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1. INTRODUCTION 

Differences between individuals or between groups of individuals are not only 
normal but also unavoidable phenomena in the biological world. But only within the human 
species do we find from the down of history, inequalities of a different nature - social 

inequalities, which has little to do with the biological differences [4]. Social conflicts of all 
times have hinged on economic inequality between social classes and this social 
difference singles out the human species from others. Thus there are different economic 
inequalities - income inequalities among individuals of a population, wealth inequalities 
between developed and developing countries, concentration of industry in the hands of a 
few individual companies etc. There are different economic programmes aimed at 
removing economic inequalities between social structures. Economic models of taxation, 
subsidies, income transfer and financial aids etc. are some of the means adopted to 
reduce the social inequalities i.e. to reduce the difference between the rich and the poor. 

Attempts to introduce quantitative measures of inequality of income or of wealth 
had started early in this century. In order to evaluate proposed measures it becomes 
desirable to determine how income or wealth distribution might be compared in order to 
say that one distribution was 'more equal' than the other. The first attempt along this line 

was made by Lorenze [11] in introducing what has become as 'Lorenze curve'. 'Lorenze' 

technique was later discussed and modified by many authors [22, 23, 24]. Later Dalton [2] 
took a different view point, leading to the principle of transfers. Dalton's work is of 
significant importance in mathematical economics; it paved the way of introducing a 
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general measure of inequality, not necessarily of economic system and which led to the 

notion of entropy-like function much earlier to the works of Shannon [25] in information 
theory. There are various measures of income inequality introduced by various authors. 
We are however, interested in the entropic measure of income inequality for which Dalton 
is the pioneer. In the present paper our first objective is to investigate the process of 
introducing an entropic measure of income inequality and then to develop a maximum-
entropy method for the optimal reduction of income inequality through the process of 
taxation. 

2. INCOME INEQUALITY AND ENTROPY 

The concept of inequality arises in various contexts and there is considerable 
interest in its measurement. Besides economics, in Political Science and Sociology also 
inequalities of voting strength resulting from legislative misapportionment, of tax structure 
are measures using various indices. The measurement of species diversity in ecology is 

essentially a problem of measuring equality [19]. Measurement of income inequality is 

discussed and surveyed by many authors [24, 26]. A rational approach to a general 

measure of inequality (not necessarily of income or wealth) is first due to Dalton [2]. 

According to Dalton [2] a function φ  is said to be a measure of inequality (better an index 

of inequality) if it satisfies the conditions [12]: 

(i) For any two vectors ( , ,..., )= 1 2 nx x x x  and ( , ,..., )= 1 2 ny y y y  

( ) ( )φ φ⇒ ≤px y x y  

i.e. φ -should be Schur-convex. 

 

(ii) px y  and x  is not a permutation of ( ) ( )φ φ⇒ <y x y  

i.e. φ -should be strictly Schur-convex. 

 
The notation px y  implies that the arguments of x  are 'more equal' than those 

of y . These conditions were first formulated by Dalton [2] although they are hinted at or 

are implicit in the works of Lorenze [11] and Pigou [20]. Again if φ  be a measure of 

inequality, then the function ψ  defined for all x  such that 
=

≠∑
1

0
n

i
i

x  by 

( ) , ,...,ψ φ

= = =

 
 
 =
 
  
 
∑ ∑ ∑

1 2

1 1 1

n
n n n

i i i
i i i

x x x
x

x x x

 

is also a measure of inequality satisfying Daltons' conditions. For measure of equality or 
species diversity in biology, it is desirable that a maximum be achieved when all the 
arguments are equal, so in (i) and (ii) Schur-concavity should replace Schur-convexity. A 

common measure of equality of unnormed distribution ( , ,..., )= ≥1 2 0nx x x x  (negatively 

taken measures of inequality of x ) considered in econometrics by Lorentz [11], Pigou 

[20], Dalton [2] and others are the functions of the form [17]: 
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( , ,..., ) , ,...,φ

= = =

 
 
 =
 
  
 
∑ ∑ ∑

1 2
1 2
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n
n n n n
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i i i
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where H  is some suitable entropy function. Different measures of inequality can be 

obtained for different forms of entropy functions H  [12]. This is a brief account of the 
interrelations between the concept of entropy and the measure of inequality as developed 

by Dalton [2] and others and this is valid for all types of the system. 
Let us now turn to a specific economic system. It is the income distribution of 

individuals of a population or society. To determine a suitable measure of income 

inequality we follow Theil [27]. Let us consider a society consisting of n  income earners 

with incomes ( , ,..., )= 1 2ic i n . It is assumed that ic are non-negative and that at least some 

of them are positive, so that both the total personal income 
=

=∑
1

n

i
i

c C  and per capita 

personal income /
=

 
=   
 
∑

1

n

i
i

C c n  are positive. The income share of i -th individual is his 

share of the total personal income: 

=

= =

∑
1

i
i n

i
i

c C
p

nC
c

. (2.1) 

His population share is his share of the total population, which is simply /1 n  for 

each individual. Then following Theil [27] we define the measure of income inequality as 
the expected information of the message which transforms the population shares into the 
income shares: 

ln ln
/= =

   
= =   

   
∑ ∑

1 1

1

1

n n
i i i

i
i i

p c c
I p

n n C C
 (2.2) 

Now replacing C  by /C n , the expression (2.2) can be reduced to the form, 

ln ln
=

  
= − −  

  
∑

1

n
i i

i

c c
I n

C C
. (2.3) 

The second term of the r.h.s. of (2.3) is the form of Shanon entropy [25] 

ln ln
= =

 
= − = − 

 
∑ ∑

1 1

n n
i i

i
i i

c c
S p p

C C
. (2.4) 

The individual share /=i ip c C  satisfying the conditions , ( , ,..., )≥ ∀ =0 1 2ip i n  

and 
=

=∑
1

1
n

i
i

p  defines a probability distribution and the Shanon-entropy S  measures the 

diversity of the probability distribution{ , ,..., }1 2 np p p . Maximum is reached when 

/= = = =L1 2 1np p p n  i.e. when all the income earners have the same income [9] 
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/= = = =L1 2 nc c c c n . (2.5) 

We can then write I  as [9] 

max ln ln
=

  
= − = − −   

  
∑

1

n
i i

i

c c
I S S n

C C
 (2.6) 

From (2.6) we see that to reduce the income inequality we have to increase the 

value of the entropy S . For the optimal reduction of the income inequality we have to 

maximize the entropy S  subject to some constraints or policies determined by the 

Government. 

3. MAXIMUM-ENTROPY ALGORITHM UNDER 

INEQUALITY CONSTRAINTS 

In this section we shall briefly present the maximum-entropy algorithm under 
inequality constraints to be employed in the next section for the optimal reduction of 
income inequality through taxation. 

The maximum entropy method of estimation of an unknown probability 

distribution { , ,..., }1 2 np p p  consists of the maximization of the entropy. 

ln
=

= −∑
1

n

i i
i

S p p  (3.1) 

subject to the given information or constraints usually expresses in the form of the 
inequalities. 

, , ,...,
=

= < > =∑
1

1 2
n

ik k i
k

g p g i n . 

The expressed values < >ig  are assumed to be known exactly but in practical 

cases these averages are obtained either from physical measurement or from empirical 
experiments so that these experimental measures are usually subjected to errors. So, 
strict equalities in Eq. (3.2) are unrealistic and so we shall discuss maximum entropy 

algorithm for inequality constraints [6]. 
Our problem in general is to maximize the entropy  

( ) ln
=

= −∑
1

n

i i
i

S p p p  (3.3) 

subject to constraints 

( ) , , ,...,
=

= ≤ =∑
1

1 2
n

i i k k i
k

g p g p b i u  (3.4) 

( ) , , , ,...,
=

= ≥ = + + +∑
1

1 2 3
n

i i k k i
k

g p g p b i u u u v  (3.5) 
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( ) , , ,...,
=

= = = + +∑
1

1 2
n

i i k k i
k

g p g p b i v v n . (3.6) 

First of all we convert constraints (3.4) into equations by adding slack-variables, 

thus obtaining ( ) , , , ,...,+ = = 1 2 3i si ig p p b i u . 

Similarly constraints (3.5) can be converted into equations by adding surplus 

variables which gives ( ) , , , ,...,− = = + + +1 2 3i si ig p p b i u u u v . 

Thus the original problem is equivalent to: 

Maximize ( )S p  subject to constraints: 

( ) , , , ,...,+ = = 1 2 3i si ig p p b i u  (3.7) 

( ) , , , ,...,− = = + + +1 2 3i si ig p p b i u u u v  (3.8) 

( ) , , , ,...,= = + + +1 2 3i ig p b i v v v n  (3.9) 

where ( , ,..., )= 1 2 np p p p . 

Now, either > 0sip  or = 0sip . If we consider that each > 0sip , then the 

Lagrangian  

( , , ) ( ) [ ( )]

[ ( )] [ ( )]

λ λ

λ λ

=

=

= + = +

= + − +

+ − + −

∑

∑ ∑

1

1 1

u

s i i si i
i

i v n

i i si i i i i
i u i v

L p p S p b p g p

b p g p b g p

 (3.10) 

For the maximum of ( )S p  

, , , ,...,

, , , ,...,

λ

λ

∂
= − = =

∂

∂
= = = + + +

∂

0 1 2 3

0 1 2 3

i
si

i
si

L
i u

p

L
i u u u v

p

 

So, we see that if , , , ,...,> ∀ =0 1 2 3sip i v  then , , , ,...,λ = ∀ =0 1 2 3i i v , and so we can 

ignore the inequality constraints so far the optimality is concerned; in other words the 

inequality constraints are useless at the point where ( )S p  attains its optimum value. Now, 

if = 0sip  for some ' i ' then the i -th inequality becomes equality and we shall assume the 

corresponding λi  to be non-zero. 

From the above discussion we can make an algorithm to find the point ( )p  at 

which ( )S p  has its maximum value subject to the constraints (3.4), (3.5) and (3.6). 

First of all we will consider the optimum of ( )S p  ignoring the inequality 

constraints. If the point so obtained also satisfies the inequality constraints then that point 
will be the solutions of (3.3). If one or more inequality constraints are not satisfied then we 
will select one of the inequality constraints as an equality constraint ignoring others and 
repeat the process. If the point obtained in this step satisfies all the inequality constraints 
(except the one which became equality) then that point gives the solution of (3.3). Again if 
the solutions obtained in the second step do not satisfy one or more inequality constraints 
then we shall make two inequality constraints into equations and repeat the process. In 
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this way we are to proceed until the optimum is obtained satisfying all the inequality 
constraints. 

4. OPTIMAL TAXATION: MAXIMUM ENTROPY ALGORITHM 

In this section we shall consider a method of reduction of the income (or wealth) 
inequality by taxation and study the role of the technique of maximum-entropy algorithm 
described in section 2 in determining the optimal taxation policy. 

As stated before let , ,...,1 2 nc c c  be the income of the n  individuals in a 

population and 
=

= ∑
1

n

i
i

C c  be the total income of the population. Let ( )if c  be the taxation 

function for the certain taxation policy so that the income charged from a person is ( )i ic f c  

whose income is ic . We assume that no body is charged more tax than his income and 

there is no negative taxation or subsides. 
So we have  

( ) , , ,...,≤ ≤ =0 1 1 2if c I n . (4.1a) 

One way of reducing income inequality is through taxation. However, in order 

that the income inequality is reduced through taxation we mast have ( )if c  to be an 

increasing function of ic  [9]. Let a person whose income is ic  have the real income 

[ ( )]−i ic f c  after taxation. We also assume the fair taxation policy: 

( ) ( ) ( )− ≤ − ≤ ≤ −L1 1 1 2 2 2 n n nc c f c c c f c c c f c  (4.1b) 

so that after taxation the richer does not become poorer. Then to minimize the income 

inequality is to maximize the taxation entropy [9]: 

( ) ( )
ln

[ ( )] [ ( )]=

= =

− −
= −

− −

∑
∑ ∑1

1 1

n
i i i i i i

n n
i

i i i i i i
i i

c c f c c c f c
S

c c f c c c f c

 (4.2) 

or equivalently  

[ ( )]ln[ ( )]
=

= − − −∑
1

n

i i i i i i
i

S c c f c c c f c  (4.3) 

subject to constraints  

( ) ( , , ,..., )≤ ≤ ∀ =0 1 1 2 3if c i n  (4.4) 

and 

( ) ,
=

= <∑
1

n

i i
i

c f c T T C  (4.5) 

the later implying the fixed income tax revenue. So, the problem is  
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to maximize ln( )
=

= −∑
1

n

i i i i
i

S c x c x   i.e. to maximize ln
=

= −∑
1

n

i i
i

S q q  (4.6a) 

where ( ), , , ,...,= − = =1 1 2i i i i ix f c q c x i n  

subject to constraints: 

≤ ≤0 i iq c  (4.6b) 

and 

=

= −∑
1

n

i
i

q C T . (4.6c) 

Now, to solve this we shall follow a technique of solving optimization problems 
under inequality constraints. 

Let us first ignore the inequality constraints (4.6b) and consider the Lagrangian 

( , ) ln ( )λ λ
= =

 
= − − − − 

 
∑ ∑

1 1

n n

i i i
i i

L q q q q C T  (4.7) 

Now 
∂

=
∂

0
i

L

q
 gives  

[ln ]λ− + − =1 0iq  (4.8) 

or λ µ−= =1
iq e  (say). Now, equation (4.6c) gives µ

=

= −∑
1

n

i

C T  

( , ,..., )

µ
−

⇒ =

−
⇒ = = 1 2i

C T

n

C T
q i n

n

 (4.9) 

But this may not satisfy the first constraint (4.6b) unless we allow subsides. 

(i) Now if ( , ,..., )
−

≤ = 1 2i
C T

c i n
n

 then ( )
−

− =i i i
C T

c c f c
n

.  

So that after paying taxes, everybody has the same income. 

(ii) If we see that, 
−

> m
C T

c
n

 for some m  then we will make the inequality constraints 

≤m mq c  into an equality i.e. =m mq c  so that the Lagrangian in this step will be  

( , ) ln ( )λ λ
= ≠

 
= − − + − − 

 
∑ ∑
n

i i i m
i m i m

L q q q q c C T  (4.10) 

then  ,
∂

= ≠
∂

0
i

L
i m

q
 gives ln λ+ − =1 0iq  

λ µ−⇒ = =1
i iq e  (say), ≠i m  (4.11) 
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So, (

≠

+ = −∑ i m
i m

q c C T  

( )µ⇒ − + = −1i mn c C T  

µ
− −

⇒ =
−1

m
i

C T c

n
 (4.12) 

So, in this case, 

,

,

− −
≠

= −
 =

1
m

i

m

C T c
i m

q n

c i m

 (4.13) 

Now, if in this step ,
− −

= ≤ ≠
−1

m
i i

C T c
q c i m

n
 then the taxation will be 

,
( )

,

− −
− ≠

= −
 =

1

0

m
i

i i

C T c
c i m

c f c n

i m

 

implying that every person except one will be left with income 
− −

−1
mC T c

n
 each while 

for the m -th person it is mc . 

(iii) Again if in this step we see that, when 
− −

>
−1

m
r

C T c
c

n
 for some r  then, we will 

make two inequalities ≤m mq c  and ≤r rq c  into equalities 

= 


= 

m m

r r

q c

q c
 (4.14) 

So, in this step our problem is equivalent to the maximization of ln
=

−∑
1

n

i i
i

q q  subject to 

the constraints: 

=m mq c  (4.15) 

=r rq c  (4.16) 

=

= −∑
1

n

i
i

q C T  (4.17) 

This leads to, , ,
− − −

= ≤ ≠
− 2

m r
i i

C T c c
q c i m r

n
 if (4.6b) holds, so that after 

paying taxes the will be left with income , , , ,...
− − − − −

− −1 2
m r m

r m
C T c C T c c

c c
n n

 then the 

taxation will be 
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, ,
( )

, ,

− − −
− ≤ ≠

= −
 =

2

0

m r
i i

i i

C T c c
c c i m r

c f c n

i r m

 

but if (4.6b) does not hold for some i  then we are to make three inequalities into 

equalities and we have to proceed in this way as long as necessary. 
 
 

5. OPTIMAL TAXATION: AN ALTERNATIVE MAXIMUM-ENTROPY 

APPROACH 

We shall now follow an alternative approach to the solution of the optimal 
taxation problem. In the previous section the optimal problem has been reduced to the 
maximization of Shannon entropy (4.6a) subject to the constraints (4.6b) and (4.6c). In the 
present approach we shall decouple the inequality constraint (4.6b) from the equality 
constraint (4.6c) and modify the entropy (4.6a) to take account of the inequality constraint 
(4.6b), so that the new q  estimated from the maximization of the new entropy subject to 

the equality constraint (4.6c) will automatically satisfies the constraints (4.6b). 
The modified form of entropy taking into account the inequality constraint (4.6b) 

is given by [9] 

' ln ( ) ln( )

= =

= − − − −∑ ∑
1 1

n n

i i i i i i
i i

S q q c q c q  (5.1) 

subject to the equality constraint (4.6c) 

=

= −∑
1

n

i
i

q C T . (5.2) 

Let us consider the Lagrangian 

( , ,..., ; ) ln ( ) ln( ) ( )α α
= = =

 
= − − − − − − − 

 
∑ ∑ ∑1 2

1 1 1

n n n

n i i i i i i i
i i i

L q q q q q c q c q q C T  (5.3) 

Then  
∂

=
∂

0
i

L

q
 gives ln α

 
= 

− 

i

i i

q

c q
 

( , ,..., )
α−

⇒ = =
+

1 2
1

i
i

c
q i n

e
 (5.4) 

where the Lagrangian parameter α  is determined by the inequality constraint: 

=

= −∑
1

n

i
i

q C T   

leading to the value 
α−

−
=

+

1

1

C T

Ce
 

then, 
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( ) , ( , ,..., )
− 

= − = = 
 

1 2i i i i
C T

q c f c c i n
C

 (5.5) 

so that after paying taxes the person is left with income , ( , ,..., )
− 

= 
 

1 2i
C T

c i n
C

. 

Thus, we see that the incomes of each person are reduced by a fixed 

fraction
−C T

C
. Finally we note that the solution (5.5) satisfies both the constraints (4.6b) 

and (4.6c). 
The above solution is very simple in comparison with the earlier one. The earlier 

one is a generalization and in fact provides a mathematical foundation of the heuristic 

approach of Kapur [9]. The income inequality is one of the economic inequalities between 
the poor and the rich. If one of the objectives of taxation policy is to reduce the income 
inequality among the individuals of a population, the above two approaches based on 
maximum entropy principle, in spite of their limitations, provide two effective methods of 
solution of optimal taxation problems. 
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