
Yugoslav Journal of Operations Research
 12 (2002), Number 2, 227-236

A TWO-PHASE LINEAR PROGRAMMING APPROACH FOR
REDUNDANCY ALLOCATION PROBLEMS

Yi-Chih HSIEH
Department of Industrial Management
National Huwei Institute of Technology

Taiwan, R.O.C.
yhsieh@sparc.nhit.edu.tw

Abstract: Provision of redundant components in parallel is an efficient way to increase
the system reliability, however, the weight, volume and cost of the system will increase
simultaneously. This paper proposes a new two-phase linear programming approach
for solving the nonlinear redundancy allocation problems subject to multiple linear
constraints. The first phase is used to approximately allocate the resource by using a
general linear programming, while the second phase is used to re-allocate the slacks of
resource by using a 0-1 integer linear programming. Numerical results demonstrate
the effectiveness and efficiency of the proposed approach.

Keywords: Two-phase linear programming, redundancy allocation.

1. INTRODUCTION

Highly reliable systems can reduce loss of money and time in the real world.
Two approaches are generally available to enhance the system reliability, i.e., (i) using
highly reliable components constituting the system, and/or (ii) using redundant
components in various subsystems in the system (Misra and Sharma [24]). For the
former approach, although system reliability can be enhanced, it is occasionally beyond
our requirement even the highest reliable elements are used. Although using the latter
approach enhances system reliability directly, the cost, weight, and volume of the
ystem increase simultaneously. The redundancy allocation problem is to maximize
ystem reliability subject to specific constraints, e.g. cost, weight and volume etc. The

general formulation of this problem can be expressed as:

s
s

 Y.-C. Hsieh / A Two-Phase Linear Programming Approach 228

,

max (, ,...,)

() , ,...,
=

≤ =

∈

∑

1 2

1

st , 1 2

 positive integer

s n
n

i j i i
j

i

R x x x

g x b i m

x

 (P)

where ix is the number of parallel components in subsystem . i

There are numerous approaches for solving the redundancy allocation problem
(P), including:

(i) Heuristics: [6, 14, 16, 29];
(ii) Artificial Algorithms: genetic algorithms [3, 4, 5, 30], simulated annealing [2,

11, 32], and tabu search [8];
(iii) Exact Methods: cutting plane [15], branch-and-bound [25], surrogate

constraint method [28], dynamic programming [1, 22], implicit search [9]; and
(iv) Approximate Methods: Lagrange multiplier [33], geometric programming [7,

24], discrete maximum principle [21], sequential simplex search [33], random
search [26], boundary search [20, 23], lexicographic search [31], differential
dynamic programming [27].

Exact methods can find the optimal solutions for the problems, but they are
usually time-consuming when the problem sizes are medium or large. Interested
readers are referred to the excellent survey paper by Kuo and Prasad [18].

In this paper, we study the following series redundancy allocation problem
with n subsystems and m linear constraints.

(P1) max () ()
=

= −∏
1

1 i
n

x
i i

i
R x q

s.t. ,
=

≤∑
1

n

ij i j
i

a x b , ,...,= 1 2j m (1)

∈ix integer (2)

where denotes the resource requirement associated with each component of the

j-th resource,

> 0ija

iq represents the failure probability of components in subsystem , i ix is

the number of components in the subsystem i , and denotes the amount available

for the j-th resource.
jb

Previous investigations applied dynamic programming to solve problem (P1)
for optimum allocation [1, 10]. Dynamic programming enumerates all possible cases
and is time-consuming, particularly when system size is large. In addition to dynamic
programming, with the relaxation of integer constraints (2), geometric programming is
frequently used to solve problem (P1) (Federowicz and Mazumdar [7] and Misra and
Sharma [24]). Once solutions are obtained by geometric programming, one may round
off real solutions to the nearest integers. However, the integer solutions are not
necessarily optimal any longer. Another drawback of geometric programming is that it
is also time-consuming due to the complex transformations (see Misra and Sharma
[24]). In a relevant study, Hochbaum [11] converted this redundancy allocation problem

 Y.-C. Hsieh / A Two-Phase Linear Programming Approach 229

into a 0-1 knapsack problem, indicating that by piecewise linear approximation
approach, and the complexity closely resembles that of linear knapsack problem.
However, his approach deals with only one single constraint, and it is NP-complete and
not attractive in practice. In addition, several local search heuristics, e.g., genetic
algorithms, tabu search algorithms and simulated annealing algorithms have also been
used to solve related redundancy allocation problems (see Coit and Smith [4, 5], Hsieh,
Chen and Bricker [13], Painton and Campbell [27]).

In light of above developments, this paper will propose a simple two-phase
linear programming (LP) approach to solve redundancy allocation problem (P1). This
proposed approach consists of two main phases, namely:

(i) Phase I: (Approximation stage) Initially, with the linear approximation of the

objective function and the relaxation of integer constraints, a general LP is
solved for the approximate solution of problem (P1).

(ii) Phase II: (Improving stage) A 0-1 knapsack problem with linear
constraints is then solved to improve the real solutions of Phase I to (feasible)
integer solutions.

+n m

Phase I is used to approximately allocate the available resource by using a

general linear programming, while Phase II is to re-allocate the slacks of resource by
using a 0-1 integer linear programming. Note that both phases can be easily
implemented by general linear programming softwares, e.g., LINDO.

This paper is organized as follows. In Section 2, the linear approximation
technique of problem (P1) for Phase I is presented. Section 3 describes a 0-1 knapsack
problem with linear constraints for Phase II. An example is also provided to
demonstrate the new approach in this section. Numerical results of random test
problems are reported in Section 4. Finally, Section 5 briefly summarizes the paper.

2. PHASE I − APPROXIMATION STAGE

Our linearization of problem (P1) in Phase I is based on the following lemma.

Lemma 1. For , , ,...,< < =0 1 1iq i n ()
= ==

 
− ≤ − ≤ −  

 
∑ ∑∏

1 11
1i i i

nnn n
x x x
i i i

i ii
1 1q q q n .

Proof: The left inequality holds by mathematical induction. The proof is
straightforward and is omitted. The right inequality holds by the arithmetic-geometric
mean inequality (Horn and Johnson [12]).

According to Lemma 1, the objective function of problem (P1), i.e.,

, can be approximated by max ()
=

−∏
1

1 i
n

x
i

i
q min

=
∑

1

i
n

x
i

i
q . Moreover, the fact that

 for any implies that max
≤ ≤

≤
1

 ix
i i n

q q ix
i i min

=
∑

1

n
x
i

i

iq
≤ ≤
ax ix

ii n
≤

1
min mn q . Thus, problem (P1)

can be approximately reformulated as:

 Y.-C. Hsieh / A Two-Phase Linear Programming Approach 230

≤ ≤1
min max ix

ii n
q

s.t. (1) and (2)

By substituting max =e
≤ ≤1

 ix
ii n

q -T into the above formulation, taking the logarithm

of ≤ix
iq −Te for all i and relaxing the integer constraints of (2) lead to:

Min e-T

ln , , ,...,≤ − =s.t. 1 2i ix q T i n

=
≤∑

1

n

ij i j
i

a x b , , ,...,= 1 2j m

≥ 0ix , ≥ 0T

or equivalently, that

(P2) Max T

ln , , ,...,+ ≤ =s.t. 0 1 2i iT x q i n

=
≤∑

1

n

ij i j
i

a x b , , ,...,= 1 2j m

≥ 0ix , ≥ 0T

Problem (P2) is a simple LP with +m n linear constraints and it can be solved
by general LP softwares, e.g., LINDO. For the special case of = 1m , the closed form for
the optimal solution of (P2) is given below.

Lemma 2. For , the optimal solution for (P2) is = 1m *
ix = (ln)ln

=
∑1 1

1

n

i i
i

b a q iq ,

. , ,...,= 1 2i n

Proof: Firstly, (ln)ln
=
∑1 1

1

n

i i
i

q iq

0

b a is a feasible solution of (P2). In the following, we

show that no better solution is available for problem (P2).

Since there is only one main constraint with when m , the

constraint must be tight (i.e. equality holds) for the optimal solution. Assume that

there is a better solution

,> >1 10ia b = 1

x of (P2) with objective T , where T T for all i .

This observation implies that there exists some i such that

* * ln− ix> =

ln
iq

= − <i ix q T *
ix ln =iq *T−

or equivalently that >ix *
ix . This further implies that *∑ 1

≠ ≠
<∑ 1k k

k i k i
a x ka xk . Thus, some

 must exist such that (≠k k i) <kx *
kx , further implying that − = lnT >k kx q

* ln> k k
*= −x q T . This is a contradiction.

 Y.-C. Hsieh / A Two-Phase Linear Programming Approach 231

3. PHASE II − IMPROVING STAGE

Once *
ix is obtained by problem (P2), the solutions can be rounded off to their

nearest integers. However, such integer solutions are not necessarily feasible or
optimal. Based on the solution of (P2), a simple 0-1 knapsack problem is introduced in
the following to obtain a feasible integer solution.

Let * =  i ix x

(i.e., round down the real solution to integer), then we may solve

the following 0-1 knapsack problem for the optimal allocation of unused resources by
general LP softwares, e.g. LINDO.

(P3) Max
[]

= =
∑ ∑

1 1

J in

ik ik
i k

x r

s.t.
[]

= = =
≤ −∑ ∑ ∑

1 1 1

J in n

ij ik j ij i
i k i

ka x b a x , , ,...,= 1 2j m

[]
, , ,...,

=
= =∑

0
1 1 2

J i

ik
k

x i n

=ikx 0 or 1

where [] min , max () /
=

   = −  
   

∑
1

3
n

j ij i ij
j i

J i b a x a and =ikr ln{() /()}+− −1 1ix k x
iq q i

i . If

 is the optimal solution of problem (P3), then * = 1ikx + ixk is the approximation of

optimal integer solution for problem (P1). It is clear that problem (P3) is a multiple
choice knapsack problem and several typical approaches can be used for solving such a
problem (Lin [29]). Notably, (P3) has +n m linear constraints and has at most
binary variables which subsequently produces a feasible integer solution for problem
(P1). Therefore, this approach is more practical than Hochbaum's piecewise linear
approximation approach (Hochbaum [11]) when the problem size is large. Next, an
example is provided to demonstrate both phases of the new approach.

4n

Example. (Misra and Sharma [24])

max () (.)(.)(.)(.= − − − −31 2x 1 0 2 1 0 3 1 0 25 1 0 15xx xR)4x

(3)

s.t.1. . . .+ + + ≤1 2 3 42 2 3 3 4 4 5 56x x x x (4)

+ + + ≤1 2 3 4 30x x x x (5)

ix integer

Its corresponding problem (P2) is

 Y.-C. Hsieh / A Two-Phase Linear Programming Approach 232

(Phase I)

max T

.− ≤1s.t. 1 609438 0T x

.− ≤21 203973 0T x

.− ≤31 386294 0T x

.− ≤21 897120 0T x

. . . .+ + + ≤1 2 3 41 2 2 3 3 4 4 5 56x x x x

+ + + ≤1 2 3 4 30x x x x

≥ 0ix , ≥ 0T

For this case, the optimal solution by LINDO is (4.651368, 6.217820, 5.400073,
3.946028). Note that, by nonlinear programming softwares, e.g., GINO, the solution of
this example (with nonlinear objective and relaxing the integer constraints) is
(5.247578, 6.289277, 5.257760, 3.858401) which is close to that by LINDO. By the
improving stage, we have (, , ,)= 4 6 5 3x and (, , ,)= 3 3 2 1J . Its corresponding problem
(P3) is:

 (Phase II)

max+ + + +11 12 13 21 220 001281 0 001537 0 001588 0 000511 0 000664x x x x x

. .+ +23 310 000710 0 000733x x . .+ +32 410 000916 0 002874x x

s.t.1.+ + + + + + + + ≤11 12 13 21 22 23 31 32 412 2 4 3 6 2 3 4 6 6 9 3 4 6 8 4 5 6 9.x x x x x x x x x

+ + + + + + + + ≤11 12 13 21 22 23 31 32 412 3 2 3 2 12x x x x x x x x x

+ + + =10 11 12 13 1x x x x

+ + + =20 21 22 23 1x x x x

+ + =30 31 32 1x x x

+ =40 41 1x x

ijx =0 or 1

By using LINDO to solve problem (P3) again, we have * * * *= = = =12 20 30 41 1x x x x .

Therefore, the final solution by the proposed two-phase approach for (P1) herein is
(4+2, 6+0, 5+0, 3+1) = (6, 6, 5, 4). Notably, it is optimal for this redundancy allocation
problem. We also test a random problem with twenty-five subsystems (variables) in
problem (P1), and the results show that the new two-phase approach can obtain the
optimal solution within one second (CPU time of Phase I and Phase II). However, the

 Y.-C. Hsieh / A Two-Phase Linear Programming Approach 233

integer solver, e.g., LINGO requires more than fifteen minutes for the optimal solution
by the branch-and-bound algorithm.

4. NUMERICAL RESULTS

To briefly evaluate the performance of the proposed two-phase approach, we
execute the following experiments with single linear constraint for problem (P1).

(i) The component weights ()= 1i iaw are randomly generated from [1, 11] and

the maximal available weight in the system is set to W w .
.

()
=

   = =  
   

∑
1 3

1
1

n

i
i

b

(ii) The failure probability of components in subsystem i is randomly generated
from uniform distribution or triangular distribution , respectively,
with intervals (0, 0.1), (0, 0.2), (0, 0.3), (0, 0.4), and (0, 0.5).

()U ()T

(iii) The number of subsystems varies from 15, 20 to 25. n
(iv) For each case of combination of (i)-(iii), we test 10 random problems by using

both the proposed two-phase approach and the branch-and-bound algorithm
for comparison.

(v) To improve the optimality of the two-phase approach, we also test * =  i ix x

and * = −  1i ix x in problem (P3), respectively, for comparison.

Table 1 summarizes the numerical results. From Table 1, we observe that:

1. The new two-phase approach is able to obtain the optimal solution for the

redundancy allocation problem, especially, when we set * = −  1i ix x in

problem (P3). This is because that we round off the real solutions by Phase
I to the nearest integers and then minus one. Though the integer solutions
are not necessarily optimal any longer, but they are generally close to the
optimal solutions. Hence with the use of Phase II, the two-phase approach
can easily obtain the optimal solutions.

2. The CPU times increase drastically with the increase of problem size for
the branch-and-bound algorithm. For example, it requires 23.45, 109.12 and
512.45 seconds in average for

n

,= 15 20n and 25, respectively. This is

because that the number of branches for the branch-and-bound algorithm
increases with the increase of problem size. However, the CPU times are all
within 2 seconds for the two-phase approach for ,= 15 20n and 25,

respectively.
3. Under the same intervals, there seems no significant difference between

uniform distribution and triangular distribution in the test problems for
both branch-and-bound algorithm and the new two-phase approach.

 Y.-C. Hsieh / A Two-Phase Linear Programming Approach 234

Table 1: Numerical results for random test problems.
Test problem Approaches (i)

Branch-and-bound Two-phase approach
Average optimality (%)

No. of

components

Component
failure probability

Uniform: U
Triangular: T

Average
CPU time
(seconds)

Average
No.

branches

Average
CPU time
(seconds)

(ii) (iii)

U(0,0.1) 8.0 187.1 <2 100 100
U(0,0.2) 18.2 255.3 <2 100 100
U(0,0.3) 23.1 344.5 <2 100 100
U(0,0.4) 23.6 319.5 <2 70 100
U(0,0.5) 22.8 344.0 <2 40 100
T(0,0.1) 18.3 386.0 <2 100 100
T(0,0.2) 33.8 529.3 <2 100 100
T(0,0.3) 21.5 312.2 <2 100 100
T(0,0.4) 30.8 406.0 <2 100 100
T(0,0.5) 34.4 435.7 <2 100 100

= 15n

Total average 23.5 352.0 <2 91 100
U(0,0.1) 15.0 319.3 <2 100 100
U(0,0.2) 104.2 1120.0 <2 100 100
U(0,0.3) 88.8 922.2 <2 100 100
U(0,0.4) 236.1 1525.0 <2 100 100
U(0,0.5) 114.8 1026.0 <2 40 100
T(0,0.1) 14.8 303.6 <2 100 100
T(0,0.2) 146.1 1145.0 <2 100 100
T(0,0.3) 118.8 1380.0 <2 80 100
T(0,0.4) 105.3 1042.0 <2 80 100
T(0,0.5) 147.3 1457.3 <2 60 100

= 20n

Total average 109.1 1024.0 <2 86 100
U(0,0.1) 48.7 545.7 <2 70 100
U(0,0.2) 845.4 2853.0 <2 100 100
U(0,0.3) 787.6 2923.1 <2 90 100
U(0,0.4) 569.3 2559.2 <2 70 100
U(0,0.5) 608.6 2517.6 <2 20 100
T(0,0.1) 13.4 139.2 <2 90 100
T(0,0.2) 488.6 2329.5 <2 100 100
T(0,0.3) 360.8 1991.4 <2 100 100
T(0,0.4) 708.8 3955.4 <2 80 100
T(0,0.5) 693.3 2968.7 <2 40 100

= 25n

Total average 512.5 2278.3 <2 76 100

(i) Two approaches are used to solve 10 random test problems for each

and component failure probability.
n

 (ii) In Phase II, we set * =  i ix x in problem (P3).

(iii) In Phase II, we set * = −  1i ix x in problem (P3).

 Y.-C. Hsieh / A Two-Phase Linear Programming Approach 235

4. The intervals of failure probabilities for components will effect the CPU
times for the branch-and-bound algorithm. For example, when n , the
mean solving time for test problems with U is 48.7 seconds, while it
is 608.6 seconds for test problems with U . Similar results are for
triangular distribution.

= 25
(, ,)0 0 1
(, ,)0 0 5

5. CONCLUSIONS

This paper has presented a novel two-phase LP approach for solving the
typical redundancy allocation problem with multiple linear constraints. The proposed
approach is simpler than conventional approaches, e.g. dynamic programming,
geometric programming and piecewise linear approximation approaches. Any linear
programming softwares, such as LINDO, can be used to implement the LP approach
proposed herein. Although no guarantee ensures that the approach proposed herein
derives the optimal solutions, limited numerical results demonstrate the efficiency and
the effectiveness of the proposed approach. However, one should note that for some few
reliability problems none of the optimal integer solutions are near the original
approximations. But, as shown, another merit of this two-phase LP approach is that
the solution obtained by the proposed approach must be a feasible integer solution.
Therefore, the new two-phase approach might also provide a good lower bound for
branch-and-bound algorithm or artificial methods, such as genetic algorithms when the
problem size is very large.

Acknowledgements: This research is partially supported by National Science
Council, Taiwan, under grant No. NSC 90-2218-E-150-007. The author would like to
thank an anonymous reviewer for his/her helpful comments and suggestions that
greatly improved the presentation of this paper.

REFERENCES

[1] Bellman, H. E., and Dreyfus, E., "Dynamic programming and reliability of multicomponent
devices", Operations Research, 6 (1958) 300-206.

[2] Cardoso, M. F., Salcedo, R. L., and de Azevedo, S. F., "Non equilibrium simulated annealing: a
faster approach to combinatorial minimization", Industrial Engineering Chemical Research,
33 (1994) 1908-1918.

[3] Coit, D. W., and Smith, A., "Reliability optimization of series-parallel systems using a genetic
algorithm", IEEE Trans. Reliability, 45 (1996) 254-260.

[4] Coit, D. W., and Smith, A., "Solving the redundancy allocation problem using a combined
neural network / genetic algorithm approach," Computers and Operations Research, 23 (1996)
515-526.

[5] Dengiz, B., Altiparmak, F., and Smith, A. E., "Efficient optimization of all-terminal reliable
networks using an evolutionary approach", IEEE Trans. Reliability, 46 (1997) 18-26.

[6] Dinghua, S., "A new heuristic algorithm for constrained redundancy-optimization in complex
systems", IEEE Trans. Reliability, 36 (1987) 621-623.

[7] Federowicz, A. J., and Mazumdar, M., "Use of geometric programming to maximize reliability
achieved by redundancy", Operations Research, 19 (1968) 948-954.

 Y.-C. Hsieh / A Two-Phase Linear Programming Approach 236

[8] Glover, F., Laguna, M., Tabu Search, Kluwer Academic Publishers, 1997.
[9] Geoffrion, A. M., "Integer programming by implicit enumeration and Balas' method", Soc.

Industrial and Applied Mathematics Review, 9 (1967) 178-190.
[10] Hiller, F. S., and Lieberman, G. J., An Introduction to Operations Research, McGraw-Hill,

NY, 1995.
[11] Hochbaum, D. S., "A nonlinear knapsack problem", Operations Research Letters, 17 (1995)

103-110.
[12] Horn, R. A., and Johnson, C. R., Matrix Analysis, Cambridge University Press, London, 1985.
[13] Hsieh, Y. C., Chen, T. C., and Bricker, D. L., "Genetic Algorithms for reliability design

problems", Microelectronics and Reliability 38 (1998) 1599-1605.
[14] Jianping, L., "A bound heuristic algorithm for solving reliability redundancy optimization",

Microelectronics and Reliability, 3 (1996) 335-339.
[15] Kelley, J., "The cutting plane method for solving convex program", J. Soc. Industrial and

Applied Mathematics, 8 (1960) 708-712.
[16] Kim, J. H., and Yum, B. J., "A heuristic method for solving redundancy optimization

problems in complex systems", IEEE Trans. Reliability, 42 (1993) 572-578.
[17] Kirkpatrick, S. Gelatt Jr., C. D., and Vecchi, M. P., "Optimization by simulated annealing",

IBM Research Report RC 9355, 1982.
[18] Kuo, W., and. Prasad, V. R, "An annotated overview of system-reliability optimization", IEEE

Trans. Reliability, 49 (2000) 176-187.
[19] Lin, Y.H., "A bibliographical survey on some well-known non-standard knapsack problems",

INFORS, 36 (1998) 274-317.
[20] Misra, K. B., "An algorithm to solve integer programming problems: An efficient tool for

reliability design", Microelectronics and Reliability, 31 (1991) 285-294.
[21] Misra, K. B., "On optimal reliability design:A review", System Science, 12 (1986) 5-30.
[22] Misra, K. B., "Dynamic programming formulation of redundancy allocation problem",

International J. of Mathematical Education in Science and Technology, 2 (1971) 207-215.
[23] Misra, K. B., and Sharma, U., "An efficient algorithm to solve integer programming problems

arising in system reliability design," IEEE Trans. Reliability, 40 (1991) 81-91.
[24] Misra, K. B., and Sharma, U., "A new geometric programming formulation for a reliability

problem", International Journal of Control, 18 (1973) 497-503.
[25] Misra, K. B., and Sharma, U., "Reliability optimization of a system by zero-one

programming", Microelectronics and Reliability, 12 (1973) 229-233.
[26] Mohan, C., and Shanker, K., "Reliability optimization of complex systems using random

search technique", Microelectronics and Reliability, 28 (1988) 513-518.
[27] Murray, D. M., and Yakowitz, S. L., "Differential dynamic programming and Newton's

method for discrete optimal control problems", Journal of Optimization Theory and
Applications, 43 (1984) 395-414.

[28] Nakagawa, Y., and. Miyazaki, S., "Surrogate constraints algorithm for reliability optimization
problem with two constraints", IEEE Trans. Reliability, 30 (1981) 175-180.

[29] Nakagawa, Y., and Miyazaki, S., "An experimental comparison of the heuristic methods for
solving reliability optimization problems", IEEE Trans. Reliability, 30 (1981) 181-184.

[30] Painton, L., and Campbell, J., "Genetic algorithms in optimization of system reliability",
IEEE Trans. Reliability, 44 (1995) 172-178.

[31] Prasad, V. R., and Kuo, W., "Reliability optimization of coherent systems", IEEE Trans.
Reliability, 2000, to be published.

[32] Ravi, V., Burty, B., and Reddy, P., "Nonequilibrium simulated-annealing algorithm applied
reliability optimization of complex systems", IEEE Trans. Reliability, 46 (1997) 233-239.

[33] Tillman, F. A. Hwang, C. L., and Kuo, W., Optimization of System Reliability, Marcel Dekker,
1980.

