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1. INTRODUCTION 

The investigations of Motzkin [4] and Agmon [1] were the primary source of 
the fejer method's approach. In the fundamental research of I.I. Eremin [3], the general 
theory of fejer maps was developed. The main properties of fejer maps were 
determined, as well as the properties of the sequences, which are recurrently induced 
by such mappings. The basic constructions of fejer maps in their application to solving 
finite systems of convex inequalities and to solving linear or convex programming 
problems were introduced. The basic constructions were realized in the form of 
sequential relaxation, suspended relaxation and extreme relaxation. 

In the case of a finite system of linear inequalities with the set of solutions 
 ≠ ∅M

( ) : ( , ) , ,...,= − ≤ =0 1j j jl a b jx x m , (1.1) 
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Consider the mappings 

( ) ( ) ( (...( ( ))...))ϕ ϕ ϕ ϕ=1
1 2 mx ; (1.2) 

( ) ( ) ( ), ,ϕ α ϕ α α
= =

= >∑2

1 1
0

m m

j j j j
j j

x x ; (1.3) 

( ) ( )( ) , ( , )
|| ||

ϕ λ λ= − ∈3
2 0 2j

j

d
a

a x

x

x
x x . (1.4) 

Each of these maps is -fejer and realizes the appropriate base construction. 
Sequences which are inductively generated by them converge to some solution of the 

system (1.1) (for arbitrary initial ). 

M

∈0
nx R

Several implementations of fejer methods based on the constructions of fejer 
maps (1.2) and (1.3) with application to countable systems of convex inequalities were 
considered in the papers [3, Theorem 3.2.7, page 114] and [5]. 

The fejer methods for solving convex inequalities of countable and continuum 
power are developed and justified in the current investigation. The relaxation of the 
(1.4) type is taken as the basic construction for the mentioned considerations. 

2. FEJER MAPS: MAIN CONCEPTS AND PROPERTIES 

The main definitions and properties of fejer mappings and recurrently induced 
sequences are considered [3]. We affect only those properties which are necessary for 
the substantiation of convergence of the fejer processes here considered. 

Definition 2.1. The mapping  is called M-fejer, if  {ϕ ∈ →n nR R }

( ) , ( ) , ,ϕ ϕ= − < − ∀ ∈ ∀M My y x y x y y x ∉

}

.  

It follows from the definition that such mapping transfers a point which does 
not lie in set M into another point such that the distance from it to each point of the set 

 decreases. M

Definition 2.2. Multi-valued mapping  is called M-fejer, if  {ϕ ∈ → 2
nn RR

( ) , , , , ( )ϕ ϕ= − < − ∀ ∈ ∀ ∉ ∀ ∈M My y z y x y y x z x . 

According to the definition, the points of set  and only they are the points of 
immovability of the map . 

M
ϕ
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Denote by FM some class of M-fejer mappings (both single and multi-valued). 

Property 2.1. If , then  is a convex closed set (see, for example, [2, 39.4]). ≠ ∅MF M

Definition 2.3. Sequence { }  is called M-fejer, if for any :  , { }⊂ ∩n
k k Mx R x = ∅ ∈ My

,+ − < − ∀1k k kx y x y . 

Now, let us recall some facts, which are used further on. Their proofs can be 
found in [3, Chapter II]. Let { '  be a set of limit points for a sequence { } . }kx kx

Lemma 2.1. Let and the sequence {  be recurrently induced by relation 

 with arbitrary initial . If { }  then {  is M-fejer. 

ϕ ∈ MF }kx

M(ϕ+ ∈1kx )kx ,0x ∩ = ∅kx }kx

Lemma 2.2. If  are two different limit points of an M-fejer sequence { , then 

any point  (therefore, and set M) lies in a hyperplane being a geometrical place of 
points, equidistant from x  and . 

', ''x x }kx

∈ My
' ''x

Proof: From the definition of the -fejer sequence we get that M

( )
: inf ' ''∀ ∈ − = − = −k

k
My x y x y x y , i.e., . The transfor-

mation of that equality gives us 

( ' ' ) ( '' , '' )− − = − −x y x y x y,x y

( ' , so every  belongs to the 

hyperplane 

' ', )− =x x y ' '− 2x x ∈ My' 2

( '' ', ) :γ− = =x x x x

'x

'' '−2 2x

''x

, which is obtained as a geometrical place of 

points equidistant from  and . 

Corollary. If  and  is a solid set, then { ( . ϕ ∈ MF M )} 'ϕ → ∈0
k n

kx x R

'

}n

)

Lemma 2.3. If {  is the M-fejer sequence and { } , then { } .  }kx ' ∩ ≠ ∅k Mx '→ ∈k Mx x

Proof: Assume, on the contrary, that there exists a limit point . According to 
Lemma 2.2. we come to the conclusion, that every  is equidistant from  and 

. The consideration of  gives us inconsistency. 

'' '≠x x
∈ My 'x

''x :=y x

Lemma 2.4. The mapping , that executes the projecting of a point  in the 

convex closed set , is continuous M-fejer. (The proof can be found in [2, Lemma 
40.2].) 

( )MPr x x

⊂ nM R

Definition 2.4. The mapping  is called closed, if from the fact that 

, it follows . 

{ϕ ∈ → 2n RR

), ∀k kx{ } ', { } ', (ϕ→ → ∈k k kx x y y y ' ( 'ϕ∈y x

Denote by MF  the class of closed M-fejer mappings. 
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Example of a closed mapping [3, Chapter II]. Let  be a convex function and ( )d x

{ ( ) }≤ = ≠ ∅0d Mx x . An important representative of the class MF  is the mapping : ϕ

( ) | (
ϕ

λ
+ → − ∈ ∂

  
2

d
h h d

h

x
x x x) , (2.1) 

where , and  means a subdifferential of function . If , then x  

is a point where the minimum of the function  is reached, so . We 
assume that  in the case of . 

( , )λ ∈ 0 2

ϕ

( )∂d x

x

( )d x = 0h

( )+d x( )d x = 0
( ) =x = 0h

Note that in the case of the differentiability of  the relation (2.1) can be 
transformed as follows: 

( )d x

( )( ) ( )
( )

ϕ λ
+

= − ∇
∇ 2
d

d
d

x
x x x

x
. (2.2) 

If  is a linear function, i.e.,  then we have ( )d x ( ) ( , ) , ,α= − ≠ 0d a ax x

[( , ) ]( ) αϕ λ
+−

= − 2
a

a
a

x
x x . (2.3) 

If  is the set of the solutions of the compatible system (1.1), then the 
construction (1.4) is a particular case of (2.1). 

M

Lemma 2.5. If a mapping  is closed, then the sequence , induced 

recurrently by inclusion  with arbitrary , converges to . 

ϕ ∈ MF

( )ϕ kx

{ }kx

'x+ ∈1kx ∈0
nx R ∈ M

Proof: If { } , then the conclusion follows from Definition 2.2 of an M-fejer 

map. 

∩ ≠ ∅k Mx

In the case of { } , we shall show that the M-fejer sequence { }  

converges to the element . The sequence {  is bounded, and we can allocate 

the subsequence { } '  so, that { } ' . The points  evidently are the 

limit points of the sequence x , so, if x , then according to Lemma 2.3, we have 

. 

∩ = ∅k Mx

'∈ Mx

→ x

k

kx

}kx

'x
jkx + →1jkx

'∈ M

', ''x x

'→kx x

If , then the closure of  gives us , i.e., ∀ ∈  
. The last inequality contradicts the fact that the points of  are 

equidistant from  (Lemma 2.2). The proof is complete. 

'∈/ Mx
| ' |−x y

',x

ϕ '' ( ')ϕ∈x x My
M| '' |− <x y

''x

Lemma 2.6. If a mapping  and S is a bounded set, then  is also a 

bounded set. 

ϕ ∈ MF ( )ϕ
∈
∪

Sx
x
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We note, that if T  and , then  means . ⊂ nR ϕ ∈ → 2
nn RR ( )ϕ T ( )ϕ

∈
∪

Tx
x

Theorem 2.1. If mappings ( ) , , , ,ϕ ∈ = …1
jj M j mx F  and , then  ,α α

=
= >∑

1
1

m

j j
j

0

1) ( )α ϕ
=

=
∈∑ ∩ 1

1

m
jj

m
Mj j

j
x F , 

2) (...( ( )...)ϕ ϕ
=

∈ ∩ 11
m

jj
Mm x F . 

Proof: The proof of the fejer property of the constructed mappings is elementary. Let 
us establish their closure. 

1) Denote by . Consider { } , , , i.e. 

, . Taking into account the boundedness of sequences 

, one can allocate a subsequence  that 

( ) ( )ϕ α ϕ
=

= ∑
1

m

j j
j

x

( )ϕ∈j
j kky x

x ' ' )k→kx x { } →ky y (ϕ∈ky x

α
=

= ∑
1

m
j

k j k
j

y y

{ } ∀j
k jy

l

j
ky : ,

l l

j j
k ky y y ( )ϕ∈

lj kx∀ → . We have 

. Passing to the limit for , we get 

jj

α
=

= ∑
1

l l

m
j

k k
j

y jy → ∞l ' yα
=

= ∑
1

m
j

j
j

y . In addition to the 

closure of the mapping  that means ( )ϕ j x ( '),α ϕj jy xα
= =

∈∑ ∑
1 1

m m
j

j
j j

 i.e., . ' ( ')ϕ∈y x

2) It is sufficient to check the validity of the statement for . Let { } , 

' , . Let us show . Inclusion  

may be presented as , . Thus by virtue of Lemma 2.6, it is 

possible to assume  and , and as a result . 

= 2m

' (y y

'→kx x

( ( )ϕ ϕ∈ 1 2k ky x

( ( '))ϕ1 1 2 x

{ } →ky y ( ( ))ϕ ϕ∈ 1 2ky

∈

→1
ky y

kx ))x' ( ( 'ϕ ϕ∈ 1 2y

( )kx

')x

)

)ϕ ϕ∈ ∈1

( )ϕ 1
1k ky y

1

ϕ∈1
2ky

(ϕ∈1
2y

Theorem 2.1 is proved. 

Corollary 2.1. From { (  is a closed convex set from R  it 

follows from Lemma 2.4 and Theorem 2.1 that 

) ,ϕ ∈ M Nx F , }∩ ≠ ∅n M N

( )( ( )) ϕϕ ∈∪y xPr x ( ) ∩= ∈N NPr y FM N

m

. 

3. FEJER PROCESS OF COUNTABLE SYSTEMS OF 
CONVEX INEQUALITIES 

The method of constructing a converging fejer process for a countable system 
of convex inequalities  is stated below. The construction of the 

type (1.4) is founded on the basis of the mentioned process with the following 

( ) , , ,..., ,...≤ =0 1 2jf jx
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difference: in each iteration of the process, instead of residual function  

the function 

( )
( ) sup ( )= j

j
d fx x

,
( ) max ( )

∈
=

1
k

j k
d x

( )d x

jf x  is used. 

( ) }≤ ≠ ∅0x x

, (
( ) ( ) , (

|| ||


= 



2

d
d

h d
h

x
x x

x

( )x ≠ 0h
( ), ( )∈ ∂ > 0h d dx x ( )− d x

M

The necessary result about convergence of the circumscribed process to the 
solution of a countable system will be obtained as a particular case of a more general 
situation. Let us describe it. 

Let  be a convex function defined on , and . Let 
us assume 

nR : { |=M d

)

)µ
≤

>

0 0

0h

;

.  

Here, . In the second alternative ( (  we get automatically . 
Actually, if 

∈∂h d ) )> 0d x
, then the inequality ( , ) ( )− ≤h dx x x  (which is 

identical on ) gives us x ( ) ( )< ≤ $d dx x ≤ 0 = 0h0  (at  and ), which is a 
contradiction. 

= ∈$x x

The magnitude  can be written in the form ( )µh x

( )( )
|| ||

µ
+

=
2h

d
h

h

x
x , 

assuming , if , i.e., . ( )µ = 0h x ( )+ = 0d x ( ) ≤ 0d x

Introduce the following notations: 

( ) { ( ) | ( )}µ µ= ∈∂h h dx x x , (3.1) 

( ) ( )ϕ λµ= −x x x , (3.2) 

where . ( , )λ ∈ 0 2

The mapping  is multi-valued. If  is fixed, then we accept the 
representation 

( )ϕ x h

( )( )
|| ||

ϕ λ
+

= −
2

d
h

h

x
x x , (3.3) 

where .  ( , ), ( )λ ∈ ∈ ∂0 2 h d x
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Lemma 3.1. For a mapping  from (3.2) the following inequality takes place: ( )ϕ x

|| || || ||, , ( ),ϕ− < − ∀ ∈ ∀ ∈ ∀ ∈/ Mz y x y x z x y M

M

, (3.4) 

i.e., . This statement corresponds to the above-mentioned example (2.1). ϕ ∈ MF

Let us link the following M-fejer sequence {  with : }kx ( )ϕ x

|| || || ||, ,+ − < − ∀ ∀ ∈1k k kx y x y y , (3.5) 

generated recurrently by relation 

( ), , ,..ϕ+ ∈ =1 0 1k k kx x . , (3.6) 

i.e., we suppose that { } . If for some ∩ = ∅k Mx : ∈kk x M , then the process is 

stabilized on element k Mx  from , so the convergence is settled. 

For the purpose of developing fejer processes for infinite systems of convex 
inequalities, we shall introduce the concept of non-stationary fejer mapping. Let 

 be a sequence of convex functions converging to  for every  and  { ( )}kd x ( )d x x

( ) ( ),+≤ 1k kd dx x ∀k

k

0

. (3.7) 

We consider the mapping 

( ) ( )ϕ λ µ= −k kx x x , (3.8) 

where 

[ , ] ( , ),λ δ δ δ∈ − ⊂ >2 0 2k , 

( )( ) , ( )
|| ||

µ
+

= ∈ ∂2
k

k k
d

h h d
h

x
x x . 

Theorem 3.1. Under the suppositions made about functions { ( , the process ), ( )}kd dx x k

)

( ), , ,..ϕ+ ∈ =1 0 1k k k kx x .  (3.9) 

converges to the point  (for arbitrary initial x ). ' ( { | ( ) }∈ = ≤ ≠ ∅0M dx x x ∈0
nR

Example showing a situation of the non-stationary process (3.9). Let 

( ) , , ,...≤ =0 1 2jf jx  (3.10) 

be a countable system of convex inequalities defining the set of solutions . Let 
us assume 

≠ ∅M

,
( ) max ( )

∈
=

1
k

j k
d fx j x  and suppose 



138 S. V. Patsko / Fejer Methods for Solving Infinite Systems of Convex Inequalities 

( )
( ) : sup ( ) ,= < +∞ ∀ ∈ n

j
j

d fx x x R

k

k

. (3.11) 

The functions { (  satisfy all the conditions of Theorem 3.1 (this 

theorem is to be proved). 

), ( )}kd dx x

We shall presuppose a series of lemmas to prove Theorem 3.1. 

Lemma 3.2. Let { (  be a sequence of convex functions converging to a convex 

function  for every x  and the condition of monotonicity (3.7) holds. Then from the 
fact 

)}kd x

( )d x
{ }  it follows →xk x ( ) (→k kd dx x) . 

Proof: The continuity of  gives us an opportunity to select ( )d x k  for , so that ε > 0

 | ( . (3.12) ) ( ) | ,ε
− < ∀ ≥

2kd d kx x k

Further, as ( )( ) ( )→s
sd x d x , then for sufficiently large  let ,s ≥s k , the 

following inequality takes place: 

| ( ) ( ) | ε
− <

4sd dx x . 

According to (3.7) it means that 

( ) ( ) ε
≤ − <0

4sd dx x . 

Let =s k , then 

( ) ( ) ε
≤ − <0

4kd dx x . 

From here and continuity of  and ( )d x ( )kd x , the relation implies 

( ) ( ) ε
≤ − <0

2k kkd dx x  

for sufficiently large  i.e. ,k ≥ ≥k k k . But in this case the difference  

will decrease when 

( ) ( )−k s kd dx x

, ,+ 1k ...=s k , which gives us 

( ) ( ) , ,ε
≤ − < ≥ ≥0

2k s kd d s k kx x k . (3.13) 

Write out an evident inequality 

| ( ) ( ) | | ( ) ( ) | [ ( ) ( )− ≤ − + −s k k k s kd d d d d dx x x x x x ] . 

From here in accordance with (3.12) and (3.13), we get the necessary result. 
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Lemma 3.3. Let the assumptions of Lemma 3.2. hold. If { } '  and , 

then sup  

→kx x k( )∈ ∂k kh d x

( )
|| || < +∞k

k
h .

Proof: By the definition of  we have kh

( , ) ( ) ( ),− ≤ − ∀k k k k kh d dx x x x x . 

Assuming 
|| ||

= + k
k

k

h
h

x x , we get 

|| || ( ) ( )
|| ||

≤ + −k
k k k k k

k

h
h d d

h
x x . 

The boundedness of ( )
|| ||

+ k
k k

k

h
d

h
x  and  leads to the boundedness of {| . (k kd x ) | ||}kh

We pass to the proof of Theorem 3.1. 

First of all, we allocate the situation when , : ( )+∃ ∀ ≥ = 0k kk k k d x  (i.e. 

). It corresponds to the case ( ) ≤ 0k kd x : '+= = = ∈%1k k Mx x x

}kx

0 ''k k

. If we eliminate this 

case and remove possible repetitions in { , then the sequence {  will be -fejer. 

The repetitions may appear if  and there exists . In this 

case we have a repetition: . 

}kx

''' : d

M

0' '( )+
k kd x

' '+= 1k kx x

= ''( )> >k kx

Examine in turn two cases 

lim ( )+ = 0k kd x and lim ( ) :γ+ = > 0k kd x . (3.14) 

1. The first case. Let us allocate a converging subsequence { } '  such 

that { ( . According to Lemma 3.2 { ( , i.e., . 

→
jkx

'∈ Mx

x

=)} → 0
j jk kd x )} ( ')+ +→ 0

j jk kd dx x

2. Let lim ( ) γ+ = > 0k kd x  (we can remove "+" from  in this case). Then (k kd x )

δ∃ > 0 : ( ) δ∃ ∀ ≥ > > 0k kk k k d x . We use the following notations 

( )( ) : ( ) , :
( )

δ λ λ
δ

= − =
−

0 0
0

0

k k
k k k k k k

k k

d
d d

d
x

x x
x

. 

If ,δ δ δ< >0 0 0  is rather small, then the relations are 

[ , ] ( , ),λ δ δ∈ − ⊂ ∀ ≥0
0 02 0 2k k k . 

The recurrent relation 
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( )
|| ||

λ
+

+ = −1 2
k k

k k k
k

d
h

h

x
x x k , (3.15) 

corresponding to the process (3.9), can now be written as 

( )
|| ||

λ+ = −
0

0
1 2

k k
k k k

k

d
h

h

x
x x k

)k

, (3.16) 

and the former subgradient  will be a subgradient for  

. The process (3.16) now is a fejer process for the system 

(∈ ∂k kh d x ( ) =0
k kd x

( ) δ= − 0k kd x

( ) , , ,...δ− ≤ =0 0 1 2kd kx ,  (3.17) 

assigning a solid set of solutions. According to the corollary of Lemma 2.2, the sequence 
 converges to an element . Let us prove the inclusion . Applying the 

relation (3.15), we get 

{ }kx 'x '∈ Mx

( ) || || || ||
λ += − ⋅1
1

k k k k k
k

d x x x h . (3.18) 

By virtue of Lemma 3.3 {|  are bounded, so if we pass to the limit in 

(3.18), we obtain , i.e., . The theorem is completely proved. 

| ||}k kh

'∈ M( ') = 0d x x

Theorem 3.2. Let the system of convex inequalities (3.10) be compatible and the 
condition (3.11) holds. Let us assume 

,
( ) max ( )

∈
=

1
k j

j k
d x xf

R

,

 and  are according to 

(3.8). Then the process (3.9) converges to a solution of the system (3.10). 

( )ϕk x

The result follows from Theorem 3.1. 

Remark. The conditions which provide the convergence of the iterative process (3.9) 
being applied to a compatible countable system of convex inequalities are reduced to a 
single condition, in particular, 

( )
sup ( ) ,< +∞ ∀ ∈ n

j
j

f x x . 

The condition can be fulfilled in the case of linear system 

( ) : ( , ) , , ,...= − ≤ =0 1 2j j jl a b jx x  

If we multiply each inequality of the system by , so that  

, then the system 

ε > 0j | |ε δ<j ja

| | ,ε δ δ< > 0j jb

( ) : ( ) , , ,...ε= ≤ =0 1 2j j jl l jx x  

will satisfy the condition 
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( )
sup ( ) ,< +∞ ∀ ∈ n

j
j

l x x R

δ x

N

. 

In fact, 

( ) ( )
sup [( , ) ] sup [| || | ] (| | )ε ε− ≤ + ≤ +1j j j j j j

j j
a b a bx x . 

4. FEJER PROCESS FOR A CONTINUUM SYSTEM OF 
CONVEX INEQUALITIES (BASIC TYPE W) 

Consider the system of convex inequalities of the kind 

( ) ,α α≤ ∀ ∈0f x  (4.1) 

with the set of solutions . The following limitations are superimposed on this 
system: 

≠ ∅M

1) N is a compact set from ; kR

2) function ( ) : ( )α= fzf  is  convex in the variable  for every  and 

continuous in the variable z x ; 

x

x

x

x

x α ∈ N

[ , ]α= ∈ ×n kR R
3) the mapping [ ,  is closed in the variable , i.e., from 

 and { }  it follows 

; 

] ( )αα → ∂ fxx

[ ', ']αx

')

[ , ]α=z x

( )kx{[ , ]}α →k k kx

'' (α∈ ∂h fx x

', α→ ∈ ∂
kk k kh h h fx

4) . : ( )α α αα∀ ∈ ∃ < 0N p f p

Let us establish the residual function for (4.1) 

( ) max ( ) ( ( ))α α
α

+ +

∈
= =

N
d f f

x
x x . 

This function is continuous. 

Let us note the following fact. The operation of determining the maximum of 

 in the variable  only identifies index , at which this maximum is 

reached. It is possible to speak about the complexity or simplicity of realizating such an 
operation only in concrete situations. Consideration of its complexity in general is 
senseless. 

( )α
+f x α ∈ N αx

Let us assume . We construct a map : ( ) { | ( ) ( )}αα += =J d f
xxx x ( )ϕ x

, (
( ) ( ){ | ( ), ( )}, ( ) ,

|| ||
α

ϕ λ α

= ∈
=  − ∈∂ ∈ >


2

if 0

if 0

d M
d

h h f J d
h xx x

x x
x x

x x x x

) ( );x
 (4.2) 
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where . The subgradient  from (4.2) is not equal to zero for any ( , )λ ∈ 0 2 h x , if 

( ) >d x 0 . Actually, if , then from = 0h ( , ) ( ) ( )α α= − ≤ −0 h f f
x x

x x x x  (the last relation 

takes place for all  due to convexity of the function x ( )αf x
x ) it follows 

( )
g min (αf xx

x Ar )∈ x . This is a contradiction because ( ) ( )α = > 0f d
x

x x , and at the same 

time there exists : '= ∈x x : (αM f
x

x ') ≤ 0 .  

Theorem 3.1. Let system (4.1) satisfy assumptions 1)-4). Then the mapping  
assigned by (4.1) is a closed M-fejer mapping.  

( )ϕ x

Proof: The fact that (4.2) is a fejer mapping with respect to set  follows from the 
example (see Definition 2.4). It is necessary to establish the closure of this map. Let 

, . Due to the definition of mapping closure, we are to 

show . Inclusion  means, that 

M

{ } ', { } '→ →k kx x y y

' ( ')ϕ∈y x

(ϕ∈ky x

ϕ∈ky

)k

)k(x

( )
|| ||

λ= − 2
k

k k
k

d
h

h

x
y x k

)

k

k

, (4.3) 

where  is selected according to (4.2), i.e., , and  is a shortening for 

 at . Bearing in mind the compactness of set , one can assume 

 (otherwise it is possible to allocate subsequences from { }  and to 

obtain the necessary convergence of { ). 

kh

α α→ ∈

(α∈∂
kk kh fx x αk

Nαx

{ }k

= kx x

' N , { }kx y

}αk

Two cases are possible.  

1. .  ( ') > 0d x

Let us prove the boundedness of the sequence { . The inequality 

 takes place for any , so if we assume 

}kh

( , ) ( ) ( )α α− ≤ −
k kk kh f fx x x x x

|| ||
= + k

k
k

h
h

x x , we 

get (by analogy to the proof of Lemma 3.3): || . Due to the 

second condition this fact completes the proof of the boundedness of . Now, we are 

able to reckon that { } ' , and the following inclusion is valid due to the third 

condition: . Besides, . In fact, if , then an inequality takes 

place for all ; that is why . 

||h f ( ( )
||α≤ + −

k
k

k k
k

h
f

h
x

{ }kh

' = 0h

( ') ≤f f

)
||

' ' ( )α αx x

αk kx

h

>

→kh

'' ( ')α∈ ∂h fx x

: ( ', ')− ≤h fx x x

' ≠ 0h

' ( ')α− f x' )α x(

But  and according to the fourth condition , 

so if x  then we get a contradiction. We have proved that . Passing to the 

limit in (4.3), we obtain  

'( ') ( ')α= 0d fx x ' ' ': ( )α α α∃ < 0p f p

0'α= p ' ≠h

( ')' '
'

λ= − 2
d

h
h

x
y x ' , (4.4) 

i.e. , which means closure of the mapping . ' ( 'ϕ∈y x ) ϕ
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2. . ( ') = 0d x

Examine in turn two subcases. 

2.1. . This corresponds to the case when sequence 

 lies in the set . Taking into account that in this case , we obtain 

' , i.e., , i.e., . 

{ } { }: ( )∃ ⊂ = 0
jk k kdx x x

M

→
jkx x ' (ϕ=y x

j

}
jk

'x )

{
jkx ( )ϕ =

jkx x

( )ϕ= =
j jk ky x ') = ' ( 'ϕ∈y x

2.2. : { } ,∃ > ∀0kk d k kx

' ( ')αf x ' = 0h

≥ ∀0x x

' ) < 0

' ( ')ϕy x

>

∀

k

S

. As above, we show that . 

Because of the correctness of the following inequality for all x x  

, in the case , we get . But , 

i.e., . At the same time the conditions of the theorem dictate 

. We have a contradiction at . Thus in this case, (4.4) is valid 

also, i.e., . 

'' ( ') 'α∈ ∂ ⇒ ≠ 0h f hx x

( ', ')− ≤h x

x '( ') ( ')α= = 0d fx x' ( )α≤ −f x

' ( )αf

' ': (α α α∃p f p

∈

' '( ') ( )α α≤f fx x

'α= px

The theorem is completely proved. 

Corollary. Sequence { }  initiated recurrently by inclusion  with 

arbitrary initial  converges to the solution of the system (4.1) (see Lemma 2.5).  

⊂ n
kx R ( )ϕ+ ∈1kx x

0x

Consider the system (4.1) with the additional requirement , i.e., ∈ Sx

( ) , ,α α≤ ∀ ∈ ⊂0f Nx x ,  (4.5) 

where S is a convex closed set, . ∈ nS R

Consider an analog of the mapping (4.2) 

( ) : ( ( ))ψ ϕ= Sx Pr x . (4.6) 

Theorem 4.2. Let the assumptions of Theorem 4.1. hold and the system (4.5) be 
compatible. Then sequence { , generated by relation  with arbitrary 

initial , converges to a solution of the system (4.5). 

}kx ( )ψ+ ∈1kx kx

S

∈0
nx R

The proof of the theorem follows from the facts of the closure of mapping  
and the continuity of projecting operation Pr . These facts mean that superposition 

 realizes a closed mapping. 

( )ϕ ⋅
( )⋅S

( )
( ( )) ( ( ))

ϕ
ϕ

∈
= ∪S

y x
Pr x Pr y

5. CASE OF A SYSTEM INTEGRATING A FINITE NUMBER OF 
SUBSYSTEMS OF THE TYPE W 

The offered method to solve system (4.1) can be upgraded to finding the 
solution of the system of inequalities of the following kind: 
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( , ) , , , , , ;≤ ∀ ∈ ∈ ⊂ = …0 n
j j j j jf V S jx v v x R 1 m

j x

 (5.1) 

where  are functions satisfying conditions 1) - 4) from the previous section 

with  replaced by ;  are convex closed sets. 

{ ( , )}j jf x v

α jv jS

We shall upgrade the iterative process discussed in the previous section to 
receive a solution of the system (5.1). Let us put into consideration the residual 
functions for (5.1): 

( ) : max ( , ) ( , ( )).+ +

∈
= =

j j
j j j j

V
d f f

v
x x v x v  

As before, we shall generate mappings ( ), ,...,ψ = 1j jx m , by analogy to (4.6), 

i.e., 

( ) : ( ( )),ψ ϕ=
jj S jx Pr x  

, (

( )( )
{ | ( , ( )), ( ) ( )}, ( ) .

|| ||
ϕ

λ

=


=  − ∈ ∂ ∈


2

if 0

if 0

j

jj
j j j j j j j j

j

d

d
h h f J d

h
x

x x

xx
x x v x v x x

) ;

>x

j

 

Here,  . ( , ), ,..., ;λ ∈ =0 2 1j j m ( ) : { ( ) | ( ) ( , ( ))}= =j j j j jJ d fx v x x x v x

Since the subsystem corresponding to the index j in the system (5.1) is a 
subsystem of the type (4.5), Theorem 4.2 (naturally, under the assumptions of Theorem 
4.1) is valid. Namely, the sequence { , given recurrently by iterative mapping  

with arbitrary initial , will converge to , where 

. 

}kx

nR

j

( )ϕ j x

∈0x

}∀ ∈j V

'∈ ∩jS Mx

: { | ( , ) ,= ≤ 0j j jM fx x v v

From here, using property ( ) , , , ,ϕ ⋅ ∈ = …1jMj jF m

=

 and Theorem 2.1, by 

Lemma 2.5, we get the following statement. 

Theorem 5.1. If the assumptions on the system of inequalities (5.1) hold, then the 

sequence { }  obtained by relation +∞
0kx

( ), , , , ,α ϕ α α+
= =

∈ = >∑ ∑ …1
1 1

1 0 1
m m

k i i k i i
i i

i mx x  

converges to a solution of the system (5.1) with arbitrary initial x . 0
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6. SOLUTION OF CONCAVE-CONVEX GAMES ON THE BASIS 
OF REDUCTION TO SYSTEMS OF CONVEX INEQUALITIES 

OF CONTINUUM POWER 

Consider a game Γ  of two persons with a zero sum. The game is uniquely 
determined by two sets of strategies M and N of the players and by payoff function 

 [6]. ( , )F x y

The function  is interpreted as a scoring of the first player (penalty of 
the second player). The principle of guaranteed result, applied to the considered game, 
leads to problems of searching 

( , )F x y

max min ( , ) :
∈∈

=
NM

F v
yx

x y  

and 
*min max ( , ) :

∈ ∈
=

N M
F v

y x
x y . 

If *: ( , ), ,= = = ∈ ∈t v v F M Nx y x y , then the common value of v and , i.e., *v t  is 

called the value of the game, , yx  are the optimal strategies of the players and 

{ , , }tx y  is a solution of the game. 

The solution of the game  reduces to the solution of a continuum system of 
convex inequalities [6]: 

Γ

( , ) , , , ( , ) ; ,≥ ∀ ∈ ∈ ≤ ∀ ∈ ∈F t N M F t Mx v v x w y w y N . (6.1) 

The connection between the game  and the system (6.1) is the following: Γ
[ , , ]= tz x y  is solution of the game Γ  if and only if z  is a solution of the system (6.1). 

Making renames in (6.1) 

( ) ( )( , ) : ( , ) , ( , ) : ( , )= − + = −1 2F t F t F t Fv wx x v y w y t

N

, 

we rewrite (6.1) as 

( ) ( )( , ) , , , ( , ) , ,≤ ∀ ∈ ∈ ≤ ∀ ∈ ∈1 20 0F t N M F t Mv wx v x y w y .  (6.2) 

Before we construct the mapping ( )ϕ ⋅ ∈ $$ MF

ϕi

 for the set of solutions  of the 

system (6.2), let us consider a more general construction of formulating a fejer process 
with the help of the system of partial fejer maps { (  having distinct spaces of their 

images. 

$M

)}⋅

In particular, let the union of -fejer mappings be given: { ( , where 

, , . 

iM

i iZ nR R

, )}ϕ 1
m

i ix y

m∈ in
ix R ∈ sy R : , : , , ,...,ϕ → = × ⊂ =2 1s

i i i i iZ Z M Z i
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The dot  is called the dot of 

immovability for { } , if . The set of immovability dots is denoted 

by . Let us assume . 

[ ,..., ; ] := ∈ = × ×$ $ $ $ %1
1

mnn s
mz Zx x y R R R

1
m

i : ( , ) [ , ]ϕ∀ =$ $ $ $i i ii x y x y

≠ ∅$M

×

ϕ
$M

Let  and ( , )ϕ∈i i iz x y

[ , ], ,...,= = 1i i iz ix y ,  (6.3) m

where ix

iZ

 is a trace (algebraic projection) of an element  in subspace R  of the 

space , 

iz in

iy  is a trace of an element  in . iz ⊂s
iZR

Put . Consider the mapping [ ,..., ; ]= 1 mz x x y ∈ Z

( ) : {[ ,..., ; ] | ( . ), ( , ), ,..., }ϕ ϕ
=

= ∈∑1
1

1
6 3 1

m

m i i i i
i

z z
m

x x y x y =i m , 

where {  is defined by (6.3). ,..., ; ,..., }1 1mx x y ym

Theorem 6.1. If ( )ϕ ⋅ ∈
ii FM , then ( )ϕ ⋅ ∈ $MF

( )ϕ∈k kz

. Any sequence { } , generated 

recurrently by mapping , i.e.  with arbitrary initial  converges to the 

dot  from . 

⊂kz

0z

Z

$

( )ϕ z +1z

$z $M

Proof: The property  is evident. It is necessary to prove ( )ϕ∈ ⇒ =$$ $z M z z

{ ( ), , } || || || ||ϕ∈ ∈ ∈ ⇒ − < −/ $ $$ $z z z M z M z z z z$ . (6.4) 

We have [ ,..., ; ]
=

= ∑1
1

1 m

m
i

z
m

x x yi , where ix  is a trace of the dot  in 

, 

( , )ϕ∈i i iz x y

inR iy

∀ $ $i ix y

 is a trace of  in , , and at the same time 

. Due to , there exists an i for which the following inequality 

is valid: 

iz

$z

sR [ ,..., ; ]=$ $ $ $1 mz x x y

: ( , ) [ , ]= $ $ix yϕi ∈ $M

|| [ , ] [ , ] || || [ , ] [ , ] ||− < −$ $ $ $2
i i i i ix y x y x y x y 2 . (6.5) 

Let us turn to proving ratio (6.4): 

|| || || [ ,..., ; ] [ ,..., ; ] ||

|| [ ,..., ; ( )] ||

= =

=

− = −

= − − − =

∑ ∑

∑

$ $ $

$ $ $

2 2
1 1

1 1

2
1 1

1

1 1

1

m m

m i m
i i

m

m m i
i

z z
m m

m

x x y x x y

x x x x y y

=$
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|| || || ||

(|| || || || ) || ||

(|| || || || ) || [ , ] [ , ] || || || ,

= =

= =

= =

= − + − =

−
= − + − − − ≤

≤ − + − < − = −

∑ ∑

∑ ∑

∑ ∑

$ $

$ $ $

$ $ $ $

2 2
2

1 1
2

2 2 2
2

1 1

2 2 2

1 1

1

1

m m

i i i
i i

m m

i i i i
i i
m m

i i i i i
i i

m

m

m

z z

x x y y

x x y y y y

x x y y x y x y $ 2

 

as it was required. Thus, the inclusion ( )ϕ ⋅ ∈ $MF  is stated. The inclusion ( )ϕ ⋅ ∈ $MF

)}ϕ ⋅i

 

easily follows from the closure of mapping  (due to the closure of mappings { ( ). ϕ

Let us return to the system (6.2). As mentioned above, a solution of the game 
 reduces to a solution of this system. We rewrite it in the form Γ

( )

( )

( , ) , , ; ( . ) ;

( , ) , , . ( . ) .

 ≤ ∈ ∀ ∈


≤ ∈ ∀ ∈

1
1

2
2

0 6

0 6

F t M N

F t N M

v

w

x x v

y y w

6

6

6

6

+x

+y

 (6.6) 

Also we allocate subsystems 

( )

( )

( , ) , ; ( . ) ;

( , ) , . ( . ) .

≤ ∀ ∈

≤ ∀ ∈

1 0
1

2 0
2

0 6

0 6

F t N

F t M

v

w

x v

y w
 

These are the systems ( .  and ( .  without requirements of  and . )16 6 )26 6 ∈ Mx ∈ Ny

Let us take into consideration residual functions d  and  for 

subsystems ( .  and : 

( , )1 tx ( , )2d ty

)0
16 6 ( . )0

26 6

( )( )
( , )( , ) max[ ( , )] ( [ ( , )] )+

∈
= = 11

1 tN
d t F t F tv v xv

x x , (6.7) 

( )( )
( , )( , ) max [ ( , )] ( [ ( , )] )+

∈
= = 22

2 tM
d t F t F tw w yw

y y . (6.8) 

Denote 

( , ) { ( , ) | ( . )}, ( , ) { ( , ) | ( . )}= =1 26 7 6 8J t t J t tx v x y w y . 

Assume that 

( ) ( )
( )

( , )( , ) : {[ , ] [ , ] | ( , ), ( , )}
|| ||

ϕ λ= − − ∈ ∈ ∂
+

1 11
1 1 11 2

1
1

d t
t t h J t h F

h
v v x

v

x
x x v x x v , (6.9) 

( ) ( )
( )

( , )( , ) : {[ , ] [ , ] | ( , ), ( , )};
|| ||

ϕ λ= − − ∈ ∈ ∂
+

2 22
2 2 22 2

1
1

d t
t t h J t h F

h
w w y

w

y
y y w y w y  (6.10) 
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where . Denote by  and  the coefficient before 

 and [ , . Then  and  can be rewritten as  

( , ), ( , )λ λ∈ ∈1 20 2 0 2

, ]1 ( ) ]−2 1hw

( , )α tv x

( )ϕ ⋅2

( , )β tw y
( )[− 1hv ( )ϕ ⋅1

( ) ( )

'

( , ) {[ ( , ) , ( , )] | ( , ), ( , )}ϕ α α= + − ∈ ∈∂&''('') &'(')
1 1

1 1

t

t t h t t J t h Fv v v v x

x

x x x x v x x v , (6.11) 

( ) ( )

''

( , ) : {[ ( , ) , ( , )] | ( , ), ( , )}.ϕ β β= + + ∈ ∈ ∂&'''(''') &'(')
2 2

2 2

t

t t h t t J t h Fw w w w y

y

y y y y w y w y  (6.12) 

Let us define a purpose mapping 

' ''( , , ) : {[ ( ), ( ), ]}ϕ +
=$

2M N
t t

tx y Pr x Pr y , (6.13) 

where x  is the first vector fragment in (6.11), y  is the first vector fragment in (6.12) 
and  are scalar fragments in (6.11) and (6.12), respectively. ', ''t t

Let us take together all constraints on the game , which provide the 
converging of the iterative process generated recurrently by mapping , to a 
solution of the game: 

Γ
( , , )ϕ$ tx y

1.  and  are convex compact sets, ; M N ,⊂ ⊂nM NR R

2.  is continuous in , concave in  and convex in ; ( , )F x y [ , ]= ∈ ×nz x y R Rm

Fy

x y

3. Mappings [  are closed. , ] ( , ), [ , ] ( , )→ ∂ → ∂Fxx y x y x y x y

Theorem 6.2. If suppositions 1.-3. hold, then 

( , , )ϕ ∈ $$ Mt Fx y , 

where  is a set of vectors $M [ , , which are solutions of the game . 

From here it follows that any sequence { } , generated recurrently by ratio 

 (with arbitrary initial ) converges to a solution of the game 

. 

, ]∈ × ×n mtx y R R R

0
kz

[ , , ]=0 0 0z x y

Γ
+∞

(ϕ$ z )+ ∈1k
kz

Γ

t

We shall divide the substantiation of the formulated statement essentially 
prepared by the previous theorems into a series of items. 

1) Resolvability of the game  is provided by conditions 1 and 2 (it is a known 
result, see, for example, [6]). 

Γ

2) Mappings  and , i.e., (6.9) and (6.10) corresponding to the 

systems  and ( . , are constructed just as mapping (4.2) for the system (4.1) 

( , )ϕ1 tx

)0
26 6

( , )ϕ2 ty

( . )0
16 6
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(the differences are only in the notations). The closure of mapping (4.2) is valid due to 

conditions 1)-4) (Theorem 4.1). With application to systems ( .  and  these 

conditions take place due to suppositions 1.-3. 

)0
16 6 ( . )0

26 6

) < 0t ( , )− +F tx v

( )ϕ ⋅i

ϕ

ϕ∈1 1 x nR

ϕ∈2 2 y

1z

m

2z

( , , )tx y

( ,ϕ x y

Explanations are required only for condition 4), which can be written for the 

system  in the following form: ( . )0
16 6 ( )[ , ] : ( ,∃ 1N t Fvv x x∀ ∈ , i.e. 0 . 

It is evident that for any x  and v , the corresponding t

)

 is selected trivially. The 

system  is treated by analogy to ( . . All these facts provide (with respect to 

Theorem 4.1) the closure of mappings  and . 

( . )0
26 6 )0

16 6

( , )1 txϕ ( ,ϕ2 ty

<

3) We have proved that 

( ) ( )( ) , ( ) ,ϕ ϕϕ ϕ⋅ ⋅⋅ ∈ ⋅ ∈
1 21 2Fix FixF F  

where  is a symbol for notation of the immovability sets of the maps . The 

sets of solutions of  and  are these immovability sets. According to the 

scheme for construction of the map  from Theorem 6.1 it is possible to use  

and  to establish a mapping , which has the following form: 

( )ϕ ⋅iFix

( , )ϕ2 ty

( . )0
16 6 ( . )0

26 6

(ϕ z) ( , )tx1

( , , )ϕ tx y

' '']}t t( , ,ϕ +
2

, ) {[ ,=t x yx y , where x  is the trace of the vector  in  as the 

subspace of the space , 

( , )z t

×nR R y  is the trace of the vector  in R  as the 

subspace of the space ,  and  are the traces of  and  in one-

dimensional subspace R  of the spaces  and . 

( , )z t

×mR R 't ''t

×nR R ×mR R

Thus, the mapping  will be closed and fejer for the set of solutions of 
the system 

( , , )ϕ tx y

( ) ( )( , ) , ; ( , ) , .≤ ∀ ∈ ≤ ∀ ∈1 20 0F t N F tv wx v y w M  (6.14) 

The system (6.14) is the union of the systems  and . ( . )0
16 6 ( . )0

26 6

The requirements of  and  are taken into account with the help of 
using the projecting operators in  and  as shown in (6.13). 

∈ Mx
M

∈ Ny
N

Vector 
' ''), ( ), +
2M N

t t
Pr x Pr y[ (  from (6.13) realizes the projection of the vector ]

' ''[ , , ]+
∈ × ×

2
n mt t

x y R R R  in , and the mapping  realizes the unity 

of all vector projections from  in the mentioned set. Mapping , as 
shown above, is a fejer mapping for the set of solutions of the system (6.14), and the 
projection operator is continuous and fejer mapping for the set on which the projecting 

× ×M N R

( , , )ϕ tx y

ϕ$

, )t
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is done (Lemma 2.4). That is why their superposition  is a closed fejer map for 
the set  (Theorem 2.1, Property 2). Using the statement of Lemma 2.5, we get 
the validity of Theorem 6.2. 

( , , )ϕ$ tx y
( )ϕ ⋅$Fix
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