guide, intensify or diversify the search.
[t has been successfully applied to the Maximum satisfiability [13], Graph coloring
(17], Timetabling [16], Neural networks [18] among others problems. TABARIS
(Tabu And Branch and bound Applied Repeatedly for Independent Sets, Friden,
Hertz and de Werra [7]) is an implicit enumeration algorithm (fairly similar to the
Balas and Yu algorithm [2]), which uses at some steps the Tabu Search technique
for getting bounds on the stability number a(H). This is done by: (i) finding a
large stable set in the set of candidate nodes for inclusion in the stable set (set of
unvisited nodes); (11) covering as many nodes of that set as possible with cliques.
Vertices are ordered in advance according to non-increasing degrees.

Finding Simplicial vertices (MCP), (DCL). A vertex v of an arbitrary
graph G is called simplicial if all vertices adjacent to v are pairwise adjacent.
t.e., if the subgraph induced by its neighbors is a clique. In the Balas and Yu [2]
algorithm, simplicial vertices are used in finding a prefect ordering of the vertices of
the subgraph of ¢ (an ordering vy,... , v, of the vertices of G is called perfect if

-4

A comparison of algonthms for the maxumum clique problem

for k= 1,... n, v is simplicial in G({vg,...,v,})), i.e., in generating » maximal
tniangulated induced subgraph. Indeed, G = (V, E) is triangulated if and only i
V' admits a perfect ordering. In [15] it has been proved that any vertex which is
simplicial in the complementary graph G = (V, E) of a given graph G belongs to
at least one maximum clique of G. This property is exploited in two algorithms
The first one (MCP) is a variation of the algorithm of Carraghan and Pardalos
15}, checking only for leaves in the complementary graph. The second one (DCL)
detects systematically simplicial vertices within small cliques. If there is a simplicial
vertex in the current subgraph, then there is only one branch from that node in the
search tree; thus, backtracking at that subproblem is not necessary. If there are
no more simplicial vertices, then a vertex with maximum degree in the subgraph
induced by the current set of unvisited "vertices is chosen for branching.

3. COMPUTATIONAL RESULTS

Computational experiments have been run on a Sun Sparc station with random
graphs (generated according to the so called uniform random graph scheme, see e.g.
Gendreau, Salvail and Soriano [8]). The number of vertices n is chosen as well as
the probability of presence of an edge (d). Each pair of nodes is then examined and
becomes an edge with probability d (comparing d with a number drawn randomly
from a uniform distribution on (0, 1). The same pseudo-random generator as in [5]
is used.

In the tables below, CPU times for the five following methods are compared:
Carraghan-Pardalos [15] (C-P); Balas and Yu [2] (B-Y); Friden, Hertz and de
Werra [7] (TBS); Modification of Carraghan-Pardalos [15] (MCP) and Dense clique
[(15] (DCL). For each problem (specified by a given density d and given size n) we
generate 10 graphs and consider the average CPU times on 4hese graphs. Methods
C-P, MCP and DCL are coded in Fortran 77, while B-Y and TBS are coded in
Pascal. We tested CPU times of Fortran and Pascal compiler on simple programs
with same instructions and found that on the Sun Sparc station the object programs
obtained with Fortran compiler are between 2.5 and 3 times faster then those
obtained with Pascal compiler.

Table I contains results for small graphs with n = 80,90 and 100. We vary
the density d between 0.1 and 0.9 as is usual in the literature. C,;, given in the
last column is the average number of vertices in a maximum clique; its nonlinear
zrowth with respect to the density d is worth noting. It explains in part the very
rapid increase in CPU time for all codes except DCL when d becomes large. It can
be observed that for graphs with density from 10 to 70% C-P and MCP are better
than others, while for graphs with density equal to 80% and higher the DCL code
is the best. However, if a correction is made for the difference in compilers, then
the T3S and B-Y codes are the best for densities of 60% to 80%.

Table 2 presents more detailed results for small dense graphs, i.e., graphs with
n = 50.00.100 and d > 80%. It can be seen that for very dense graphs there are
axnrnpiEE (d = 0.96) where DCL is more than 4,000 tumes faster on average than

) P. Hansen, N. Mladenovié

Table 1. Results for small graphs and all densities

n |dens] C-P| MCP| DCL] B-Y| TBS]| Con

50 | 0.10 0.01 0.01 | 1.36 0.10 0.07
80 | 0.20 0.03 0.02) 154 0.14 0.09
80 | 0.30 0.05 0.04 | 1.81 0.22 0.38
80 | 0.40 0.13 0.12 | 2.20 0.34 0.52
S0 | 0.50 0.25 023 | 3.09 0.64 1.00

30 | 0.70 2.28 2.11 | 6.57 4.16 3.23
80 | 0.80 13.10 11.08 | 7.82 16.66 9.45
80 | 0.90 | 169.52 87.49 | 1.96 45.94 | 34.66 | 27.5

In 0.10 0.02 0.01 | 1.98 0.12 0.08 39|
" i

3
4
6
8
80 | 0.60 0.64 0.58 | 4.67 1.43 2.22 | 10.
13
I8

90 | 0.20 0.03 003 | 2.35 0.20 0.13 | 5.0
90 | 0.30 0.07 0.07 | 2.84 0.27 0.56 | 6.2
90 | 0.40 0.19 0.18 | 3.79 0.50 060 | 7.3
90 | 0.50 0.39 037 | 5.93 1.05 1.51 | 9.0
90 | 0.60 1.15 1.07 | 9.31 2.49 2.58 | 10.9
90 | 0.70 3.11 4.77 | 16.40 8.60 6.67 | 14.1
90 | 0.80 41.00 33.86 | 24.47 42.80 | 29.21 | 18.6
90 | 0.90 | 71596 | 37444 | 6.55 | 283.85 | 160.85 | 29.1

100 0.0 [002 002] 280] 0.15] 0.10][40
100 (020 | 004| 004 337 024| 014 51
100 [030 | 010 009 430| 035] 091 6.1
100 040 | 026 025 617 0.76| 082 7.6
100 [0.50 | 0.58| 055 [1015| 164 | 295 9.2
l00]|060| 200 186|1653| 475| 359117
100 [0.70 | 10.36 | 9.76 [33.16 | 16.89 | 11.36 | 14.7
100 | 0.80 | 105.98 | 84.00 [56.31 | 100.21 | 84.24 | 20.0

L 100 | 0.90 | 3721.50 | 1827.17 | 31.49 | 1037.31 | 657.95 | 30.6

the best among other methods | TABARIS). There is no result in Table 2. if CPU
time exceed 3,000 seconds.

Table I gives results for large graphs. The limit time in experimentations was
1,000 seconds. except for d = 0.6, where it was 3,000 seconds. It appears that M P
15 the best code for large sparse graphs. but not significantly better than the -2
code. For n = 300 and d = 0.6, TABARIS has the best CPU time. Asonly small to
medium densities are considered here (problems with n > 300 and d > 60% appear
out of search for exact solution at this time), the DCL code is not competitive.

A companison of algorithms for the maximum clique problem

Table 2. Results for small dense graphs

Cc-P | MCP

"DCL]_ BV

I'BS

) 13.10 [11.08] 7.82] 16.66
80 2216 | 17.87| 8.06| 21.54
30 36.23| 26.85| 693 | 33.88
30 55.16 | 39.14 | 5.73| 32.92
30 100.31 | 59.93| 350 | 50.46
30 169.52 | 8749 | 1.96 | 45.94
80 32562 | 139.05| 0.74| 75.91
30 647.39 | 187.71| 0.17| 7225
30 796.90 | 102.73| 0.01 | 61.32
80 1040.85 | 17.59 | 0.01 2.17
R0 0.04 0.04 | 0.0l 0.08| 0.02] 30.0
90 | 0.80 | 41.00 | 3386|2447 42.80 2894 18.6
90 | 082 | 6523 | 5212|2367| 54.12| 3901 205
90 | 0.84 | 117.7 85.70 | 21.79 | 77.23| 63.33 | 22.0
90 | 0.86 | 196.04 | 136.40 | 18.14 | 121.95| 39.10 | 23.8
90 | 0.88 | 343.15| 210.90 | 11.76 | 175.64 | 122.98 | 26.3
90 | 0.90 | 715.96 | 374.44 | 6.55| 283.85 | 126.43 | 29.1
90 | 0.92 | 1809.40 | 679.54 | 2.53 | 402.11 | 182.21 | 32.4
90 | 0.94 | 2668.07 | 788.94 | 0.48 | 447.96 | 140.46 | 37.8
90 | 0.96 — | 660.23 | 0.03| 262.29 | 138.40 | 44.9
90 | 098 | 917.77| 12789 | 001 | 1036 57.22| 36.7
90 | 1.00 0.04 0.04 | 0.01 0.10 | 0.02] 90.0
100 | 0.50 | 105.98 | 34.00 | 56.31 | 100.21 | 59.15 | 20.0
100 { 0.82 | 187.63(143.27 | 6264 | 140.14 | 82.10 | 21.7
100 | 0.84 | 372.41| 265.41 | 60.93 | 254.37 | 154.57 | 23.4
100 | 0.86 | 700.69 | 460.88 | 58.54 | 413.84 | 265.57 | 25.4
100 | 0.88 | 1430.42 | 882.35 | 52.12 | 692.80 | 401.36 | 27.6
100 | 0.90 — | 1827.17 | 31.49 | 1037.31 | 657.95 | 30.6
100 | 0.92 — | 2861.44 | 10.80 | 1476.06 | 841.51 | 34.9
100 | 0.94 - — | 1.66 | 1170.43 | 563.47 | 40.5
100 | 0.96 = — | 005/ 1148.52 | 342.12 | 48.4
100 | 0.98 — | 32341 | 002 158.74| s2.68 | 61.3
100 | 1.00 0.06 0.05| 0.02 0.12 | 0.02 | 100.0

In conclusion. the C-P (or MCP) code appears to be the best for finding
maximum cliques in large and sparse graphs. while the DCL code appears to be

the best for such purpose in dense graphs.

Acknowiedgements. [he authors thank Alain Hertz for sending them copies of the codes
for the TABARIS and Ballas-Yu algorithms written at the Department of Applied Mathematics,
Ecoie Polvtechmaue Fédérale de Lausanne. They also thank Brigitte Jaumard and Olivier Play

for their advice on computing matters.

Note. A Fortran 77

code for the algorithm “Dense Clique” is available from the authors.

g

10

Table 3. Results for large sparse graphs

P. Hansen, N. Mladenovié

[n Tdens C-P| MCP| DCL B-Y[TBS|[Cop |
I 20¢] 0.10 0.10 0.10 [27.83 0.69 1.24 [4.1
Il 200 | 0.20 0.27 027 | 42.55 1.34 2.23 | 6.0
200 | 0.30 0.93 093 | 79.90 3.46 6.28 | 7.1
200 | 0.40 3.26 321 187.16 | 10.13| -14.40| 8.9
200 | 0.50 16.10 | 15.78 | 501.61 | 42.65| 32.88 | 10.9
| 200 | 0.60 | 121.70 | 117.89 — | 215.10| 134.72| 13.9
300 | 0.10 0.26 0.26 [110.62 1.74 3.12 [5.0
300 | 0.20 0.98 0.96 | 209.29 515| 15.83| 6.0
300 | 0.30 4.37 4.33 | 577.03| 17.14| 21.45| 8.0
300 | 040 | 20.55| 20.33 — | 7094| 57.59]| 9.6
300 | 0.50 | 155.68 | 153.96 — | 41287 | 239.31] 12.1
300 | 0.60 | 2302.07 | 2178.30 = — | 1767.25 | 15.1
400 | 0.10 0.56 0.56 | 303.62 3.29 6.24 [5.0
400 | 0.20 2.52 25072526 | 14.76| 36.44| 6.4
400 | 0.30 1381 | 13.79 — | 5391| 5667 8.2
400 | 040 | 8340 | 83.15 — | 313.87| 226.66 | 10.1
400 | 0.50 | 950.94 | 942.94 — — — | 12,9
500 | 0.10 | 1.05 1.05 | 683.36 714 11.18[5.0
500 | 0.20 5.34 5.29 — 1 31101 54501 70 |
500 | 0.30 | 35.66 | 35.43 — | 149.33| 124.83| 85 |
500 | 0.40 | 253.18 | 250.94 — | 1022.28 | 649.88 | 10.5
1000 [0.10 7.67 7.59 — 1 50.19[] 66.61] 6.0
1000 | 0.20 7126 | 70.75 — | 577.54 =1 78
1000 | 0.30 | 846.62 | 842.37 — s N
REFERENCES

(1] L. Babel and G. Tinhofer, 4 Branck and bound algorithm for the mazimum -iigue prodlem.
ZOR — Methods and Models of Operations Research 34 (1990), 207-217

[2] E. Balas and C.S. Yu, Finding a marimum cligue 1n an arbitrary graph. SIAM Journal on
Computing 15/4 (1986), 1054-1068, '

(3) F. Barahona, A. Weintraub, and R. Epstein, Habitat dispersion in forest pignning and the
stable set problem, Operations Research 40, Supp. No. 1 (1992), S14-521.

[4] C. Berge, Graphes, Gauthier-Villars, Paris, 1983,

A comparison of algorithums for the maximum clique problem i

(3] R. Carraghan and P.M. Pardalos, An ezact algorithm for the mazvmum chigue problem,
Operations Research Letters 9 (1990), 375-382.

(6] C.A. Floudas and V. Visweswaran, A global optimization algovithm (GOP) for certain
classes of non-convexr NLPs — [. Theory, Computers and Chemical Engineering 14 (12)
(1990), 1297-1417.

[T] C. Friden, A. Hertz, and D. de Werra, TAHARIS: An exact algorithm based on tabus search
for finding a menimum independent sef in a graph, Computers and Operations Research 17
(1990), 437-445,

(8] M. Gendreau, L. Salvail, and P. Soriano, Solving the marimum cligue problem using a tabu
search approach, Centre de Recherche sur les Transports, Montreal-Publication Nao. 675,
1991.

[9] A.M. Geoffrion, Generahized Benders decomposition, Journal of Optimization Theory and
Applications 10 (1972), 237-260.

[10] F. Glover, Future paths for integer programming and links to artificial intelligence, Computer
and O.R. 13 (1986), 533-549.

(11] F. Glover, Tabs search - Part I, ORSA Journal on Computing 1 (1989), 190-206.
[12] F. Glover, Tabu search — Part II, ORSA Journal on Computing 2 (1990), 4-32.

[(13] P. Hansen and B. Jaumard, Algorithms for the marimum satisfiability problem, Computing
44 (1990), 279-303.

[14] P. Hansen and R. Jaumard, Reduction of indefinite guadratic programs to bilinear programs,
Journal of Global Optimization 2 (1992), 41-60.

[15] P. Hansen and N. Mladenoviép Two algomthms for marimum cligues in dense graphs,
GERAD research report G-9218, 1992,

[16] A. Hertz, Tabu search for large scale timetabling problems, European Journal of Operational
Research 54 (1991), 39-47.

[17] A. Hertz and D. de Werra, Using tabu search techniques for graph coloring, Computing 29
(1987), 345-351.

[18] D. de Werra and A. Hertz, Tabu search technigues: A tutoral and application fo neural
networks, OR Spectrum 11 (1989), 131-141.

