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Abstract: In this paper we present a modification of the second-order step-size
algorithm. This modification is based on the so called forcing functions. It is proved
that this modified algorithm is well-defined. It is also proved that every point of
accumulation of the sequence generated by this algorithm is a second-order point of the
nonlinear programming problem. Two different convergence proofs are given having in
mind two interpretations of the presented algorithm.
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1. INTRODUCTION

We are concerned with the following problem of the unconstrained
optimization:

min{@(x)|xe D} (1)

where ¢:Dc R" — R is a twicecontinuously differentiable function on an open set D.

We consider iterative algorithms to find an optimal solution to problem (1)
~ generating sequences of points {x}; of the following form:

XkL+1 =xk+cxksk+ﬁkdk, =010 (2)
sk,dk;tO., (V(p(xk).sk)io, (3)

and the steps «, and 3, are defined by a particular step-size algorithm.
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Before we present the modified algorithm, we shall define the original second-
order step-size algorithm.

The original Mc Cormick-Armijo's second order step-size algorithm [4] defines
a;, in the following way: «;, >0 is a number satisfying

_ o=1(k)
Ofk = 2 4

where i(%) is the smallest integer from ¢=0.1,..., such that

—1(k)
Xbi1 = X} +2_!{k}8k + 2 2 d}e e D

and
| 1 —i(
P(x}, ) —P(Xp41) 2 }/I:_(Vﬁo(xk ), Sk) _E(H(xk )dk‘d}g>:|2 (k) ’

where 0 <y <1 is a preassigned constant, H(x) - the Hessian matrix of the function
¢ at x.s,.d), -direction vectors satisfying relations (3).

We begin with the definition which we need in the following text.

Definition (See[5]). A mapping 6 :[0,) —[0,0) s a forcing function if for any

sequence {t;} c |0,e0)

lim o(¢,)=0 1mplies lim ¢, =0 -

k—00 h—co

and o(t)>0 for t>0.

(The concept of the fdrcing function was introduced first by Elkin in [3].)

2. AMODIFICATION OF THE SECOND-ORDER STEP-SIZE
ALGORITHM

The modified algorithm defines «; in the following way: oy, >0 is a number
satisfying

=1k
o, =q ), q:‘?l,

where (k) i1s the smallest integer from ¢ =0,1,..., such that

~1(k)
Lhoy =%k +0 " Mg +g 2 dye D (4)

and

o, 1
P(xp)—@(xX14.1)2Qq ”}li(}'l(—<vqi(.1'k).5k>)+62(—§(H(Ik)dh,dk>)} (D)
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where 01 :[0,20) = [0,0¢) and oy :[0,00) =[0,e2) are the forcing functions such that
Sit <oy (t)<81t, Sot<0q(t)Sdst 0<8; <8 <1, 0<dy<dy<1 and s, d, are the
direction vectors satisfying (3) and (H(x)d},.d},) < 0.

In order to have a finite value i(k), it is sufficient that s, and d,, satisfy (3)
and, in addition, that

(Vo(xp).5,) <0 whenever Ve(x;)#0 (6A)

and
(H(xp)dy.dy)<0 whenever Vo(x;)=0. (6B)

Now we shall prove the first convergence theorem.

Theorem 1. Let ¢:Dc R" = R be a twicecontinuously differentiable function on the
open set D. Let the sequence {x},} be defined by relations (2), (3), (4),(5),(6A) and (6B). Let

x be a point of accumulation of {x,}and K, a set of indices such that x; —Xx for

ke Kl'

Assume that:
1. the sequences {s,}and {d,}are uniformly bounded;

2. —(qu(xk),sk)zuk(uV(p(xk)ll). ke Ky, where u,:[0,%2) —[0,22), ke Kjare forcing

functions;
3. there exists a value >0 such that

—(H(xk )dkdk> 2 ﬁ (H(xk )63“" ,E’};"n )..

where e]"" is an eigenvector of H(x;) associated with its minimum eigenvalue.
Then X is a stationary point, that 1s
Vo(x)=0

and H(X) is a positive semidefinite matrix with at least one eigenvalue equal to zero.

Proof: There are two cases to consider.
a) The integers {i(k)} for ke K; are uniformly bounded from above by some

value I.
Because of the descent property it follows that all points of the accumulation

have the same function value and

02)p(xg)—@(X)= Y, [p(xp) —P(xXp41)] 2
ke K,

: 1
2 Z q—l(k) [Jl (—(V(p(xk )"k)) + 09 (——2-<H(Ik )dk*dk) ]] >
ke K,

2 qi 0.y [—(ch(xk),sk>—%(H(xk)dk,dk)]. (6 = max{0;.02})
ke K,



124 N. Djuranovié-Mili¢i¢ / On a Second-Order Step-Size Algorithm

4 1 - -
20716 3 i1V 000 )+ 3 B(HGxel™ ") |

ke K, 2
Since ¢(x) is finite and since each term in the brackets is greater than, or

equal to zero for each ke K;, it follows that wu,(Ve(xy) —>0=|Ve(x,)|—0

(according to the definition of forcing functions) = Ve(x)=0 and that

(H(X)epins€min ) =0 , where 2., is some accumulation point of {e;"™"} for ke Kj.

b) There is a subset K, c K; such that lim (k) = ee.

};‘. — o0

Because of the definition of (%), then either

| —1(k)+1
x,+q s g 2 dpeD
or
( —-i(k)+1 )
o(xp) -0 xp+q P +q 2 dy < (7)

\ )
~i(k)+1 1
<q [61(—(ch(xk),sk))+02(—§(H(xk)dk,dk>]].

If the former condition held infinitely often, then because

—1(k)+1

S b S e e K

Xp+4q

it would follow that X is on the boundary of D. Since D is an open set, x¢ D , it

contradicts the theorem hypothesis. Therefore, without the loss of generality (7) can be
considered to hold for all ke K.

Since ¢@e C?, and since the sequences {s;}and {d)}are assumed to be

uniformly bounded, the left -hand side of inequality (7) can be written as

—i(k)+1
—q'i(km(V(P(xk)aSk)—q 2 (Vo(xp),dp) =
1 ( i(k)+1 =l _i(k)+1 el _i(k)+1
5 H(xp)| q l(f)+ PR e L R = 0T
\ /

—

BT 1
<(q (R)+1 m(—(qu(xk),sk))+62(—§)<H(xk)dk,dk)]«::

—

.

—T 2 - 3 1
<q KR —51<V(p(.'rk),3k>—52'E(H(‘xk)dk’dk)]'

L~

Combining terms and incorporating a term where appropriate into o(q_‘f(k)”)

yields (using the fact that —(Ve(x),s,)20):
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e ok o, L(k)+l{( 1+6))(Vo(ag),s5) = (=85 +1)= ( (X} )d;a~dk)] -
Using the theorem hypothesis 3 we obtain
o(q —r,(k)+1) < q—t(k)+1[( 1'*"51)(?90(1:!:) 3}2) e 52 et ]_)E(H(xk )e;:”" e}:nn)]_

—i(k)+1

Dividing by ¢ yields
-1(k)+1
o(q ;! ) 3y S mi
q"i(k)*'l >(-1+ 51)<Vga(xk ) Sk) +(—09 + 1)§<H(‘lk )E’}:"” e} n> >

—6g +1
2

>(1-8)) (| Volap) ) + B (H (xp)ep™ e L"'")-

Since each term is, according to the assumptions, greater than or equal to
zero, taking the limit as £ — < for ke K, yields

up(||Vo(xp)|) 0= Vo(x) || 2 0= Ve(x)=0

and
<H(Ik)€mm "“") (H(x)emm 1,...1)_0-

To prove the second convergence theorem we shall follow Y. Amaya [1].

Namely, we are going to show that the trajectory
f(t,xk)zxk+t23k +tdk (8)

proposed by the presented algorithm (i.e. satisfying the relations (2), (3), (4), (5), (6A)
and (6B)) and

<V(p(xk),sk><0 9)
(V(p(xk ),dk> <0

and
(H(xp,)dy,dy) =0

if H(x;) is positive semidefinite, and

(Vo(xp).s,) <0 (10)
(V(p(xk )*dk> <0

and

(H(xk)dk,dk) <0

if H(x,) is not positive semidefinite, has the properties set out in Amaya's paper.

Firstly, we shall briefly present Amaya's algorithm [1].
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Let ¢ :Dc R" — R be a twicecontinuously differentiable function on the open

set D (1.e. Q€ C? ) which we want to minimize, and A: R xD — R" is a function such

that, for all xe D, h(0.x)=x. We suppose that for every xe€ D, h(t,x) is C*for t 2 0.

Given xe D . the function h(t.k) describes a trajectory in Dc R" originating
at x. The minimizing algorithm defines a sequence {x;} In the following way:

1f M.
Xpel = o 1 X5 (1L)
h(tk.xk) if X, € M.

where M ={xe D|Ve(x)=0and (H(x)p.p)20, pe R"}.

For xe D . we define the (® - class function f,:R" — R" by

f(t)=9¢lh(t,x)], t€ R

This function is shown to satisfy

fu, (0)=(Ve(x;).h(0.x;)) and

fx-,. (0)= <H(xk)li(0.:ck ), h(0.x}) + <qu(xk )Jt'(O.xk)»,

where h and h denote respectively the first and second derivatives of h with respect
to (.

-

The following assumptions are made:
Al. L=!xe D|o(x)<¢(xy)} is bounded;
A2. f.(0)<0 forall xe M
A3. if xe M and f.(0)=0, then f,(0)<0.

‘Amaya in Theorem 3.1 in [1] proves the convergence of a subsequence of

points of {x;} defined by (11) to xe M, provided that g€ C*? and that assumptions Al,

A2, A3 hold.
Now we can present the second convergence theorem for the modified Mc
Cormick-Armijo's algoritm.

Theorem 2. Under assumptions Al, A2 and A3 every point of accumulation X of the
sequence |{x;) generated by the modified McCormick-Armijo's algorithm and

additionally, satisfying (9) and (10) belongs to M, that is, the second-order necessary
conditions are satisfied at x .

Proof: Let us suppose that x,¢ M for £=0.1.2,... From the choice of ¢, =a; by
relations (2), (3), (4), (5), (6A) and (6B) we have that f,, (£)<fy, (0). 1e. the sequence

(p(x),)} is decreasing; hence {x;,}c L. Due to the assumption Al, the sequence (x|

has a point of accumulation x .
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For the trajectory (8) we have:

]

fx,(0) = (pr(xk ). h (0. x;, )>, h(0,x;,) = dy,.

frp (0) = (Hx)h(0, ). (0. x3,) + (Vp(y). (0. % ) hO.24) =8y, ie
fr, (0) = (Vo(xy).dp),

fe, (0)=(H(x})d.dy )+ (Vp(xy).8).

From (6A) it follows that the assumption A2 holds. Let us examine the

assumption A3. Assuming f;.k (0) =0, we have two cases:
a) 1f H(x;) 1s positive semidefinite, by applying (9) to the relation (11), we obtain
fr, (0)<0:

b) 1if H(x,) is not positive semidefinite, by applying (10) to the relation (11), we
obtain

fr, (0)<0.

Following Amaya's proof of theorem 3.1 in [1] we conclude that xe M.

3. CONCLUSION

Because of general assumptions on the objective function ¢, the modified

algorithm can be used for solving a wide class of unconstrained optimization problems.
Also, the choice of forcing functions o(¢) and o09(f), with the property

81t <0y (t) S 8yt, St < Oo(t) < Syt, 0< 8y <8; <1, 0< 8y <y <1is wide.

Finally, this modified algorithm can be used for solving constrained
optimization problems (see [2]) when constraints are adequately considered.
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