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Abstract: Provision of redundant components in parallel is an efficient way to increase 
the system reliability, however, the weight, volume and cost of the system will increase 
simultaneously.  This paper proposes a new two-phase linear programming approach 
for solving the nonlinear redundancy allocation problems subject to multiple linear 
constraints.  The first phase is used to approximately allocate the resource by using a 
general linear programming, while the second phase is used to re-allocate the slacks of 
resource by using a 0-1 integer linear programming.  Numerical results demonstrate 
the effectiveness and efficiency of the proposed approach. 
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1. INTRODUCTION 

Highly reliable systems can reduce loss of money and time in the real world.  
Two approaches are generally available to enhance the system reliability, i.e., (i) using 
highly reliable components constituting the system, and/or (ii) using redundant 
components in various subsystems in the system (Misra and Sharma [24]).  For the 
former approach, although system reliability can be enhanced, it is occasionally beyond 
our requirement even the highest reliable elements are used.  Although using the latter 
approach enhances system reliability directly, the cost, weight, and volume of the 
ystem increase simultaneously.  The redundancy allocation problem is to maximize 
ystem reliability subject to specific constraints, e.g. cost, weight and volume etc.  The 

general formulation of this problem can be expressed as: 

s
s
 



 Y.-C. Hsieh / A Two-Phase Linear Programming Approach  228

,

max ( , ,..., )

( ) , ,...,
=

≤ =

∈

∑

1 2

1

  

st      ,  1 2

         positive integer

s n
n

i j i i
j

i

R x x x

g x b i m

x

 (P) 

where ix  is the number of parallel components in subsystem . i

There are numerous approaches for solving the redundancy allocation problem 
(P), including: 

 

(i) Heuristics: [6, 14, 16, 29];  
(ii) Artificial Algorithms: genetic algorithms [3, 4, 5, 30], simulated annealing [2, 

11, 32], and tabu search [8];  
(iii) Exact Methods: cutting plane [15], branch-and-bound [25], surrogate 

constraint method [28], dynamic programming [1, 22], implicit search [9]; and  
(iv) Approximate Methods: Lagrange multiplier [33], geometric programming [7, 

24], discrete maximum principle [21], sequential simplex search [33], random 
search [26], boundary search [20, 23], lexicographic search [31], differential 
dynamic programming [27].   
 

Exact methods can find the optimal solutions for the problems, but they are 
usually time-consuming when the problem sizes are medium or large. Interested 
readers are referred to the excellent survey paper by Kuo and Prasad [18]. 

In this paper, we study the following series redundancy allocation problem 
with n subsystems and m linear constraints. 
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where  denotes the resource requirement associated with each component of the 

j-th resource, 

> 0ija

iq  represents the failure probability of components in subsystem , i ix  is 

the number of components in the subsystem i , and  denotes the amount available 

for the  j-th resource. 
jb

Previous investigations applied dynamic programming to solve problem (P1) 
for optimum allocation [1, 10]. Dynamic programming enumerates all possible cases 
and is time-consuming, particularly when system size is large. In addition to dynamic 
programming, with the relaxation of integer constraints (2), geometric programming is 
frequently used to solve problem (P1) (Federowicz and Mazumdar [7] and Misra and 
Sharma [24]). Once solutions are obtained by geometric programming, one may round 
off real solutions to the nearest integers. However, the integer solutions are not 
necessarily optimal any longer. Another drawback of geometric programming is that it 
is also time-consuming due to the complex transformations (see Misra and Sharma 
[24]). In a relevant study, Hochbaum [11] converted this redundancy allocation problem 
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into a 0-1 knapsack problem, indicating that by piecewise linear approximation 
approach, and the complexity closely resembles that of linear knapsack problem. 
However, his approach deals with only one single constraint, and it is NP-complete and 
not attractive in practice. In addition, several local search heuristics, e.g., genetic 
algorithms, tabu search algorithms and simulated annealing algorithms have also been 
used to solve related redundancy allocation problems (see Coit and Smith [4, 5], Hsieh, 
Chen and Bricker [13], Painton and Campbell [27]).   

In light of above developments, this paper will propose a simple two-phase 
linear programming (LP) approach to solve redundancy allocation problem (P1). This 
proposed approach consists of two main phases, namely: 

 
(i) Phase I: (Approximation stage) Initially, with the linear approximation of the 

objective function and the relaxation of integer constraints, a general LP is 
solved for the approximate solution of problem (P1).   

(ii) Phase II: (Improving stage) A 0-1 knapsack problem with  linear 
constraints is then solved to improve the real solutions of Phase I to (feasible) 
integer solutions. 

+n m

 
Phase I is used to approximately allocate the available resource by using a 

general linear programming, while Phase II is to re-allocate the slacks of resource by 
using a 0-1 integer linear programming. Note that both phases can be easily 
implemented by general linear programming softwares, e.g., LINDO. 

This paper is organized as follows. In Section 2, the linear approximation 
technique of problem (P1) for Phase I is presented. Section 3 describes a 0-1 knapsack 
problem with linear constraints for Phase II. An example is also provided to 
demonstrate the new approach in this section. Numerical results of random test 
problems are reported in Section 4. Finally, Section 5 briefly summarizes the paper.  

2. PHASE I − APPROXIMATION STAGE 

Our linearization of problem (P1) in Phase I is based on the following lemma. 

Lemma 1. For , , ,...,< < =0 1 1iq i n ( )
= ==
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Proof: The left inequality holds by mathematical induction. The proof is 
straightforward and is omitted. The right inequality holds by the arithmetic-geometric 
mean inequality (Horn and Johnson [12]). 

 
According to Lemma 1, the objective function of problem (P1), i.e., 
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min mn q . Thus, problem (P1) 

can be approximately reformulated as: 
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≤ ≤1
min max ix
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By substituting max =e
≤ ≤1

 ix
ii n

q -T into the above formulation, taking the logarithm 

of ≤ix
iq −Te  for all i  and relaxing the integer constraints of (2) lead to: 

Min e-T 
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Problem (P2) is a simple LP with +m n  linear constraints and it can be solved 
by general LP softwares, e.g., LINDO. For the special case of = 1m , the closed form for 
the optimal solution of (P2) is given below. 

Lemma 2. For , the optimal solution for (P2) is = 1m *
ix = ( ln )ln

=
∑1 1
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b a  is a feasible solution of (P2). In the following, we 

show that no better solution is available for problem (P2). 
 
Since there is only one main constraint with  when m , the 

constraint must be tight (i.e. equality holds) for the optimal solution. Assume that 

there is a better solution 

,> >1 10ia b = 1

x  of (P2) with objective T , where T T  for all i . 

This observation implies that there exists some i such that 

* * ln− ix> =

ln
iq

= − <i ix q T *
ix ln =iq *T−  

or equivalently that >ix *
ix . This further implies that *∑ 1

≠ ≠
<∑ 1k k

k i k i
a x ka xk . Thus, some 

 must exist such that ( ≠k k i) <kx *
kx , further implying that − = lnT >k kx q  

* ln> k k
*= −x q T . This is a contradiction. 
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3. PHASE II − IMPROVING STAGE 

Once *
ix  is obtained by problem (P2), the solutions can be rounded off to their 

nearest integers. However, such integer solutions are not necessarily feasible or 
optimal. Based on the solution of (P2), a simple 0-1 knapsack problem is introduced in 
the following to obtain a feasible integer solution.  

Let * =  i ix x
 
(i.e., round down the real solution to integer), then we may solve 

the following 0-1 knapsack problem for the optimal allocation of unused resources by 
general LP softwares, e.g. LINDO. 
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 is the optimal solution of problem (P3), then * = 1ikx + ixk  is the approximation of 

optimal integer solution for problem (P1). It is clear that problem (P3) is a multiple 
choice knapsack problem and several typical approaches can be used for solving such a 
problem (Lin [29]). Notably, (P3) has +n m  linear constraints and has at most  
binary variables which subsequently produces a feasible integer solution for problem 
(P1). Therefore, this approach is more practical than Hochbaum's piecewise linear 
approximation approach (Hochbaum [11]) when the problem size is large. Next, an 
example is provided to demonstrate both phases of the new approach. 

4n

 
Example. (Misra and Sharma [24])  

max ( ) ( . )( . )( . )( .= − − − −31 2x 1 0 2 1 0 3 1 0 25 1 0 15xx xR )4x

 
(3) 

s.t.1. . . .+ + + ≤1 2 3 42 2 3 3 4 4 5 56x x x x  (4) 

+ + + ≤1 2 3 4 30x x x x  (5) 

ix   integer  

Its corresponding problem (P2) is 
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(Phase I) 

max T  

.− ≤1s.t.  1 609438 0T x  

.− ≤21 203973 0T x  

.− ≤31 386294 0T x  

.− ≤21 897120 0T x  

. . . .+ + + ≤1 2 3 41 2 2 3 3 4 4 5 56x x x x  

+ + + ≤1 2 3 4 30x x x x  

≥ 0ix ,  ≥ 0T

For this case, the optimal solution by LINDO is (4.651368, 6.217820, 5.400073, 
3.946028). Note that, by nonlinear programming softwares, e.g., GINO, the solution of 
this example (with nonlinear objective and relaxing the integer constraints) is 
(5.247578, 6.289277, 5.257760, 3.858401) which is close to that by LINDO. By the 
improving stage, we have ( , , , )= 4 6 5 3x  and ( , , , )= 3 3 2 1J . Its corresponding problem 
(P3) is: 

 
 (Phase II) 

max . . . . .+ + + +11 12 13 21 220 001281 0 001537 0 001588 0 000511 0 000664x x x x x  

. .+ +23 310 000710 0 000733x x . .+ +32 410 000916 0 002874x x  

s.t.1. . . . . . . . .+ + + + + + + + ≤11 12 13 21 22 23 31 32 412 2 4 3 6 2 3 4 6 6 9 3 4 6 8 4 5 6 9.x x x x x x x x x  

+ + + + + + + + ≤11 12 13 21 22 23 31 32 412 3 2 3 2 12x x x x x x x x x  

+ + + =10 11 12 13 1x x x x  

+ + + =20 21 22 23 1x x x x  

+ + =30 31 32 1x x x  

+ =40 41 1x x  

ijx =0 or 1 

By using LINDO to solve problem (P3) again, we have * * * *= = = =12 20 30 41 1x x x x .  

Therefore, the final solution by the proposed two-phase approach for (P1) herein is 
(4+2, 6+0, 5+0, 3+1) = (6, 6, 5, 4). Notably, it is optimal for this redundancy allocation 
problem. We also test a random problem with twenty-five subsystems (variables) in 
problem (P1), and the results show that the new two-phase approach can obtain the 
optimal solution within one second (CPU time of Phase I and Phase II). However, the 
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integer solver, e.g., LINGO requires more than fifteen minutes for the optimal solution 
by the branch-and-bound algorithm.   

4. NUMERICAL RESULTS 

To briefly evaluate the performance of the proposed two-phase approach, we 
execute the following experiments with single linear constraint for problem (P1). 

 
(i) The component weights ( )= 1i iaw  are randomly generated from [1, 11] and 

the maximal available weight in the system is set to W w .   
.

( )
=

   = =  
   

∑
1 3

1
1

n

i
i

b

(ii) The failure probability of components in subsystem i is randomly generated 
from uniform distribution  or triangular distribution , respectively, 
with intervals (0, 0.1), (0, 0.2), (0, 0.3), (0, 0.4), and (0, 0.5). 

( )U ( )T

(iii) The number of subsystems  varies from 15, 20 to 25. n
(iv) For each case of combination of (i)-(iii), we test 10 random problems by using 

both the proposed two-phase approach and the branch-and-bound algorithm 
for comparison. 

(v) To improve the optimality of the two-phase approach, we also test * =  i ix x
 

and * = −  1i ix x  in problem (P3), respectively, for comparison. 

 
Table 1 summarizes the numerical results.  From Table 1, we observe that: 

 
1. The new two-phase approach is able to obtain the optimal solution for the 

redundancy allocation problem, especially, when we set * = −  1i ix x  in 

problem (P3).  This is because that we round off the real solutions by Phase 
I to the nearest integers and then minus one. Though the integer solutions 
are not necessarily optimal any longer, but they are generally close to the 
optimal solutions. Hence with the use of Phase II, the two-phase approach 
can easily obtain the optimal solutions. 

2. The CPU times increase drastically with the increase of problem size  for 
the branch-and-bound algorithm.  For example, it requires 23.45, 109.12 and 
512.45 seconds in average for 

n

,= 15 20n  and 25, respectively. This is 

because that the number of branches for the branch-and-bound algorithm 
increases with the increase of problem size.  However, the CPU times are all 
within 2 seconds for the two-phase approach for ,= 15 20n  and 25, 

respectively. 
3. Under the same intervals, there seems no significant difference between 

uniform distribution and triangular distribution in the test problems for 
both branch-and-bound algorithm and the new two-phase approach. 
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Table 1: Numerical results for random test problems. 
Test problem Approaches (i) 

Branch-and-bound Two-phase approach 
Average optimality (%) 

 
No. of 

components 
 

Component 
failure probability 

Uniform: U 
Triangular: T 

Average 
CPU time 
(seconds) 

Average 
No.  

branches 

Average 
CPU time 
(seconds) 

(ii) (iii) 

U(0,0.1) 8.0 187.1 <2 100 100 
U(0,0.2) 18.2 255.3 <2 100 100 
U(0,0.3) 23.1 344.5 <2 100 100 
U(0,0.4) 23.6 319.5 <2 70 100 
U(0,0.5) 22.8 344.0 <2 40 100 
T(0,0.1) 18.3 386.0 <2 100 100 
T(0,0.2) 33.8 529.3 <2 100 100 
T(0,0.3) 21.5 312.2 <2 100 100 
T(0,0.4) 30.8 406.0 <2 100 100 
T(0,0.5) 34.4 435.7 <2 100 100 

= 15n  

Total average 23.5 352.0 <2 91 100 
U(0,0.1) 15.0 319.3 <2 100 100 
U(0,0.2) 104.2 1120.0 <2 100 100 
U(0,0.3) 88.8 922.2 <2 100 100 
U(0,0.4) 236.1 1525.0 <2 100 100 
U(0,0.5) 114.8 1026.0 <2 40 100 
T(0,0.1) 14.8 303.6 <2 100 100 
T(0,0.2) 146.1 1145.0 <2 100 100 
T(0,0.3) 118.8 1380.0 <2 80 100 
T(0,0.4) 105.3 1042.0 <2 80 100 
T(0,0.5) 147.3 1457.3 <2 60 100 

 
 
 

= 20n  

Total average 109.1 1024.0 <2 86 100 
U(0,0.1) 48.7 545.7 <2 70 100 
U(0,0.2) 845.4 2853.0 <2 100 100 
U(0,0.3) 787.6 2923.1 <2 90 100 
U(0,0.4) 569.3 2559.2 <2 70 100 
U(0,0.5) 608.6 2517.6 <2 20 100 
T(0,0.1) 13.4 139.2 <2 90 100 
T(0,0.2) 488.6 2329.5 <2 100 100 
T(0,0.3) 360.8 1991.4 <2 100 100 
T(0,0.4) 708.8 3955.4 <2 80 100 
T(0,0.5) 693.3 2968.7 <2 40 100 

 
 
 

= 25n  

Total average 512.5 2278.3 <2 76 100 

 

 
(i) Two approaches are used to solve 10 random test problems for each   

and component failure probability. 
n

 (ii) In Phase II, we set * =  i ix x  in problem (P3). 

(iii) In Phase II, we set * = −  1i ix x  in problem (P3). 
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4. The intervals of failure probabilities for components will effect the CPU 
times for the branch-and-bound algorithm. For example, when n , the 
mean solving time for test problems with U  is 48.7 seconds, while it 
is 608.6 seconds for test problems with U . Similar results are for 
triangular distribution. 

= 25
( , , )0 0 1
( , , )0 0 5

 

 
5. CONCLUSIONS 

This paper has presented a novel two-phase LP approach for solving the 
typical redundancy allocation problem with multiple linear constraints. The proposed 
approach is simpler than conventional approaches, e.g. dynamic programming, 
geometric programming and piecewise linear approximation approaches. Any linear 
programming softwares, such as LINDO, can be used to implement the LP approach 
proposed herein. Although no guarantee ensures that the approach proposed herein 
derives the optimal solutions, limited numerical results demonstrate the efficiency and 
the effectiveness of the proposed approach. However, one should note that for some few 
reliability problems none of the optimal integer solutions are near the original 
approximations. But, as shown, another merit of this two-phase LP approach is that 
the solution obtained by the proposed approach must be a feasible integer solution.  
Therefore, the new two-phase approach might also provide a good lower bound for 
branch-and-bound algorithm or artificial methods, such as genetic algorithms when the 
problem size is very large. 
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