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Abstract: Abstract: This paper focuses on companies that have both a fleet to serve customers
and depots for vehicle maintenance. When management of such a vehicle fleet is
considered, one of the most important problems is the computation (estimation) of the
reliability and the availability of the vehicles. What often makes this computation
difficult is the insufficient data for statistical inference or total lack of data (such an
aggravating circumstance arises, for example, whenever the fleet is renewed).
Concentrating on such a case, this paper presents some analytical formulae based on
the Bayesian approach to uncertainty that contribute to the solution of the problem.
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1. INTRODUCTION

The fleets considered in this paper are maintained in depots that belong to the
same company as the fleet. When the company organizes its current activities and
plans future ones, it must make a long-term general plan for employing the vehicles
and an executive work plan (EWP) for the present time and near future.

Along with making plans, the company must ensure that the necessary
number of appropriate vehicles are in working condition when needed (according to the
EWP), and that there are also stand-by vehicles available. This requires information
about the size and structure of the vehicle fleet, the condition of each vehicle (which is
subject to changes) and the maintenance facilities in the depots.

Information about changes in vehicle conditions and reliability data, in
particular, constitute the basis for:

• determining the probability of fulfilling the tasks specified by the EWP [6],
• defining the concept of corrective maintenance and the system of preventive

maintenance,
• defining the capacity of maintenance facilities and the organization of the

maintenance system,
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• computing the availability of the vehicles, and
• defining the necessary transport capacities (the number and type of vehicles)

which correspond to the set of transport demands.

How is this to be done if there is a lack of appropriate information? In other
words, how can we deal with the described uncertainty?

The objective of this paper is to help solve the problem of predicting the state
of the vehicle fleet. The existence of uncertainty in vehicle fleet management and
maintenance due to the lack of data for statistical inference is taken into consideration.
Since no method has been elaborated to determine the reliability and availability of the
vehicle fleet under uncertain conditions, this paper suggests a method based on the
Bayesian treatment of uncertainty, which can include all specific features of the
problem.

2. STATEMENT OF THE PROBLEM

A vehicle fleet is usually a heterogeneous set comprising vehicles of different
structure and age. Vehicles of the same structure and age form homogeneous subsets,
which can be called construction-operation groups or CO groups. Often a CO group
comprises a small number of vehicles. A heterogeneous vehicle fleet, having more than
one CO group, would have )( j

iN  inventory vehicles in the j-th CO group. Our

consideration can be confined to only one CO group since the procedure can be
repeated for each CO group separately. So, hereinafter, index j will be omitted.

Each CO group of vehicles has transportation tasks to fulfill in a given time
period, the tasks being defined by the EWP. By presenting the variables relevant to the
EWP on a chart (time being the abscissa), for a CO group under consideration we can
visualize the relation between the number of vehicles )(tNn  necessary to fulfill the
transportation tasks and the number of available vehicles (technically fit for operation).

)(tNn  is a non-random function of time. This function is often periodical, periods T
being one day, one week, etc. An example is given in Fig. 1.
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Figure 1.Figure 1.
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The variables under consideration are:

iN  - number of vehicles

)(tNa  - number of available vehicles (a random variable)

)(tNm  -number of vehicles not fit for operation due to failure or in need of regular
maintenance (a random variable)

)(tNn  - number of vehicles necessary to fulfill the tasks

)(tNo  - number of vehicles in operation (a non-random variable if )()( tNtN no =  and a
random variable if )()()( tNtNtN nao <= )

)(tNs  - number of stand-by vehicles fit for operation - vehicles in reserve (a random
variable)

it  - moments when either the number of necessary vehicles, )(tNn , or the number
of available vehicles, )(tNa , changes.

Three types of intervals can be distinguished on the chart in Figure 1:

1. intervals such as

),(),,( 3210 tttt  and ),( 65 tt

in which )()( tNtN an <  and hence )()()( tNtNtN ano <=  and 0>)(tNs . These are the
intervals in which all tasks are fulfilled and )(tNs  vehicles are in reserve.

2. intervals such as

),( 54 tt

in which )()( tNtN an = , and hence )()()( tNtNtN ano == , while 0=)(tNs . In such
intervals all tasks are fulfilled, but at a high risk, since there are no stand-by vehicles
(no vehicles in reserve).

3. intervals such as

),( 21 tt  and ),( 43 tt

in which )()( tNtN an >  and hence )()()( tNtNtN nao <=  with 0=)(tNs . In such
intervals some tasks cannot be fulfilled.

Since all tasks will be fulfilled only when )()( tNtN an ≤ , i.e. when
)()( tNNtN min −≤ , it follows that, for given iN  and )(tNn , limitations are put on the

number of vehicles not fit for operation, )(tNm .
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Vehicles are not fit for operation either due to regular maintenance activities
or due to failures. Considering the influence of various kinds of failures on the process
of transportation, three groups of failures can be distinguished:

A - "unimportant" failures - those which do not directly influence the basic
functioning of a vehicle (and safe driving).
The failure is identified after the vehicle has completed its task and has
returned to the depot. The number of vehicles with this kind of failure will be
denoted by I

mN .

B - "delay provoking" failures - those which obstruct the basic functioning of the
vehicle (or safe driving) but can be corrected on the spot.
The vehicle may be repaired by the driver or by a group of repairmen, so that
the vehicle completes its task with some delay. The number of vehicles with this
kind of failure will be denoted by II

mN .

C - "critical" failures - those which hamper the basic functioning of the vehicle (or
safe driving) and are to be taken care of at the depot.
The number of vehicles with this kind of failure will be denoted by III

mN .

By adopting this classification of failures, the state of the vehicles, for the time
period under consideration, may be represented by the diagram shown in Figure 2.
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Figure 2.Figure 2.

The possibility of failures and the necessity of regular maintenance require the
existence of stand-by vehicles, )(tNs .

The influence of failures from group A on the size of the stand-by fleet can
usually be neglected since )(tNs  is rarely diminished due to these failures. The repair
capacities at the depot are usually sufficient to correct these failures before the
departure time of the vehicle, scheduled by EWP.

The influence of failures from group B is small since such failures require the
use of a stand-by vehicle only if the delay overlaps the beginning of the next task
assigned to the vehicle.



V. Papi}, J. Popovi} /Vehicle Fleet Management: A Bayesian Approach 81

Failures of group C have a strong influence on the size of the "stand-by" group
of vehicles. Due to these failures a vehicle from the stand-by fleet must be mobilized to
continue the task. Often these failures require a tow vehicle to be mobilized as well.

The moment the vehicles are introduced into operation it is important to know
the regularity of appearance of various kinds of failures and the dynamics of their
elimination.

To our knowledge, attempts to solve this problem which incorporate the above
kind of uncertainty are not found in the available literature.

The possibility of predicting changes in the state of the vehicle fleet, obtaining
knowledge about the functioning of the maintenance system and having appropriate
tools to quantify these processes, which is of ultimate concern here, would enable the
determination of a stand-by fleet that satisfies real demands and reduces costs.

To reach this goal we started from the assumption that the time between
consecutive failures is distributed exponentially for each vehicle. As it is known from
reliability theory [3,4,8] and illustrated using experimental data and the simulation
method [2], this assertion is valid under the following conditions:

• the system (vehicle) may be regarded as a complex system, structured into s
components (assemblies) that are mutually independent in regard to possible
failure;

• the number of components, i.e. the number of possible types of failures, s, is large
(at least several dozen)1;

• each component has its own distribution of the time between failures;

• any failure of any of the components results in the failure of the system, i.e. of the
vehicle.

Respecting the foregoing conditions, one can simulate the failure of each
component by assigning to each a certain distribution. These distributions can then be
combined to give a superposed distribution which, after applying a statistical test,
proves to be exponential. The CO groups may differ in the number of components and
they usually differ in the distributions assigned to each component. Consequently, the
CO groups usually differ in the parameters of the resultant exponential distributions
and in failure rates.

Due to the assumption that the resultant distribution is an exponential
distribution, the uncertainty can be incorporated through the unknown failure rate λ .
The conditional distribution of the number of failures in time period t therefore has a
Poisson distribution )( tP λ  and the Poisson distribution has a natural conjugate [1,4,9].
Now all the conditions necessary to use the Bayesian approach to uncertainty are
fulfilled.

                                                          
1 In detailed analysis this number can amount to several thousand.
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3. SOLUTION OF THE PROBLEM

In order to solve the problem, the essential question to be answered is the
following: how to obtain, in conditions of uncertainty, the distribution of the number of
failures per unit time interval t∆ . Unit time intervals, called sequences, are notions
associated to sequential planning and record keeping. At the end of the i-th sequence,
in order to plan for sequence )( 1+i  (respecting the number of indispensable vehicles,
the needed capacity of the maintenance depot and other elements of the logistic
support), it is necessary to predict the number of failures in sequence )( 1+i . The
number of failures recorded in the i-th sequence is to be used at the beginning of
sequence )( 1+i  to correct the parameters of the failure rate distribution.

Let us now consider a homogeneous set of n vehicles, each having the same
failure rate *λ , which is unknown. Failure rate is the average number of failures in a
sequence. In accordance with the Bayesian approach, an unknown rate is treated as a
random variable. In order to have compatible distributions [1, 4, 9] in this case a
gamma distribution is chosen:

*λ ∼ ),( βαΓ , ∞<< βα ,0 (1)

At the beginning of the Bayesian treatment of uncertainty, i.e. at the
beginning of the first sequence, the a priori values of parameters α  and β  in the
gamma distribution must be determined. This is done either on the basis of available
partial information or subjectively when data about the failure rate do not exist [4, 7].

Due to the additivity of the gamma distribution, the whole set of n vehicles,
i.e. the whole CO group, is characterized by failure rate λ , which is treated as a
random variable with a gamma distribution:

λ ∼ ),( βαnΓ (2)

This distribution (the a priori distribution) is characterized by the density
function:
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The marginal distribution of the number of failures in the whole group of
vehicles during the first sequence (unit time interval), denoted by 

1tX∆ , can be

obtained from the following equation:
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from which it follows that 
1tX∆  has a negative binomial distribution (N.B.):

1tX∆ ∼ N.B. ),(
1+β

β
αn (5)

When computing individual probabilities, according to (5), the following
recurrent formula is used:
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This formula is used to predict the number of failures in a homogeneous group
of n vehicles during the first sequence 1t∆ . If during the first N consecutive sequences
(unit time intervals), Nttt ∆∆∆ ,...,, 21 , we have registered Nxxx ,...,, 21  failures for the
whole CE group under consideration, the a posteriori distribution of λ  will be:
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This means that the a posteriori distribution of λ  is again a gamma
distribution:

Nxxx ,...,,| 21λ ∼ ),( Nxn
N

i
i ++Γ ∑

=
βα

1
(8)

A comparison of the a posteriori distribution (8) to the a priori distribution (2)
reveals how the number of registered failures Nxxx ,...,, 21  and the number of past
sequences N are used to correct the parameters of the distribution. Hence, in sequence

)( 1+N  (unit time interval), the distribution of the number of failures which will serve
for planning purposes is obtained from the following equation:
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Thus, from (9) it follows that the distribution is again a negative binomial
distribution:

1+∆ NtX ∼ N.B. ),(
11 ++

+
+ ∑

= N
Nxn

N

i
i β

β
α (10)

The expected number of failures and the corresponding variance, respectively,
are given by:
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The set of failures for which the former calculations were performed was the
set comprising all failures: "unimportant" failures (type A), "delay provoking" failures
(type B) and "critical" failures (type C). Now, calculations will be performed, first, for
the subset comprising only B and C failures (the union of subsets B and C) and then for
the subset comprising only C failures.

Let us look for the distribution of the number of failures of type B or C. (These
are failures which, unlike those of type A, do influence the fulfillment of the tasks). In
order to do this we will modify equation (10) using a suitable theorem [1].

If the probability that the failure is of type A is denoted by p then the
probability that it is of type B or C is qp =−1 .

After N sequences in which the number of failures was registered, the number
of failures during the sequence 

11 +∆+∆
NtN Xt , , has a negative binomial distribution (10)
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β . According to the theorem [1] it follows that

the number of failures of type B or C, 
1+∆ NtY , also has a negative binomial distribution,

given by:

1+∆ NtY ∼ N.B. ),(
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Nxn
N

i
i ++

+
+ ∑

= β
β

α
1

(12)

We shall now proceed to calculations for the subset comprising C failures
alone. Failures of type C are a subset of the set of all failures. These "critical" failures
always require a stand-by vehicle to be mobilized. (From the viewpoint of vehicle fleet
management, it is convenient that these failures occur rarely.) In order to treat these
failures, the following model is introduced.
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Let n be the number of vehicles in the CO group under consideration. Let us
suppose that the number per sequence of type C failures is a random variable denoted
by Z with a conditional binomial distribution ),( pnBB , where parameter p is unknown.
Thus:
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Parameter p represents the probability per sequence of a type C failure. The
Bayesian learning algorithm treats p as a random variable with a beta distribution. The
density function )( pg , with the a priori determined values of parameters a and b, is
given by:
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After N sequences in which Nzzz ,...,, 21  failures of type C are registered, using
the Bayes formula we can obtain the a posteriori distribution which is defined by the
density function:
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It follows that p has an a posteriori distribution which is again a beta
distribution:
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If we denote by 1+NZ  the number of failures in sequence )( 1+N , then the
distribution of 1+NZ  is determined by the equation:
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This distribution is used to forecast the number of type C failures in the
sequence )( 1+N . With these forecasts at hand the decision-maker should be able to do
better planning.

To summarize: The distribution of all failures (types A, B and C) is given by
(10), the distribution of "critical" failures (type C) by (17) and the distribution of
"influential" failures (failures of type B or C) by (12). Thereby, we have implicitly
considered failures of type A, B and C.
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4. NUMERICAL EXAMPLE

In order to illustrate the validity of the derived formulae and show what,
based on them, can be further computed and utilized in the decision process, we will
now present a real-life example [5]. The data were collected for a construction-
operation group (CO) of 13 cistern vehicles, model FAP1314, during the period from 1
July 1987 till 31 December 1990. All these vehicles were put into operation in the
Public Company "Gradska ^isto}a" Belgrade as brand new at the beginning of that
period. Common characteristics for the whole group are: nearly identical, difficult
working conditions for all vehicles (vehicles are used to wash the streets manually,
therefore they work in the 1st gear during their operation time), and approximately the
same mileage during the corresponding time periods. Failures were recorded during the
1 July 1987 - 31 December 1990 time period and classified according to type A, B, and C
failures. Table 1 shows the number of failures in the defined time periods.

Table 1:Table 1: Number of failures

Time period
Type
of failure

1 July 1987
- 31 Dec. 1987

1 January 1988
- 31 Dec. 1988

1 January 1989
- 31 Dec. 1989

1 January 1990
- 31 Dec. 1990

A + B + C 321 754 792 794
B + C 27 69 117 123

C 10 21 34 23

Let us consider that we are at the beginning of the observation period (1 July
1987) and that the unit time interval is a calendar month. Since the vehicles are brand
new, and we do not have any record of failures of our own, we can forecast *λ , the
failure rate per vehicle (which is the same for each of the 13 observed vehicles), either
using other customers' data, or the manufacturer's forecasts. In order to show how the
choice of a priori forecast of the average number of failures during one month of
vehicle operation affects the solution, we made a sensitivity analysis of outcomes, given
the choice of a priori values of distribution parameters, observing the obtained results
in four time points (which coincide with the end of the calendar year), and in three
different alternatives.

The first two of these alternatives are similar in that the a priori estimate of
the average number of failures per vehicle per month (regardless of the failure type,
therefore belonging to class A+B+C) is 5. The difference between them is in the degree
of our confidence in that value, which is different, so that in the first (more optimistic)
alternative we trust that estimate more, while in the second one we trust it less. In the
first alternative, that assumption led to the smaller variance of estimates of gamma
distribution parameters in formula (1). In the third alternative, we assumed that on
average there are 4 failures (regardless of the failure type) per vehicle per month, and
that we have an optimistic attitude regarding the ratio between variance and mean
value. Distributions and corresponding values of distribution parameters (in
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accordance with formulae (1), (2), and (5)), as well as distributions of the forecast
number of failures for the following month and corresponding values of means and
variances of the number of failures (in accordance with formulae (10) and (11)), are
presented in Table 2. The results are given for four time points (end of calendar year),
and for three alternatives, described above.

Table 2.Table 2.

Alternatives
I II III

Distribution of the

failure rate *λ
*λ ∼ Γ(10, 2) *λ ∼ Γ (1, 0.2) *λ ∼ Γ (8, 2)

Distribution of the
failure rate λ  of
the whole CE group

λ ∼ Γ(130, 2) λ ∼ Γ(13, 0.2) λ ∼ Γ(104, 2)

Marginal distrib. of
the number of all
types (A+B+C) of
failures 

1tX∆  in the

first month )( 1t∆

and numerical
characteristics

1tX∆ ∼N.B. (130, 2/3)

=∆ )(
1tXE 65

=∆ )(
1tXV 97.5

1tX∆ ∼N.B. (13, 1/6)

=∆ )(
1tXE 65

=∆ )(
1tXV 390

1tX∆ ∼N.B. (104, 2/3)

=∆ )(
1tXE 52

=∆ )(
1tXV 78

After 61 =N  unit time intervals (months) have passed (31 Dec. 1987)

Number of regis-
tered failures
(A+B+C)

321
6

1
=∑

=i
ix

7tX∆ ∼N.B. (451, 8/9)

=∆ )(
7tXE 56.375

=∆ )(
7tXV 63.42

7tX∆ ∼N.B. (334, 0.861)

=∆ )(
7tXE 53.92

=∆ )(
7tXV 62.62

7tX∆ ∼N.B. (425, 8/9)

=∆ )(
7tXE 53.125

=∆ )(
7tXV 59.77

After 181 =N  months have passed (31 Dec. 1988)

Number of regis-
tered failures

1075
18

1
=∑

=i
ix

19tX∆ ∼N.B. (1206,20/21)

=∆ )(
19tXE 60.3

=∆ )(
19tXV 63.315

19tX∆ ∼N.B. (1089,0.9479)

=∆ )(
19tXE 59.796

=∆ )(
19tXV 63.083

19tX∆ ∼N.B. (1180,20/21)

=∆ )(
19tXE 59

=∆ )(
19tXV 61.95

After 301 =N months have passed (31 Dec. 1989)

1867
30

1
=∑

=i
ix

31tX∆ ∼N.B. (1997,32/33)

=∆ )(
31tXE 62.406

=∆ )(
31tXV 64.356

31tX∆ ∼N.B. (1880,0.968)

=∆ )(
31tXE 62.04

=∆ )(
31tXV 64.098

31tX∆ ∼N.B. (1971,32/33)

=∆ )(
31tXE 61.594

=∆ )(
31tXV 63.519

After 421 =N  months have passed (31 Dec. 1990)

2661
42

1
=∑

=i
ix

43tX∆ ∼N.B. (2791,44/45)

=∆ )(
43tXE 63.432

=∆ )(
43tXV 64.874

43tX∆ ∼N.B. (2674,0.977)

=∆ )(
43tXE 63.384

=∆ )(
43tXV 64.098

43tX∆ ∼N.B. (2765,44/45)

=∆ )(
43tXE 62.841

=∆ )(
43tXV 64.269



88 V. Papi}, J. Popovi} /Vehicle Fleet Management: A Bayesian Approach

Comparing the results of different alternatives, some interesting facts might
be noticed. Since the first two alternatives deal with a well chosen estimate of the
average number of failures per vehicle per month )( * 5=λ , it can be seen that after a
small number of periods the differences between forecast (expected) values are
minimal, and the differences between alternatives are small. The most important fact
is that negative binomial distribution, which is used to describe the forecast number of
failures, converges faster to the Poisson distribution, which is the basic assumption of
the model. This phenomenon could be proved easily observing the ratio between
variance and mean value which, compared to the starting value (1.5 in the 1st variant,
and 6 in the 2nd), decreased to the value of just above 1. It is also interesting to note
that the much worse estimate of average number of failures per vehicle per month

)( * 4=λ  in the 3rd alternative, despite our pretty large a priori faith in estimation
capability (expressed through the relation )(.)(

11
51 tt XEXV ∆∆ = , quickly adapted

through the incorporation of already recorded data into parameters of the a posteriori
distribution. This can be observed through the fact that the expected values of the
number of forecast failures (regardless of the failure type) in this alternative differ by
less than 1% (and standard deviations by less than 0.5%) from values in other
alternatives after 42 unit time intervals (months), and only slightly more after just 18
months of data collecting.

We pointed out earlier that some types of failures (B+C) lead to disturbances
in the execution of the EWP (executive work plan), therefore we will discuss them
separately. We propose to make forecasts using formula (12). In the three alternatives
described earlier we again observe time points at the end of the calendar year. (In fact,
we could have presented the results for each month, if the complete data were
displayed.) In formula (12), next to the a priori values of parameters α  and β , iN -
number of past time units (i - ordinal number of observed time point), and ix∑ - total
number of recorded failures (of types A+B+C), we introduced q - probability that the
failure is of type B or C. At the beginning of the calculating process shown in Table 3
the value 10.=q  was taken. Then it was adjusted, at first to 150.=′q , and then to

160.=′′q , because the increasing tendency of these types of failures was observed.

The correction from 10.=q  to 150.=′q  was made after 30 months of vehicle
fleet operation, because it was observed that the expected number of failures of types B
or C for the whole fleet per year in the first case was 75, and in the second case,
depending on the alternative, 113, 112, and 111, respectively. Following the increase in
the number of failures of type B or C after 42 months of operation, the probability
increased to 160.=′′q  which corresponds to the level of approximately 122 failures per
year per entire fleet of 13 vehicles.
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Table 3.Table 3.

Alternatives
I II III

Marginal distrib. of
the number of
failures (type B or
C) 

1tY∆  in the first

month and
numerical
characteris.

10.=q

1tY∆ ∼N.B.(130,0.9524)

=∆ )(
1tYE 6.5

=∆ )(
1tYV 6.825

1tY∆ ∼N.B.(13,0.667)

=∆ )(
1tYE 6.5

=∆ )(
1tYV 9.75

1tY∆ ∼N.B.(104,0.9524)

=∆ )(
1tYE 5.2

=∆ )(
1tYV 5.46

After 61 =N  unit time intervals (months) have passed (31 Dec. 1987)

321
6

1
=∑

=i
ix

10.=q

7tY∆ ∼N.B.(451,0.9877)

=∆ )(
7tYE 5.638

=∆ )(
7tYV 5.708

7tY∆ ∼N.B.(334,0.9841)

=∆ )(
7tYE 5.387

=∆ )(
7tYV 5.474

7tY∆ ∼N.B.(425,0.9877)

=∆ )(
7tYE 5.312

=∆ )(
7tYV 5.379

After 181 =N  months have passed (31 Dec. 1988)

1075
18

1
=∑

=i
ix

10.=q

19tY∆ ∼N.B.(1205,0.995)

=∆ )(
19tYE 6.03

=∆ )(
19tYV 6.06

19tY∆ ∼N.B.(1088,0.9945)

=∆ )(
19tYE 5.984

=∆ )(
19tYV 6.016

19tY∆ ∼N.B.(1179,0.995)

=∆ )(
19tYE 5.944

=∆ )(
19tYV 6.018

After 301 =N months have passed (31 Dec. 1989)

10.=q

31tY∆ ∼N.B.(1997,0.9969)

=∆ )(
31tYE 6.241*

=∆ )(
31tYV 6.260

31tY∆ ∼N.B.(1880,0.9967)

=∆ )(
31tYE 6.225*

=∆ )(
31tYV 6.246

31tY∆ ∼N.B.(1971,0.9969)

=∆ )(
31tYE 6.159*

=∆ )(
31tYV 6.1791867

30

1
=∑

=i
ix

150.=′q

31tY∆′ ∼N.B.(1997,0.9953)

=′∆ )(
31tYE 9.361**

=′∆ )(
31tYV 9.405

31tY∆′ ∼N.B.(1880,0.9967)

=′∆ )(
31tYE 9.338**

=′∆ )(
31tYV 9.384

31tY∆′ ∼N.B.(1971,0.9953)

=′∆ )(
31tYE 9.239**

=′∆ )(
31tYV 9.282

After 421 =N months have passed (31 Dec. 1990)

2661
42

1
=∑

=i
ix

160.=′′q

43tY∆′′ ∼N.B.(2791,0.9964)

=′′∆ )(
43tYE 10.149

=′′∆ )(
43tYV 10.186

43tY∆′′ ∼N.B.(2674,0.9962)

=′′∆ )(
43tYE 10.138

=′′∆ )(
43tYV 10.177

43tY∆′′ ∼N.B.(2765,0.9964)

=′′∆ )(
43tYE 10.055

=′′∆ )(
43tYV 10.091

Since type C failures, "critical failures", are the worst regarding fulfillment of
the EWP (because the engagement of a replacement vehicle is needed), forecasting
their number is of great importance from the planner's point of view. Since Z, the
conditional distribution of the number of failures, includes the unknown probability of
a type C failure appearing in any of the vehicles, Table 4 presents the changes caused
by recording type C failures in the time points that coincide to the end of the calendar
year. Again, we observe three alternatives according to a priori chosen parameter
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values. These changes influence the distribution parameters in formulae (16) and the
expected value of p.

Table 4.Table 4.

ALTERNATIVES

iN cumulative no. of
observed type C

failures
I(p ∼ B(1.5, 10)) II(p ∼B(15, 100)) III(p ∼B(4, 20))

6 10
p ∼ B (11.5, 78)

=)( pE 0.128
p ∼ B(25, 168)

=)( pE 0.130
p ∼ B(14, 88)

=)( pE 0.137

18 31
p ∼ B(32.5, 213)

=)( pE 0.132
p ∼ B(46, 303)

=)( pE 0.132
p ∼ B(35, 223)

=)( pE 0.136

30 65
p ∼ B(66.5, 335)

=)( pE 0.166
p ∼ B(80, 435)

=)( pE 0.155
p ∼ B(69,345)

=)( pE 0.167

42 88
p ∼ B(89.5, 468)

=)( pE 0.161
p ∼ B(103,560)

=)( pE 0.155
p ∼ B(92,478)

=)( pE 0.161

At the end, we will illustrate how formula (17) can be concretely utilized at the
time point of 31 December 1990 to forecast the number of type C failures for the entire
fleet for the following month. For alternative II (a=15, b=100), we calculated
probabilities )( kZP =43 , for different values ,...,, 210=k , taking into account that

88=∑ iZ . The following results were obtained:

P(Z43 = 0) = 0.11296
P(Z43 = 1) = 0.26536
P(Z43 = 2) = 0.29101
P(Z43 = 3) = 0.19725
P(Z43 = 4) = 0.09219
P(Z43 = 5) = 0.03137

P(Z43 = 6) = 0.00799
P(Z43 = 7) = 0.00155
P(Z43 = 8) = 0.00022
P(Z43 = 9) = 0.00002
P(Z43 ≥ 10) ≈ 0

 Using these results the planner can forecast that, with a probability greater
than 0.95, the number of type C failures during the 43rd month since the beginning of
observations will be at most 4.

5. CONCLUSION

According to the present state of the art in the field of vehicle fleet
management, we are without analytical planning tools in case we lack data on vehicle
failures, or the available data are not sufficient for statistical inference. Under the
conditions of such uncertainty the distributions of the number of failures are not
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known. As an alternative to omitting analytical planning while waiting for the data to
accumulate for statistical inference, we proposed a procedure for determining the
distributions, which are subjected to consecutive corrections as the recording of
failures, in consecutive sequences, advances. The Bayesian learning algorithm proved
to be a useful tool to obtain these distributions according to which planning can be
made. Planning here involves planning the number of vehicles as well as planning the
maintenance facilities since the companies considered in this paper have a maintenance
depot along with their vehicle fleet.

We find the problem considered in this paper important enough to be tackled
by more than one approach. We expect the technique we proposed, as well as other
modern techniques, to be used in the future.
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