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Abstract: In this paper we obtain conditions on weak tournaments, which guarantee that 
every non-empty subset of alternatives admits a stable set. We also show that there exists 
a unique stable set for each non-empty subset of alternatives which coincides with its set 
of best elements, if and only if, the weak tournament is quasi-transitive. A somewhat 
weaker version of this result, which is also established in this paper, is that there exists a 
unique stable set for each non-empty subset of alternatives (: which may or may not 
coincide with its set of best elements), if and only if the weak tournament is acyclic. 
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1. INTRODUCTION  

An abiding problem in choice theory has been the one that characterizes those 
choice functions which are obtained as a result of some kind of optimization. 
Specifically, the endeavour has concentrated largely on finding a binary relation (if there 
be any) whose best elements coincide with observed choices. An adequate survey of this 
line of research till the mid eighties is available in Moulin [1985].  

Miller [1977], [1980], introduces the concept of a tournament, which is an 
asymmetric and complete binary relation. Such binary relations arise very naturally in 
majority voting situations, where one candidate defeats another by a strict majority of 
votes. A consequence of majority voting and hence of the tournament it generates on the 
set of alternatives is the well known Condorcet paradox: the tournament may fail to 
exhibit transitivity and thus no alternative qualifies as a best alternative. This paradoxical 
situation called for alternative solution concepts for tournaments, which were then 
axiomatically characterized in Moulin [1986]. Peris and Subiza [1999] refer to binary 
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relations which are reflexive and complete as weak tournaments and replicate some of 
the results in Moulin [1986]. Weak tournaments can arise very naturally, when in an 
election comprising an even number of voters, two candidates secure an equal number of 
votes against each other. Alternatively, if the number of voters, who prefer a certain 
candidate A over B, is equal to the number of voters who prefer B over A, then we arrive 
at a weak tournament in the sense of Peris and Subiza [1999]. 

Among many different solutions, which have been prescribed for problems of 
choice, one of the most significant is the solution related to the (von Neumann-
Morgenstern) stable set. Lucas [1994] surveys the very large literature dealing with this 
concept, particularly in the context of co-operative games. Given a weak tournament, a 
nonempty subset is said to be internally stable, if no alternative in the set is preferred to 
any other alternative in the set. It is said to be externally stable, if for every alternative 
that lies outside the set, one can always find an alternative within the set, which the 
decision maker prefers to the former one. 

The intuition behind the concept of a stable set is clear in the context of majority 
voting. Consider a situation where a committee is formed by majority voting. Internal 
stability would require that there is no selected candidate, who is preferred by a majority to 
any other selected candidate. A violation of internal stability would lead to asymmetry and 
imbalance in the committee, where given a conflict of opinion between two candidates, one 
of whom defeats the other by a majority, the losing candidate would always have to 
withdraw his opinion, if democratic representation were to be meaningful at all. On the 
other hand, a violation of external stability would mean that a candidate who is not selected 
is no less popular than any other candidate who is selected, and hence his/her exclusion 
from the committee cannot be justified on democratic principles alone. 

The purpose of this paper is quite straightforward: to obtain conditions on weak 
tournaments, which guarantee that every non-empty subset of alternatives admits a stable 
set. It is shown in this paper, that if a weak tournament is acyclic, then every nonempty 
subset of alternatives admits a stable set. However, there are several instances where 
cyclicity is not necessary for every non-empty subset of alternatives to admit a stable set. 
For instance given any four-element set, which does admit any triplet, forming a strict 
preference cycle, it can be shown that every subset admits a stable set. Another example 
due to Kim and Roush [1980] is that of a set formed by the union of two disjoint sets of 
equal cardinality, where for every element in one set there is exactly one element in the 
other which is strictly preferred to the former, while any two elements in the same set are 
perceived as being equally desirable. In this case, the weak tournament is not acyclic. 
However, both disjoint sets turn out to be the stable sets. We also show that the set of 
best elements of any non-empty subset must necessarily be contained within each of its 
stable sets. 

It turns out, that a stable set must always be the best element of a weak 
tournament defined on the set of its indifference sets, which satisfies the following two 
properties: (a) Any indifference set which contains another as a strict subset, must be 
preferred to the latter; (b) Any indifference set A which is not contained in another 
indifference set B and does not contain B either, is preferred to the latter indifference set, 
if and only if every alternative in A that is not contained in B, is preferred to every 
alternative in B. Further, any best element of this weak tournament defined on 
indifference sets, turns out to be a stable set. Property (b) of the weak tournament 
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described above bears a striking resemblance to the one that is used in the study of 
college admissions problem, by Roth and Sotomayor (1990). 

The most interesting result of this paper is that there exists a unique stable set 
for each non-empty subset of alternatives which coincides with its set of best elements, if 
and only if, the weak tournament is quasi-transitive. A somewhat weaker version of this 
result, which is also established in this paper, is that there exists a unique stable set for 
each non-empty subset of alternatives (: which may or may not coincide with its set of 
best elements), if and only if the weak tournament is acyclic. 

2. THE MODEL AND PRELIMINARY DEFINITIONS 

Let X be a finite, non-empty set and given any non empty subset A of X, let [A] 
denote the collection of all non-empty subsets of A. Thus in particular, [X] denotes the set 
of all non-empty subsets of X. If A∈[X], then #(A) denotes the number of elements in A. 

Given a binary relation R on X, let P(R) = {(x, y)∈R / (y, x)∉R} and I(R) = 
{(x,y)∈R / (y, x)∈R}. P(R) is called the asymmetric part of R and I(R) is called the 
symmetric part of R. Given a binary relation R on X and A∈[X], let R|A = R∩(A×A) and 
R-1 = {(x, y)/ (y, x) ∈R}. 

A binary relation R on X is said to be (a) reflexive if ∀x∈X : (x, x)∈R;  
(b) complete if ∀x, y∈X with x ≠ y, either (x, y) ∈R or (y, x) ∈R; (c) quasi-transitive if ∀ 
x, y, z∈X:[(x, y)∈P(R) & (y, z)∈P(R)] implies [(x, z) ∈P(R)]. Let Π denote the set of all 
reflexive and complete binary relations. Following Peris and Subiza [1999], we refer to 
such binary relations as weak tournaments. 

Given a binary relation R on X and A∈[X], let G(A, R) ={x∈A / ∀y∈A: (x,y)∈R} 
and let W(A, R) = G(A, R-1 ). The set G(A, R) is variously referred to as the set of “best 
alternatives”, or the “core” of A with respect to the weak tournament R. Given A∈[X], let 
∆(A) denote the diagonal of A i.e. ∆(A) ≡ {(x,x)/x∈A}. 

Given R∈Π, let us say that G is well defined at R if ∀A∈[X], G(A, R) is non-
empty valued. 

R∈Π is said to be acyclic if ∀ A∈[X], G(A,R) is non-empty valued. 
Let (A, R)∈[X]×Π. A set B∈[A] is said to be a (von Neumann-Morgenstern) 

stable set for (A,R) if: (i) ∀x,y∈B:(x,y)∈I(R) (i.e. B satisfies internal stability); (ii) 
∀x∈A\B, there exists y∈B:(y,x)∈P(R) (i.e. B satisfies external stability). Let 
Ψ(A,R)={B∈[A]/B is a stable set for (A,R)}. 

Given R∈Π, let us say that Ψ is well defined at R if ∀A∈[X], Ψ(A,R) is non-
empty. 

 

Observation 1: Let A∈[X] and suppose #(A) ≤ 2. Then, ∀R∈Π:[G(A,R)≠φ & Ψ(A,R)≠φ]. 
 
 

3. NON-EMPTINESS OF Ψ  

The primary aim of this section is to study conditions under which, Ψ is well defined. 
Further, in Theorem 2, we show that the set of best elements is always contained in a 
stable set. 
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Theorem 1. Let R belong to Π. If R is acyclic then Ψ is well defined at R. 
Proof: It is enough to show that Ψ(X,R) ≠φ under the assumption that R is acyclic, since 
the proof replicates for A∈[X]\{X}. Since R is acyclic G(A,R)≠φ, whenever A∈[X]. If 
G(X,R)=X, then Ψ(X,R)={X}. Hence suppose G(X,R)⊂⊂X. Let Y1=X\G(X,R). Let X0=X 
and X1=X\G(Y1,R)}. Clearly, x∈G(Y1,R) implies there exits y∈G(X,R), such that 
(y,x)∈P(R). Further, G(X,R)⊂G(X1,R). It is possible that there exists x∈G(X1,R)\ G(X,R) 
and y∈G(Y1,R), such that (y,x)∈P(R), though not necessarily so. Let Y2 = X1\ (G(X1,R) and 
X2=X1 \ G(Y2,R). Clearly, G(X2,R)⊂G(X1,R). Having defined Yk, Xk for k≥1, let Yk+1=Xk 
\(G(Xk,R) and Xk+1=Xk\(G(Yk+1,R). Since X is finite, there exists a smallest K such that 
either XK \ (G(XK,R) =φ. Let B = XK. Clearly, x,y∈B implies (x,y)∈I(R). Let y∈X\B. Thus, 
there exists ‘k’ such that y∈Yk. Hence there exists x∈G(Xk-1,R)⊂B , such that (x,y)∈P(R). 
Thus, B∈Ψ(X,R). ♦ 

 
Thus if a weak tournament R is such that G(A,R)≠φ whenever A∈[Y] where Y∈[X], 
then Ψ(A,R)≠φ, whenever A∈[Y]. 
Note: I am indebted to Jozsep Mala for the following observation on an earlier version of 
the paper. 

 
It is not true that given (A,R)∈[X]×Π: G(A,R)≠φ implies Ψ(A,R)≠φ. Let X = {x, 

y,z,w}. Suppose (y,z),(z,w),(w,y)∈P(R) and (x,z),(x,w),(x,y)∈I(R). Then G(X,R)= {x} 
whilst Ψ(X,R)=φ. 

Given a weak-tournament R on X, let a set A∈[X], with A = {a1,…,ap} be called 
a quasi-chain in X if for all i∈{1,…,p–1}: (ai, ai+1)∈P(R). A is said to be a cycle if in 
addition, (ap, a1)∈P(R). It is said to be a dominated quasi-chain if there exists b∈X\A such 
that (b, a1)∈P(R). 

Observation: G(X,R)≠φ if and only there does not exist a collection X1,…,Xk 
of quasi-chains in X which form a partition of X and such that each Xi is either a 
cycle or a dominated quasi-chain. 

If G(X,R) = φ, and x∈X, is not part of a cycle that has already been constructed, 
then {x} itself can be considered as a quasi-chain and a member of the partition of X. 

Further, G(X,R) is a singleton if and only there exists a collection X1,…, Xk 
(k≥2) of quasi-chains in X which form a partition of X and such that each Xi, 
i=1,…,k–1 is either a cycle or a dominated quasi-chain and Xk  is neither a cycle nor 
a dominated quasi-chain. 

However it is not necessary that given R∈Π, it must be the case that R is acyclic 
for Ψ to be well defined at R. 

Let X = {a1 ,...,am}where m is a positive integer greater than or equal to four and 
let R∈Π. We say that X is a minimal m-cycle with respect to R if: (i) (ai,ai+1)∈P(R) for all 
i∈{1,…,m–1}; (ii) (am,a1)∈P(R); (iii) there does not exist any non-empty proper subset 
{b1 ,...,bn}of X such that [(a) (bi,bi+1)∈P(R) for all i∈{1,…,n–1}; (b) (bn, b1)∈P(R)]. 

 
Proposition 1 (Kim and Roush [1980]): Let m be a positive integer greater than or 
equal to two. Let X = {a1,...,a2m } and suppose that {a1 ,...,a2m } is a minimal 2m–cycle with 
respect to R. Then, Ψ is well defined at R in spite of the fact that G(X,R)=φ. 
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Proof: It is easy to see that Ψ(X,R) = {A, B}, where A = {a2i / i = 1,...,m} and B = {a2i -1 / 
i=1,...,m}, although G(X,R)=φ. Further, by Theorem 1, Ψ(A,R)≠φ whenever A∈[X], since 
for A∈[X] with A≠X, G(A,R)≠φ. Thus, Ψ is well defined at R in spite of G(X,R)=φ. ♦ 
 

Proposition 1 shows that G(A,R) can be a proper subset of a stable set. In fact in 
the above example G(X,R) is empty and Ψ(X,R) is non-empty. 

The following two propositions provide additional sufficient conditions for a 
nonempty subset of alternatives to admit a stable set. 

 
Proposition 2. Let R be an weak tournament and suppose that for some A∈[X] and x∈A, 
Ψ(A\{x},R)≠φ. If G(A,R)≠φ.Then, Ψ(A,R)≠φ. 
Proof: Let x∈G(A,R). Since Ψ(A\{x}, R)≠φ, there exists B∈Ψ(A\{x}, R). Clearly, B∪ 
{x}∈Ψ(A,R). ♦ 

 
Proposition 3. Let R be an weak tournament and suppose that for some A∈[X] and 
x∈W(A, R), Ψ(A\{x},R)≠φ. Then, Ψ(A,R)≠φ. 
Proof: Let x∈W(A,R). Since Ψ(A\{x}, R)≠φ, there exists B∈Ψ(A\{x}, R). If there exists 
y∈B such that (y,x)∈P(R), then B∈Ψ(A,R). Otherwise ∀y∈B, (x,y)∈I(R) (:since 
x∈W(A,R)) and so B∪{x}∈Ψ(A,R). Thus W(A,R)≠φ implies Ψ(A,R)≠φ. ♦ 

 
Let Π(3) = {R∈Π/ there does not exist x, y, z∈X with (x,y), (y,z), (z,x)∈P(R)}. 

Π(3) is a set consisting only of those weak tournaments which do not satisfy the 
requirements of the three element Condorcet Paradox. 

 
Example 1: Let {x,y,z}⊂X and let R be a weak tournament on X, such that (x,y),(y,z),(z,x) 
∈P(R). Then Ψ({x,y,z},R)≠φ. Thus Ψ is not well defined at R. 
 
Proposition 4. Let R∈Π(3) and let A∈[X] with #(A) ≤ 4. Then Ψ(A,R)≠φ. 
Proof: For #(A) equal to 1 or 2 there is nothing to prove and for #(A) equal to 3, R∈Π(3) 
implies G(A,R)≠φ. Thus, by Theorem 1, Ψ(A,R)≠φ. Hence suppose #(A)=4. If G(A,R)≠φ, 
then by Proposition 1, Ψ(A,R)≠φ. If G(A,R)=φ and W(A,R)≠φ, then let y∈W(A,R). Thus 
#(A\{y})=3 and by the above Ψ(A\{y},R)≠φ. Hence, by Proposition 3, Ψ(A,R)≠φ. 
Finally suppose G(A,R) = W(A,R) = φ. Let A = {x,y,z,w} where all elements are distinct. 
Since G(A,R)=φ, there exists a∈A:(a, x)∈P(R). Without loss of generality suppose (y, x) 
∈P(R). Since W(A,R) = φ, there exists a∈A: (x, a)∈P(R). Without loss of generality 
suppose (x,z)∈P(R). Since R∈Π(3), (z,y)∉P(R). Hence (y,z)∈R. Since W(A,R)=φ, it must 
be the case that (w,z)∉R. Thus (z,w)∈P(R). If (y,w)∈R, then combined with (y,x)∈P(R) 
and (y,z)∈R we get y∈G(A,R).Since G(A,R) = φ we must therefore have (w,y)∈P(R). If 
(w,x)∈P(R) then along with (x,z)∈P(R) and (z,w)∈P(R) we get a contradiction of the 
assumption that R∈Π(3). Hence (w,x)∉P(R). If (x,w)∈P(R) then along with (w,y)∈P(R) 
and (y,x)∈P(R) we get a contradiction of the assumption that R∈Π(3). Thus (w,x)∈I(R). 
If (y,z)∈P(R) then along with (z,w)∈P(R) and (w,y)∈P(R) we get contradiction of the 
assumption that R∈Π(3). Thus (z,y)∈R, which combined with (y,z)∈R yields (y,z)∈I(R). 
Thus Ψ(A,R) ={{w,x},{y,z}}. Thus Ψ(A,R)≠φ. ♦ 

However, the conclusion of Proposition 4 does not hold if # (A) > 4. 
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Example 2 (Kim and Roush [1980]): Let m be a positive integer greater than or equal to 
two. Let X = {a1,...,a2m+1} and suppose that {a1,...,a2m+1} is a minimal (2m+1) - cycle with 
respect to R. Suppose towards a contradiction Ψ(X,R)≠φ. Let B∈Ψ(X,R). Suppose a1∈B. 
Then since (a2m+1, a1)∈P(R), a2m+1∉B. Since (ai, a2m+1)∈P(R) implies i=2m, clearly a2m∈B. 
By repeating the argument we arrive at the conclusion that a2∈B. But a1∈B, a2∈B and (a1, 
a2)∈P(R) contradicts the assumption that B is a stable set. Hence, a1∉B. By symmetry of 
the elements in X, we get B=φ contradicting B is a stable set. Hence Ψ(X,R)=φ. However 
R belongs to Π(3). 

 
Theorem 2. Let (A,R)∈[X]×Π and suppose B∈Ψ(A,R). Then G(A,R)⊂ B. 
Proof: Let B∈Ψ(A,R) and towards a contradiction suppose x∈G(A,R)\B. Thus x∈A\B. 
Since B∈Ψ(A,R), there exists y∈B⊂A: (y,x)∈P(R). This contradicts x∈G(A,R) and proves 
the theorem. ♦ 

Given a weak tournament R and A∈[X], a non-empty subset B of A is said to be 
an indifference set of R in A, if for all x,y∈B, (x,y)∈I(R). Clearly for all x∈A, {x} is an 
indifference set of R in A. Let I(A,R) = {B∈[A]/B is an indifference set of R in A}. Thus, 
I(A,R)≠φ. Let ℜ(A,R) be a binary relation on I(A,R) defined as follows: for all 
B,C∈I(A,R): (B,C)∈ℜ(A,R) if either (i) C⊂B; or (ii) R∩(B×(C\B))≠φ & B\C≠φ. Let 
P(ℜ(A,R)) denote the asymmetric part of R and I(ℜ(A,R)) denote the symmetric part of 
R. Observe that ℜ(A,R) is a weak tournament on I(A,R). 

 
Proposition 5: Given (A,R)∈[X]×Π: [B∈Ψ(A,R)] if and only if [B∈I(A,R) and 
(B,C)∈ℜ(A,R) whenever C∈I(A,R)]. 
Proof: Let B∈Ψ(A,R). Clearly, B∈I(A,R). Let C∈I(A,R). If B⊂⊂C, then B cannot belong 
to Ψ(A,R). If C⊂B, then (B,C)∈ℜ(A,R). Suppose, C\B≠φ and B\C≠φ. Then for every 
x∈C\B, there exists y∈B, such that (y,x)∈P(R). Thus, (B,C)∈ℜ(A,R). 

Now suppose, B∈I(A,R) and (B,C)∈ℜ(A,R) whenever C∈I(A,R). Let x∈A\B. If 
B∪{x}∈I(A,R), then (B∪{x}, B) ∈P(ℜ(A,R)). If for all y∈B, it is the case that (x,y) 
∈P(R), then ({x}, B)∈P(ℜ(A,R)), contrary to hypothesis. Thus, there exists y∈B such that 
(y,x)∈P(R). Thus, B∈Ψ(A,R). ♦ 

 
The following concept is a slight modification of one available in Kim and 

Roush [1980]: 
Given (A,R)∈[X]×Π a set B∈[A] is said to be a competitive solution for (A,R), if: 

(i) for all x,y∈B, (x,y)∈I(R); 
(ii) [x∈B, y∈A\B, (y,x)∈P(R)] implies [there exists z∈B, such that (z, y)∈P(R)]. 
It is easily verified that given (A,R)∈[X]×Π, if B is a competitive solution for 

(A,R), then there exists C∈Ψ(A,R) such that B⊂C. 
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4. UNIQUE STABLE SETS OF WEAK TOURNAMENTS 

The following result is of immense significance for quasi-transitive rational 
choice. 
Theorem 3. Let R∈Π. Then the following statements are equivalent: 
(1) R is quasi-transitive; 
(2) [Ψ(A,R) = {G(A,R)}∀A∈[X]]. 
Proof: Let us first show that (1) implies (2). Suppose R is quasi-transitive. Clearly ∀ 
A∈[X]: G(A,R)∈Ψ(A,R). Let B∈Ψ(A,R). Towards a contradiction suppose x∈B\G(A,R). 
Then there exists y∈G(A,R) such that (y,x)∈P(R). Since B∈Ψ(A,R), y∈A\B. Since 
y∈G(A,R) there does not exist z in A (and hence in B) such that (z,y)∈P(R). This 
contradicts B∈Ψ(A,R). Thus B⊂G(A,R). 

Now suppose x∈G(A,R)\B. Thus there does not exist z∈B: (z,x)∈P(R). Thus 
B∉Ψ(A,R). Thus G(A,R)⊂B. Hence B=G(A,R). Thus, (1) implies (2).  

Now let us show that (2) implies (1). Suppose Ψ(A,R)={G(A,R)} for all A∈[X]. 
Towards a contraction suppose R is not quasi-transitive. Thus there exists x, y, z∈X : 
(x,y)∈P(R), (y,z)∈P(R) and (x,z)∉P(R). Since, Ψ({x,y,z},R)={G({x,y,z},R)},  
G({x,y,z},R)≠φ. Hence (z,x)∉P(R). Thus (x,z)∈I(R). Thus Ψ({x,y,z}, R) = {{x,z}} ≠ 
{G({x,y,z}, R)} = {x}. Thus R must be quasi-transitive. Thus, (2) implies (1). ♦ 

 
Interesting applications of this result occur in the literature on voting games. 

Given a weak tournament R, Gillies (1959) and Miller (1980), proposed two different 
dominance relations, both of which turn out to be quasi-transitive. Gillies (1959) 
proposed the following quasi-transitive weak tournament: for all x,y∈X, (x,y)∈G* if and 
only if [either (i) (x,y)∈R; or (ii) there exists z∈X, such that (z,y)∈P(R) & (x,z)∈R]. 
Miller (1980) proposed the following the following quasi-transitive weak tournament: for 
all x,y∈X, (x,y)∈M* if and only if [ either (i) (x,y)∈R; or (ii) there exists z∈X, such that 
(z,x)∈P(R) & (z,x)∈R]. In view of Theorem 3, we may conclude that [Ψ(A,G*) = 
{G(A,G*)}∀A∈[X]]and [Ψ(A,M*) = {G(A,M*)}∀A∈[X]]. 

Note: It is possible for Ψ(A,R) to be a singleton  ∀A∈[X], without R being 
quasi-transitive. Let X ={x,y,z}, such that (x,y)∈P(R), (y,z)∈P(R) and (x,z)∈I(R). Clearly, 
R is not quasi-transitive. However, Ψ({x,y,z}, R) = {{x,z}}, Ψ({x,y}, R) = {{x}}, 
Ψ({y,z}, R)={{y}} and Ψ({x, z}, R) = {{{x,z}} (: although both {x,z} and {x} are 
competitive solutions for (X, R)). 

A necessary and sufficient condition for Ψ(A,R) to be a singleton ∀A∈[X] is that 
R is acyclic. 

 
Theorem 4. Let R∈Π. Then R is acyclic if and only if  [Ψ(A,R) is a singleton ∀A∈[X]]. 
Proof: Suppose R is acyclic. By Theorem 1, Ψ is well defined at R. Let A∈[X] and 
B,C∈Ψ(A,R) with B≠C. Suppose C⊂B. Let x∈B\C. Since C∈Ψ(A,R), there exists y∈C 
such that (y,x)∈P(R). But, C⊂B implies, y∈B. This contradicts the assumption that 
B∈Ψ(A,R). Thus C⊄B. A similar argument shows that B⊄C. Since, B,C∈Ψ(A,R), for all 
x∈B\C, there exists y∈C\B, such that (y,x)∈P(R) and for all x∈C\B, there exists y∈B\C, 
such that (y,x)∈P(R). Since X is finite, this yields a set {x1,x2,…,xk}, where (xi, xi+1)∈P(R) 
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for i=1,…,k–1 and (xk, x1)∈P(R). However, G({x1,x2,…,xk},R)=φ. This contradicts the 
acyclicity of R. Thus [Ψ(A,R) is a singleton ∀A∈[X]]. 

The proof of the converse is by induction on the cardinality of X. For #X ≤ 3, 
[Ψ(A,R) is a singleton ∀A∈[X]] if and only if R is acyclic has been observed earlier in 
Example 1, Theorem 3 and in the note preceding Theorem 4. Hence suppose the theorem 
is true for #X ≤ k, for some positive integer greater than or equal or equal to three. Let 
#X=k+1. Let x∈X, and let Y be a non-empty subset of X\{x}. Suppose [Ψ(A,R) is a 
singleton ∀A∈[X]]. Thus, [Ψ(A,R) is a singleton ∀A∈[Y]]. By the induction hypothesis 
the restriction of R to Y is acyclic. Towards a contradiction suppose G(X,R) = φ. Let 
X={x=x1,x2,…, xk+1}, where (xi,xi+1)∈P(R) for i=1,…,k and (xk+1,x1)∈P(R). By the 
induction hypothesis B=G(X\{x},R) ≠φ. Clearly, B={x2}. Thus, (x2, xj)∈P(R), for 2< j≤ 
k+1. Thus, G({x1,x2,xk+1},R)=φ, contradicting the induction hypothesis. Thus, R is acyclic. 
The theorem now follows by a standard induction argument. ♦ 
 
Acknowledgment: An earlier version of this paper entitled “Abstract Games Admitting 
Stable Solutions”, was presented at the Fifth Annual Conference on Econometric 
Modelling for Africa held at the University of Witwatersrand, Johannesburg, July 5-7, 
2000. I would like to thank all the participants of the conference and in particular, Gerald 
Pech, for their comments. This paper has benefited considerably from useful discussions 
on this and related issues with Ahmet Alkan and Yukihiko Funaki. I would like to thank 
them for their comments. I have benefited immensely from comments and corrections on 
this paper that were provided by Jozsep Mala. I would like to thank him above all for the 
beautiful counterexample that has been provided after Theorem 1. Needless to say, that 
the responsibility for errors that still remain are mine. 

 
 

REFERENCES 

[1] Gillies, D.B., “ Solutions to general zero-sum games”, in: A.W. Tucker and R.D. Luce (eds.), 
Contributions to the Theory of Games, Vol.4, Princeton Univ. Press, Princeton, 1959. 

[2] Kim, K.H., and Roush, F.W., Introduction to Mathematical Consensus Theory, Lecture Notes 
in Pure and Applied Mathematics, Vol. 59, Marcel Dekker, Inc., 1980. 

[3] Lucas, W.F., “Von Neumann-Morgenstern stable sets”, Chapter 17 in: R. Aumann and S.Hart 
(eds.), Handbook of Game Theory, Vol.1, Elsevier, Amsterdam, 1992. 

[4] Miller, N., “Graph – theoretical approaches to the theory of voting”, American Journal of 
Political Science, 21 (4) (1977) 769-803. 

[5] Miller, N., “ A new solution set for tournaments and majority voting: further graph theoretical 
approaches to the theory of voting”, American Journal of Political Science, 24 (1981) 68-96. 

[6] Moulin, H., “Choice functions over a finite set: A summary”, Social Choice Welfare, 2 (1985) 
147-160. 

[7] Moulin, H., “Choosing from a tournament”, Social Choice Welfare, 3 (1986) 271-291. 
[8] Peris, J.E., and Subiza, B., “Condorcet choice correspondences for weak tournaments”, Social 

Choice Welfare, 16 (1999) 217-231. 
[9] Roth, A., and Sotomayor, M., “Two-sided matching”, in: Econometric Society Monograph 18, 

Cambridge University Press, 1990. 


