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Abstract: The Just-In-Time (JIT) philosophy has received a great deal of attention. 
Several actions such as improving quality, reducing setup cost and shortening lead time 
have been recognized as effective ways to achieve the underlying goal of JIT. This paper 
considers the partial backorders, lot size reorder point inventory system with an imperfect 
production process. The objective is to simultaneously optimize the lot size, reorder point, 
process quality, setup cost and lead time, constrained on a service level. We assume the 
explicit distributional form of lead time demand is unknown but the mean and standard 
deviation are given. The minimax distribution free approach is utilized to solve the problem 
and a numerical example is provided to illustrate the results. 
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1. INTRODUCTION 

In the classical production/inventory models, such as the economic order 
quantity (EOQ) model, the setup/ordering cost and lead time are assumed to be fixed, so 
does quality of production process (products). In other words, these factors (setup cost, 
lead time, and quality) are treated as givens (Silver [17]) and not subject to control. 
However, among the modern production/inventory management, the Japanese successful 
experience of using Just-In-Time (JIT) production has evidenced that the above factors 
can be controlled through various efforts. Also, accompanying the growth of JIT 
philosophy, considerable papers discussing the issues related to changing the givens 
have been presented.  

 
Concerning lead time reduction, Liao and Shyu [8] first presented a probabilistic 

inventory model in which the order quantity is predetermined and lead time is a unique 
variable. Ben-Daya and Raouf [1] extended [8] by considering both lead time and order 
quantity as decision variables. Ouyang et al. [11] generalized [1] by allowing shortages 
with partial backorders. Moon and Choi [9] and Hariga and Ben-Daya [4] respectively 
modified [11] to include the reorder point as one of the decision variables. Recently, 
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Ouyang et al. [10] further combined the concepts of setup cost and lead time reductions, 
and they extended [9] by simultaneously optimizing the lot size, reorder point, setup cost 
and lead time. Note that the framework of setup cost reduction is initially presented by 
Porteus [13], and several authors have studied this issue on various production/inventory 
systems (see, e.g. Keller and Noori [6], Paknejad et al. [12], Sarker and Coates [15]).  

In the above mentioned models with controllable lead time [1, 4, 8-11], the 
quality-related issues are neglected; in other words, quality of production process 
(products) is implicitly assumed to be fixed at an optimal level and no quality cost is 
considered. However, in a real production environment, it can often be observed that 
there are defective items being produced. The results are extra costs incurred, no matter 
the defective items are rejected, repaired, reworked, or reached to the customer, 
refunded. Improving quality has been highly emphasized in modern production/ 
inventory management systems. In addition to the setup cost reduction, Porteus [14] is 
also the first to explicitly elaborate on a significant relationship between quality 
imperfection and lot size. Specifically, Porteus extended the classical EOQ model to 
include an imperfect production process, and based on the modified model, he studied the 
effects of quality improvement by further introducing the investing options. Besides, there 
are some authors modified [14] with various settings (see, e.g. Keller and Noori [7], Hong 
and Hayya [5]).   

From the above literature review, it can be found that there is no shortage of 
inventory models presented for controlling setup cost, lead time or quality, but little work 
has been done on controlling them simultaneously. In this paper, building upon Ouyang et 
al.'s [10] modified lot size reorder point (continuous review ( , )Q r ) inventory model, we 

extend it to include the possible relationship between quality and lot size and an investing 
option of quality improvement. Furthermore, instead of having the stock out cost term in 
the objective function, we employ a service level constraint to control the stock out 
occasion. Our goal is to minimize the total related cost by simultaneously optimizing the 
lot size, reorder point, process quality, setup cost and lead time, subject to a service level 
constraint. We work on a case where the distributional form of lead time demand is 
unknown but the first and second moments are known and finite. The minimax distribution 
free approach, originally proposed by Scarf [16] and disseminated by Gallego and Moon 
[2], is utilized to solve the problem. Also, we develop an algorithm of finding the optimal 
solution and provide a numerical example to illustrate the results. Finally, the concluding 
remarks are made.  

2. NOTATIONS AND ASSUMPTIONS 

    First of all, the following notations and assumptions are employed throughout 
this paper so as to develop the proposed models. 
Notations: 
Q  = lot size 

r  = reorder point 

L  = replenishment lead time 

D  = annual demand rate 

h  = annual inventory holding cost per unit 

s  = cost of replacing a defective unit 

θ  = annual fractional cost of capital investment 

β  = fraction of the shortage that will be backordered, β≤ ≤0 1  
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τ  = proportion of demands which are not met from stock, /τ < 1 2  

X  = lead time demand which has a distribution function (d.f.) F  with finite mean 

DL  and standard deviation σ L , where σ  denotes the standard deviation 

of the demand per unit time 

A   = setup cost per order 

0A  = original level of setup cost  

( )AI A  = capital investment required to reduce the setup cost from original level 0A  to 

target level ,A  < ≤ 00 A A  

δ  = percentage decrease in setup cost A  per dollar increase in investment ( )AI A  

η  = probability of the production process that can go 'out-of-control' 

η0  = original probability of the production process that can go 'out-of-control' 

( )η ηI  = capital investment required to reduce the 'out-of-control' probability from 

original level η0  to target level η , η η< ≤ 00  

∆  = percentage decrease in η  per dollar increase in investment ( )η ηI  

 
Assumptions: 

1. The reorder point, =r expected demand during lead time +  safety stock ( )SS , and 

= ⋅SS k (standard deviation of lead time demand), i.e., σ= +r DL k L , where k  is 

the safety factor.  
2. The lead time L  has n  mutually independent components. The i th component has 

a minimum duration iu  and normal duration iv , and a crashing cost per unit time ic . 

Furthermore, for convenience, we rearrange ic  such that ≤ ≤ K1 2c c  ≤ nc . Then, 

it is clear that the reduction of lead time should first occur on component 1 (because it 
has the minimum unit crashing cost), and then component 2, etc.  

3. If we let 
=

= ∑0
1

n

j
j

L v  and iL  be the length of lead time with components , ,...,1 2 i  

crashed to their minimum duration, then iL  can be expressed as  

( )

= =

= − −∑ ∑
1 1

n i

i j j j
j j

L v v u , , , ,= K1 2i n ; and the lead time crashing cost ( )R L  per  

cycle for a given [ , ]−∈ 1i iL L L , is given by  

( ) ( ) ( )
−

−
=

= − + −∑
1

1
1

i

i i j j j
j

R L c L L c v u  and ( ) =0 0R L .  

4. The setup cost can be varied through investment. The capital investment, ( )AI A , in 

reducing setup cost is described by a logarithmic function of the setup cost A , and 

( ) ln( )= 0
A

A
I A b

A
 for < ≤ 00 A A , where 

δ
=

1
b .  

5. The relationship between quality and lot size is formulated as follows. While 
producing a lot, the process can go 'out-of-control' with a small probability η  each 

time another unit is produced. The process is assumed to be in control before 
beginning production of the lot. Once 'out-of-control', the process produces defective 
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units and continues to do so until the entire lot is produced. (This assumption is in line 
with Porteus [14] and is supported by Hall [3].) 

6. The production process can be improved through investment. The capital investment, 

( )η ηI , in improving process quality by means of reducing the 'out-of-control' 

probability η  (note that the lower the value of η  the higher the process quality) is a 

logarithmic function of η ; that is,   

( ) ln( )η
η

η
η

= 0I B  for η η< ≤ 00 , where =
∆

1
B .  

 

3. MODEL FORMULATION 

Recently, Ouyang et al. [10] explored the setup cost and lead time reductions 
problem on the lot size reorder point inventory system, where shortages are allowed with 
partial backorders. Symbolically, they formulated an inventory model as follows: 

min ( , , , ) ln ( ) ( )

[ ( )] ( ) ( )

θ β

π π β

+

+

   
= + + + − + − −   

   

+ + − − +

0

0

1
2

1

A D Q
EAC Q r A L b A h r DL E X r

A Q

D D
E X r R L

Q Q

 

subject to 

< ≤ 00 A A , (1) 

where π  is shortage cost per unit short, π0  is marginal profit per unit, and ( )
+−E X r  is 

the expected shortage per replenishment cycle. 
In model (1) the possible relationship between quality and lot size is ignored and 

no quality improvement planning is considered. These two issues are taken into account 
here. Firstly, by assumption 5, we note that the expected number of defective items in a 

run of size Q  is approximated to /η2 2Q  (for more details, see [14]). Suppose the cost of 

replacing a defective unit is s . Thus, the expected annual defective cost would be 

/η 2sDQ . Besides, when process quality is no longer considered to be a fixed parameter 

but a decision variable, the control of quality level is accomplished by varying the capital 
investment allocated to improve quality level (assumption 6). On the other hand, the stock 
out cost term is included in model (1). However, the stock out cost often includes 
intangible components such as loss of goodwill and potential delay to the other parts of 
the inventory system, so it is difficult to explicitly express the stock out cost. Therefore, we 
would like to replace the stock out cost term in the objective function by a service level 
constraint. 

With the above modifications, our concerning problem can be formulated as: 

min ( , , , , ) ln ln

( ) ( ) ( )

η
η θ θ

η

η
β +

  
= + +  

   

 
+ + − + − − + + 

 

0 0

1
2 2

A AD
EAC Q r A L b B

A Q

Q D sDQ
h r DL E X r R L

Q

 

subject to 
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( )
τ

+−
≤

E X r

Q
, 

η η< ≤ 00 , 

< ≤ 00 A A ,   (2) 

where τ  ( / )< 1 2  is the proportion of demands which are not met from stock, and hence 

τ−1  is the service level. 

 
 

4. SOLUTION BY MINIMAX DISTRIBUTION FREE APPROACH 

Information about the distributional form of lead time demand might be limited in 
practice. Therefore, in contrast to the traditional approach that the lead time demand X  
follows a special form of distribution, we assume the d.f. F  of X  belonging to the class 

F  of d.f.'s with finite mean DL  and standard deviation σ L . In this case, the exact 

value of the expected shortage per replenishment cycle ( )
+−E X r  can not be obtained. 

We then utilize the minimax distribution free approach to solve the problem. The minimax 
principle for this problem is to find the least favorable d.f. F  in F  for each ( , , , , )ηQ r A L  

and then to minimize the total expected annual cost over , , ,ηQ r A  and L . That is, our 

problem is to solve 

min max ( , , , , )η
∈F

EAC Q r A L
F

 

subject to 

( )
τ

+−
≤

E X r

Q
, 

η η< ≤ 00 , 

< ≤ 00 A A .                     (3)                       

We note that to find the least favorable d.f. in F  for (3) is equivalent to finding 

the worst case for ( )
+−E X r  in model (2). This task can be achieved by utilizing the 

relationship σ= +r DL k L  (assumption 1) and Lemma 1 in Gallego and Moon [2]. That 

is, we have  

( )( ) σ+− ≤ + −21
1

2
E X r L k k  , for any ∈F F .   (4) 

    Then by substituting ( ) /σ + −21 2L k k  for ( )
+−E X r  in model (2) and 

considering the safety factor k  as a decision variable instead of the reorder point r  

(because σ= +r DL k L ), the problem (3) is reduced to  
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( )

min ( , , , , ) ln ln

( ) ( )

η
η θ θ σ

η

η
β σ

    
= + + + +    

    

+ − + − + +

0 0

2

2

1
1 1

2 2

w A AD Q
EAC Q k A L b B h k L

A Q

D sDQ
h L k k R L

Q

 

Subject to 

( )σ τ+ − ≤21 2L k k Q ,  

η η< ≤ 00 , 

< ≤ 00 A A .   (5) 

where ( )⋅wEAC  is the least upper bound of ( )⋅EAC . 

In order to solve this nonlinear programming problem, we temporarily ignore the 
restrictions η η< ≤ 00  and < ≤ 00 A A , and solve the nonlinear programming problem 

with a single constraint. By adding a nonnegative slack variable, 2M , to the left-hand side 

of service level constraint ( )σ τ+ − ≤21 2L k k Q , we transfer this inequality into 

equality and formulate the Lagrangean function as follows:   

( )

( )
( )

( , , , , , , ) ( , , , , )

ln( ) ln( )

( ) ( )

,

η λ η λ σ τ

η
θ θ σ

η

η
β σ

λ σ τ

 = + + − + −  

 
= + + + + 

 

+ − + − + +

 + + − + −  

2 2

0 0

2

2 2

1 2

2

1
1 1

2 2

1 2

w wEAC Q k A L M EAC Q k A L L k k M Q

A AD Q
b B h k L

A Q

D sDQ
h L k k R L

Q

L k k M Q

  (6) 

where λ  is a Lagrange multiplier. 

It can be verified that ( , , , , , , )η λwEAC Q k A L M  is not a convex function of 

( , , , , , , )η λQ k A L M . However, for fixed ( , , , , , )η λQ k A M , ( , , , , , , )η λwEAC Q k A L M  is 

concave in [ , ]−∈ 1i iL L L  because 

( )

/

/

( , , , , , , )

[ ( ) ] .

η λ
σ

σ β λ

−

−

∂
= −

∂

− + − − + <

2
3 2

2

2 3 2

1

4

1
1 1 2 0

8

wEAC Q k A L M
hk L

L

k k L h

  (7) 

Therefore, for fixed ( , , , , , )η λQ k A M , the minimum ( , , , , , , )η λwEAC Q k A L M  will occur at 

the end points of the interval [ , ]−1i iL L . 
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On the other hand, we take the first partial derivatives of 

( , , , , , , )η λwEAC Q k A L M  with respect to , , , ,η λQ k A  and M , and then set the results 

equal to zero, respectively. We obtain:  

( , , , , , , ) ( )η λ η
λτ

∂
= − + − + − =

∂ 2 2
2 0

2 2

wEAC Q k A L M AD h DR L sD

Q Q Q
,    (8) 

( , , , , , , )η λ λ
σ β

  ∂  
 = −  −  − + =  ∂   +  

2

1 2
1 1 1 0

2 1

wEAC Q k A L M k
h L

k hk
,   (9) 

( , , , , , , )η λ θ

η η

∂
= − + =

∂
0

2

wEAC Q k A L M B sDQ
,  (10)               

( , , , , , , )η λ θ∂
= − + =

∂
0

wEAC Q k A L M b D

A A Q
,  (11) 

( , , , , , , )η λ

λ

∂
=

∂

wEAC Q k A L M ( )σ τ+ − + − =2 21 2 0L k k M Q ,  (12) 

( , , , , , , )η λ
λ

∂
= =

∂
2 0

wEAC Q k A L M
M

M
.  (13) 

From Eq. (13), we find that λ = 0  or = 0M . However, if λ = 0 , then Eq. (9) will 

result in 
β

β

+
= − <

−+ 2

1
0

11

k

k
, which is infeasible since k  is a safety factor and the value 

of k  should be nonnegative. Thus, it is clear that the slack variable = 0M . Therefore, for 

given [ , ]−∈ 1i iL L L , the optimal solution of ( , , , )ηQ k A  that minimizes the total expected 

annual cost ( , , , , )ηwEAC Q k A L  and satisfies the constraint ( )σ τ+ − ≤21 2L k k Q  will 

occur at the point when this inequality is held at equality. 
Simplifying Eqs. (8), (9), (10), (11) and (12), respectively, we get 

 
[ ( )]

η λτ

+
=

+ −

2

4

D A R L
Q

h sD
,   (14) 

( )( )λ β
 

= + + + + 
 

21
1 1

2
h k k k ,   (15) 

θ
η =

2 B

sDQ
,   (16) 

θ
=

bQ
A

D
,   (17) 

τ

σ
+ − =2 2

1
Q

k k
L
.   (18) 
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Furthermore, solving Eqs. (14)-(18) simultaneously for the relative decision 

variables (denoted by *Q , *k , *η , *A  and *λ ), we obtain  

* ( ) [ ( )] ( )[( / ) ( )]

( )

θ θ τβ σ τ

τβ

− + − + − +
=

−

2 21 2 2 2

1 2

b B b B h h L DR L
Q

h
,  (19) 

*
*

*

σ τ

στ
= −

4

L Q
k

LQ
,  (20) 

*

*

θ
η =

2 B

sDQ
,  (21) 

*
* θ

=
bQ

A
D

,  (22) 

*

*

σ
λ β

τ

   
= +    

   

2

2 2

h L

Q
.  (23) 

    The following proposition shows that, for fixed [ , ]−∈ 1i iL L L , when the 

restrictions η η< ≤ 00  and < ≤ 00 A A  are ignored, the point * * * *
( , , , )ηQ k A  is the local 

optimal solution, which satisfies the constraint ( )σ τ+ − ≤21 2L k k Q  and minimizes the 

total expected annual cost ( , , , , )ηwEAC Q k A L .  

 
Proposition 1. When the restrictions η η< ≤ 00  and < ≤ 00 A A  are ignored, for given 

[ , ]−∈ 1i iL L L , the point * * * *
( , , , )ηQ k A  satisfies the second order sufficient condition 

(SOSC) for the minimizing problem with a single constraint.   
 

Proof: See Appendix. 
 
We now consider the restrictions η η< ≤ 00  and < ≤ 00 A A . Firstly, from Eqs. (21) and 

(22), we note that *η  and *A  are positive as the problem parameters θ , b, B, s, and D  

are positive. Then, we discuss the following four cases where *η  and *A  may occur.  

(i) If *η η< 0  and 
* < 0A A , then * * * *

( , , , )ηQ k A  is an interior optimal solution for a given 

[ , ]−∈ 1i iL L L . 

(ii) If *η η≥ 0  and 
* < 0A A , then it is unrealistic to invest in improving process quality. In 

this case, the optimal quality level is the original quality level, i.e., *η η= 0 , and the 

corresponding optimal * * *
( , , )Q k A  can be determined by solving Eqs. (14), (15), (17) 

and (18), which results in    
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* ( ) [ ( ) ][( / ) ( )]

( )

θ θ τβ η σ τ

τβ η

+ + − + +
=

− +

2 2
0

0

1 2 2 2

1 2

b b h sD h L DR L
Q

h sD
,  (24) 

    and *k  and *A  are as those given in Eqs. (20) and (22), respectively. 

(iii) If *η η< 0  and 
* ≥ 0A A , then it is unrealistic to invest in setup cost reduction. In this 

case, the optimal setup cost is the original setup cost level, i.e., * = 0A A , and the 

corresponding optimal * * *
( , , )ηQ k  can be determined by solving Eqs. (14), (15), (16) 

and (18), which results in   

      
{ }

*
( ) ( ) [ ( )] ( / )

( )

θ τβ σ τ θ

τβ

+ − + + −
=

−

2 2
01 2 2 2

1 2

B h D A R L h L B
Q

h
,  (25)     

and *k  and *η  are as those given in Eqs. (20) and (21), respectively. 

(iv) If *η η≥ 0  and 
* ≥ 0A A , then we should not make any investment to change the 

current setup cost and process quality. In this case, the optimal * = 0A A  and *η η= 0 , 

and the optimal * *
( , )Q k  can be determined by solving Eqs. (14), (15) and (18), which 

results in      

                * [ ( )] ( / )

( )

σ τ

τβ η

+ +
=

− +

2
0

0

2 2

1 2

D A R L h L
Q

h sD
  (26) 

and *k  is the same as that given in Eq. (20). 
 

By the above discussions, we now develop an algorithm to find the optimal 
values for lot size, reorder point, process quality, setup cost and lead time.  
 

Algorithm. 

Step 1. For each , , , , ,= K0 1 2iL i n , utilize (19) to determine *
iQ , and then substitute 

*
iQ  into (20), (21) and (22), respectively, to evaluate *

ik , *ηi  and 
*
iA . 

Step 2.  Compare *ηi  and η0 , and 
*
iA  and 0A , respectively.  

(i) If *ηi <η0  and 
*
iA < 0A , then the solution found in Step 1 is optimal for the 

given iL . Go to Step 4. 

(ii) If *ηi ≥ η0  and 
*
iA < 0A , then for this given iL , let *ηi η= 0  and utilize (24) to 

determine the new *
iQ , then substitute it into (20) and (22) respectively, to 

update *
ik  and *

iA . If the new *
iA < 0A , then the optimal solution is obtained, 

go to Step 4; otherwise, go to Step 3. 

(iii) If *ηi <η0  and 
*
iA ≥ 0A , then for this given iL , let * =iA 0A  and utilize (25) to 

determine the new *
iQ , then substitute it into (20) and (21), respectively, to 



 H.-C. Chang / Changing the Values of Parameters on Lot Size Reorder Point Model 78 

update *
ik  and *ηi . If the new 

*ηi <η0 , then the optimal solution is obtained, go 

to Step 4; otherwise, go to Step 3. 

(iv) If *ηi ≥ η0  and 
*
iA ≥ 0A , go to Step 3.  

Step 3.  For this given iL , let *η =i η0  and 
* =iA 0A , and utilize (26) to determine the 

new *
iQ , then substitute it into (20) to evaluate the corresponding optimal *

ik . 

Step 4. Utilize the objective function of model (5) to calculate the corresponding       total 

expected annual cost * * * *
( , , , , )ηw

i i i i iEAC Q k A L . 

Step 5.  Find * * * *

, , , ,
min ( , , , , )η

= K0 1 2

w
i i i i i

i n
EAC Q k A L .  

If ( , , , , )η =w
w w w w wEAC Q k A L * * * *

, , , ,
min ( , , , , )η

= K0 1 2

w
i i i i i

i n
EAC Q k A L ,  

then ( , , , , )ηw w w w wQ k A L  is the optimal solution.  

 

Once wk  and wL  are obtained, the optimal reorder point σ= +w w w wr DL k L  follows. 

 5. NUMERICAL EXAMPLE 

In order to illustrate the above solution procedure, let us consider an inventory 
system with the data used in Ouyang et al. [10] (the stock out costs are excluded): 

= 600D  units per year, =0A $200 per order, =h $20 per unit per year, .θ = 0 1  per dollar 

per year, = 5800b , σ = 7  units per week, and the lead time has three components with 

data shown in Table 1. Besides, we take .η =0 0 0002 , =s $75 per defective unit and 

= 400B . Also, suppose the distributional form of the lead time demand is unknown. 

 
Table 1: Lead time data 

 Lead time Normal Minimum Unit 
component Duration duration crashing cost 

i iv (days) iu (days) ic ($/day) 

1 20 6 0.4 
2 20 6 1.2 
3 16 9 5.0 

 

We solve the cases when the backorder proportion β = 1  (i.e., complete 

backorders), and the allowable proportion of demands which are not met from stock 
. %τ = 1 5 , %1  and . %0 5  (i.e., the desired service level . %τ− =1 98 5 , %99  and . %99 5 ). 

Applying the algorithm developed earlier, the computed results are tabulated in Table 2. 
 

Table 2: The computed results of algorithm ( iL  in weeks) 

Service level 
τ−1  

i iL  *
iQ  *

ir  *
ik  *ηi  *

iA  * * * *
( , , , , )ηw

i i i i iEAC Q k A L  

 0 8 147 134 2.130 0.0000121 142 3245.25 

98.5 % 1 6 134 104 2.019 0.0000133 129 3036.68 
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 2 4 122 71 1.779 0.0000146 118 2860.21 

 3 3 125 52 1.467 0.0000143 121 2898.02 

 0 8 172 148 2.797 0.0000104 166 3670.78 

99 % 1 6 154 115 2.685 0.0000115 149 3390.89 

 2 4 138 80 2.444 0.0000129 133 3124.51 

 3 3 136 60 2.116 0.0000131 132 3098.94 

 0 8 225 178 4.335 0.0000079 200 4672.30 

99.5 % 1 6 203 141 4.170 0.0000088 196 4230.69 

 2 4 175 101 3.932 0.0000101 169 3765.61 

 3 3 165 78 3.598 0.0000108 160 3601.21 

 

From Table 2, the optimal operating policy for each desired service level can be 

found easily by comparing * * * *
( , , , , ),ηw

i i i i iEAC Q k A L , , ,= 0 1 2 3i . We summarize the result 

in Table 3. 
 

Table 3: The optimal operating policy for various service level ( wL in weeks)  

Service level τ−1  ( , , , , )ηw w w w wQ r A L  ( , , , , )ηw
w w w w wEAC Q r A L  

98.5 % (122, 71, 0.0000146, 118, 4) 2860.21 

99.0 % (136, 60, 0.0000131, 132, 3) 3098.94 

99.5 % (165, 78, 0.0000108, 160, 3) 3601.21 

   

Moreover, in order to illustrate the effects of investing in quality improvement and 
setup cost reduction, in addition to the result of the presented model, we list the optimal 
operating policies for the cases where process quality or/and setup cost are treated as 
fixed constant in Table 4. ( β = 1  and . %τ = 1 5 )  

 
Table 4: The optimal operating policies for various situations ( iL  in weeks) 

Decision variables wQ  wr  ηw  wA  wL  ( )⋅wEAC  Savings% 

( , , , , )ηQ r A L   122 71 0.0000146 118 4 2860.21 14.88 

( , , , )ηQ r L  136 68 0.0000131 200 4 2929.75 12.81 

( , , , )Q r A L  98 78 0.0002 94 4 3208.80 4.50 

( , , )Q r L  118 72 0.0002 200 4 3360.11 - 

 
Notes:  (i)   Savings % is based on the total expected annual cost of the ( , , )Q r L  model.  

(ii) The parameter that has value underlined is fixed and given in the 
corresponding model. 
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The results of Table 4 show that no matter quality improvement and setup cost 
reduction are performed, alone or jointly, the savings of total expected annual cost are 
realized. Also, the largest % (14.88 %) savings occurs when quality improvement and 
setup cost reduction are performed simultaneously.  

6. CONCLUDING REMARKS 

In this paper, we first extend Ouyang et al.'s [10] model to include the possible 
relationship between quality and lot size. Then we investigate the joint effects of quality 
improvement and setup cost reduction on the model, where a service level constraint is 
added to replace the stock out cost term in the objective function. The model, for which 
the distributional form of lead time demand is unknown but the mean and standard 
deviation are given, is formulated and solved by the minimax distribution free approach. 
We develop an algorithm to find the optimal values for the lot size, reorder point, process 
quality, setup cost and lead time. A numerical example is provided to illustrate the results 
derived.  

The issues of quality improvement, setup cost and lead time reductions studied 
here belong to the 'changing the givens' approach. This approach may further invoke 
some possible research topics and can be applied to other production/inventory models.  
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APPENDIX 

Proof of Proposition 1: We note that the solution point * * * *
( , , , )ηQ k A  is obtained at 

( )σ τ+ − =21 2L k k Q  (since the slack variable = 0M ). Therefore, in what follows, we 

show that * * * *
( , , , )ηQ k A  satisfies the SOSC for the minimizing problem with a single 

equality constraint.  
For a given value of L, we first obtain the bordered Hessian matrix H  as follows:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

λ λ λ η λ

λ η

λ η

η λ
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∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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,  (A.1) 

where 

( ) ( , , , , , )η λ⋅ ≡w wEAC EAC Q k A L , 

( )
( )

∂ ⋅
= +

∂
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2 3 3

2 2wEAC AD D
R L
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( ) ( )

η η
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For a given value of L , since there are four variables ( , , , )ηQ r A  and one 

constraint, therefore, we need to check the sign of the last three principal minor 

determinants of H  at point * * * *
( , , , )ηQ k A . If the sign of them are all negative, then this 

solution point satisfies the SOSC for the minimizing problem (see, for example, Taha [18], 
p.767). 

Now we proceed by checking the sign of the last three principal minor 

determinants of H  at point * * * *
( , , , )ηQ k A . 
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From (A.2), (A.3) and (A.4), since the sign of 33H , 44H  and | |55H  are all 

negative, hence, it can be concluded that * * * *
( , , , )ηQ k A  satisfies the SOSC for the 

minimizing problem with a constraint.  


