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Abstract:Abstract:  In this paper we propose a modification of the finite termination algorithm
which reduces the dimension of the primal-dual linear programming problem. We note
that the similar approach is possible in any primal-dual algorithm for linear
programming.
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1. INTRODUCTION

We are concerned with the linear programming problem, which we write in
the standard form as

0tosubject ≥= xbAxxcT ,min , (1.1)

where mn RbRxc ∈∈ ,, , and A  is an nm×  real matrix. The dual problem for (1.1) is

0,tosubjectmax ≥=+ scsyAyb TT , (1.2)

where mRy ∈ and nRs∈ .

It is known that the vector nRx ∈∗  is a solution of (1.1) if and only if there

exist vectors nRs ∈∗  and mRy ∈  for which the following conditions hold:

,csyAT =∗+∗ (1.3a)

,bAx =∗ (1.3b)
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,0=∗∗
ii sx ,,, ni …1= (1.3c)

.),( 0≥∗∗ sx (1.3d)

All primal-dual methods generate iterates ),,( kkk syx  that satisfy the bounds

(1.3d) strictly, that is, 0>kx  and 0>ks , and instead condition (1.3c) deal with
condition nisx ii ,,, …1=τ= , where 0→τ . We define the residuals for two linear
equations as

csyArbAxr T
cb −+=−= , ,

and use the following notations

),,( nxxX …1diag= , ),,( nssS …1diag= , Te ),,,( 111 …= .

Let

)}.(|{ 11solves∗∗=Ω xxP , )}.(),(|),{( 21solves∗∗∗∗=Ω sysyD .

For every solution ),,( ∗∗∗ syx , we know that 0=∗
jx  and/or 0=∗

js  for all

nj ,,…1= . Let

}|},,{{ Pj xxnj Ω∈≠∈= ∗∗ somefor01 …B ,

}),(|,,{{ Dj sysnj Ω∈≠∈= ∗∗∗ somefor01 …N .

Clearly, ∅=NB ∩ . Primal-dual strictly feasible set 0F  is

}),(,,|),,{( 00 >=+== sxcsyAbAxsyx TF .

The next result is well known as the Goldman-Tucker theorem [5].

Definition 1.1. Definition 1.1. There exist at least one primal solution Px Ω∈∗  and one dual solution

Dsy Ω∈∗∗ ),(  such that 0>+ ∗∗ sx .

The solution from Theorem 1.1 is a strictly complementary solution. Note that
if ),,( xyx  and ),,( ∗∗∗ syx  are two strictly complementary solution pairs, then 0>ix  if

and only if nixi ,,, …10 =>∗ , and similarly, 0>is  if and only if nisi ,,, …10 =>∗ , i.e.
the sets of indices of positive coordinates are the same for all strictly complementary
optimal pairs [6].



N. Stojkovi} / On Finite Termination in the Primal-Dual Method 33

Notice that in many practical applications of linear programming, a sequence
of closely related problems has to be solved. When two closely related problems are
solved problems the previous optimal solution should and can be used to solve the new
problem faster. In the context of the simplex algorithm the aim is achieved by starting
from the previous optimal basic solution. In the context of an interior-point method the
warm start procedure still does exist [1], [4]. The approach adopted nowadays is to
solve the first problem of a sequence of closely related problems using IPM and then
cross-over to the simplex method. In this case the advantages of both methods are
exploited. The algorithm to generate an optimal basis has been proposed by Megiddo
[7]. It constructs an optimal basis in less than n iterations starting from any
complementary solution, so Megiddo′s algorithm assumes that the exact optimal
solution is known. This assumption is never encountered in practice, because the
primal-dual algorithm only generates a sequence converging towards the optimal
solution. Due to the finite precision of computations, the solution is neither exactly
feasible nor complementary. The finite termination strategy proposed by Andersen and
Ye [2], [10] attempts to jump from a path-following iterate to an exact primal-dual
solution. The algorithm is sufficiently advanced - advanced enough for the index sets
B  and N  to be well resolved. If not, the algorithm will produce a point that violates
one or more constraints in (1.1), (1.2) and in this case we can return to the primal-dual
method and take a few more steps before attempting finite termination again. In this
paper we suggest an improvement of this algorithm.

1. FINITE TERMINATION ALGORITHM

In the sequel we consider the linear programming problem in the symmetric
form. Note that the linear problem is usually given in that form and that every problem
can be transformed in to the symmetric form. Consider the linear programming
problem

.,,1,0

subject to

min

11

11111

11

lix

bxaxa

bxaxa

xcxc

i

mlmlm

ll

ll

…
L

L
L

L

=≥

≤++

≤++

++

(2.1)

The standard form (2.1) is (with l+m=n)
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Notice that

01 == ++ mll cc L . (2.3)

The dual problem (2.2) is
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(2.4)

Let 0
21

====
piii xxx L  and },,{ piiI …1= . Denote by Â  the matrix A

without i-th columns, Ii∈  and let pnRscx −∈ˆ,ˆ,ˆ  be, respectively, vectors x, c and s
without i-th ( Ii∈ ) coordinates. Denote with )( yiϕ  linear function

Iiyayacy mmiiii ∈++−=ϕ ),()( L11 .

Lemma 2.1. Lemma 2.1. Suppose that 0
21

====
piii xxx L  is known. Then the primal-dual

problem (2.2), (2.4) is equivalent to

IixxbxAxc i
T ∈=≥= ,,ˆ,ˆˆˆˆmin 00 to subject ,

IiysscsyAyb ii
T ∈ϕ∈≥=+ ),(,ˆ,ˆˆˆmax 0 to subject .

Proof. Proof. It is enough to prove the Lemma for one index Ii∈ . Suppose now that 0=ix .
We use the following notation:

][ˆ
nii

i AAAAA LL 111 +−= ,

),,,,,(ˆ nii
i xxxxx LL 111 +−= ,
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),,,,,(ˆ nii
i ccccc LL 111 +−= ,

),,,,,(ˆ nii
i sssss LL 111 +−= .

Now (2.2) is equivalent to 0=ix  and

.ˆ,ˆˆˆ)ˆ(min 0 to subject ≥= iiiiTi xbxAxc (2.5)

The dual problem for (2.5) is

.ˆ,ˆˆ)ˆmax 0( to subject ≥=+ iiiTiT scsyAyb (2.6)

Now we have that (2.6) and
)()( yyayacs immiiii ϕ=++−= L11

are equivalent to (2.4). ♦

Let 0
21

==== +++ qjljljl sss L  and },,{ qjjJ …1= . Denote with TÂ  the

matrix TA  without j-th columns and without (l+j)-th rows, Jj∈ . Let
qnRscx −∈ˆ,ˆ,ˆ be, respectively, vectors x, c, s without (l+j)-th ( Jj∈ ) coordinates, and

let qmRby −∈ˆ,ˆ  be, respectively, vectors by,  without j-th ( Jj∈ ) coordinates. Denote
with )ˆ(xjψ  linear function

).()ˆ( 11 ljljji xaxabx ++−= Lψ

 Lemma 2.2.  Lemma 2.2. Suppose that 0
21

==== +++ qjljljl sss L  is known. Then the primal-dual

problem (2.2), (2.4) is equivalent to

,),ˆ(,ˆ,ˆˆˆˆˆmin JjxxxbxAxc jjl
T ∈ψ=≥= +0 to subject

JjsscsyAyb j
TT ∈=≥=+ ,,ˆ,ˆˆˆˆˆˆmax 00 to subject .

Proof. Proof. It is enough to prove the Lemma for one index Jj∈ . Suppose now that
0=+ jls  for some mj ≤≤1 . Because (2.3) we have 0=jy , and (2.4) is equivalent to

,ˆ,ˆˆˆˆˆˆmax 0 to subject ≥=+ scsyAyb TT (2.7)

where TjA )ˆ(  is a matrix TA  without  j-th columns and without (l+j)-th rows and

),,,,,(ˆ mjj
j yyyyy LL 111 +−= ,

),,,,,(ˆ
mjj

j bbbbb LL 111 +−= ,
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),,,,,(ˆ njljl
j sssss LL 111 ++−+= ,

),,,,,(ˆ njljl
j ccccc LL 111 ++−+= .

The primal problem for (2.7) is

,ˆ,ˆˆˆˆ)ˆmin( 0 to subject ≥= jjjjTj xbxAxc (2.8)

where

),,,,,(ˆ njljl
j xxxxx LL 111 ++−+= .

As (2.2) is equivalent to (2.8) with

)ˆ()( xxaxabx jljljjlj ψ=++−=+ L11 ,

the proof follows. ♦

Note that, because Theorem 1.1, ∅=lJI ∩ , }|{ JjljJ l ∈+=  for strictly
complementary solution. The next theorem immediately follows from Lemma 2.1 and
Lemma 2.2.

Theorem 2.3.Theorem 2.3. Suppose that 0
21

====
piii xxx L  and 0

21
==== +++ qjljljl sss L  is

known. Then the primal-dual problem (2.2), (2.4) is equivalent to

,ˆˆˆˆˆmin bxAxcT = to subject

,),ˆ(,,,ˆ JjxxIixx jjli ∈ψ=∈=≥ +00

,ˆˆˆˆˆˆmax csyAyb TT =+ to subject

.),ˆ(,,0,0ˆ IiysJjss iij ∈=∈=≥ ϕ

A theorem similar to Theorem 2.3 is proved in [8]. It is evident that Theorem
2.3 is valid even in the case when in (2.1) we have some equalities.

Note that for any point )(),,(   - γ∈ ∞Nsyx , we can estimate the set B  and N
as follows [8]:

),,(\},,{),(

},|},,{{),(

sxnsx
sxnisx ii

BN
B

…
…

1
1

=

≥∈=
(2.9)

where

}),,{()( |0
 - ,n,iisixsyx …1allfor =γµ≥∈=γ∞ FN
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where ),( 10=γ .

The next finite termination is due to Ye [8].

Procedure FTProcedure FT

Given Given ),( 10=γ  and )(),,(  - γ∈ ∞Nsyx :

Find ),( sxB  and ),( sxN  from (2.9);

Solve the following problem:

22

2
1

2
1 ssxx

syx
−+− ∗∗

∗∗∗ ),,(
min , (2.10a)

csyAbAx T =+= ∗∗∗ , , (2.10b)

),(),,( sxissxix i BN ∈=∈= ∗∗ for 0for 0 , (2.10c)

ifif 0>∗
Bx  and 0>∗

Ns

declare success: ),,( ∗∗∗ syx  is a strictly complementary solution;

elseelse

declare failure and return to the primal-dual algorithm.

The following result [9] shows that a successful outcome for Procedure FT is
guaranteed when µ  is sufficiently small.

Theorem 2.4.Theorem 2.4. Let ),( 10=γ  be given. Then there is a threshold value µ  such that for
all ),,( syx  that satisfy

µ≤=µ<γ∈ ∞ nsxsyx T /),(),,(  - 0N ,

we have

i) BB =),( sx  and NN =),( sx ; that is, actual index sets B  and N are
estimated correctly by the procedure (2.9);

ii) the projection procedure (2.10) yields a strictly complementary solution
),,( ∗∗∗ syx .

An important practical issue is the choice of indicator ),( sxB  for optimal
partition B . Indicator (2.9) is not invariant with respect to the column scaling. A
better indicator is [3].
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)}/|(|)/|(||},,{{),( iiii ssxxnisx αα ∆≤∆∈= …1B , (2.11)

where ),( αα ∆∆ ii sx  is primal-dual affine scaling search direction. This indicator is

scaling invariant [1].

Now we propose the following modification of the finite termination
procedure. Let 0>ε  be given. Use (2.9) or (2.11) to estimate sets B  and N . Sets

},,{},|{ pi iiixiI …1=∈ε<= N ,

},,{},|{ pjl jjjlsjJ …1=∈+ε<= + B .

in Theorem 2.3 and if

IiysJjxx iijjl ∈>=∈>=+ ,0)ˆ( and,,0)ˆ( ϕψ , (2.12)

apply Procedure FT on the primal-dual problem

bxAxcT ˆˆˆˆˆmin =to subject ,

cyAyb TT ˆˆˆˆˆmax =to subject .

where Â  is matrix without i-th and (l+j)-th columns, and without j-th rows,
},,{ piiIi …1=∈ , },,{ qjjJj …1=∈ . Condition (2.12) ensures that we have a strictly

complementary solution. Note that in this variant of algorithm we reduce the primal-
dual problem with matrix nmA ×  to the primal-dual problem with matrix

)()(
ˆ

pqnqmA −−×− .

A similar approach is possible in the iteration steps of any primal-dual
algorithm. It is known that the linear system to be solved at each primal-dual iteration
can be formulated in three equivalent ways. The unreduced form for the infeasible-
interior-point algorithm is
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where ./ nsxT=µ  Eliminating s∆  form (2.13) and using notation 2121 // XSD −= , we
obtain the augmented system
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xSXeXss ∆−σµ+−=∆ −− 11 . (2.14b)
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Now, we can eliminate x∆  from (2.14a) to obtain the normal equations form

)( eSxXrSAryAAD cb
T 112 −− σµ−+−−=∆ , (2.15a)

yArs T
c ∆−−=∆ , (2.15b)

)sXSeSxx ∆+σµ+−=∆ −− 11 . (2.15c)

The normal equations form is used by most primal-dual codes. For both (2.14)
and (2.15), particular issues of stability arise because the presence of very small and
very large diagonal elements is both

)/,,/( nn sxsxdiagD …11
2 =  and )/,,/( nn xsxsdiagD …11

2 =− .

Applying Theorem 2.3 we can eliminate some of these elements and improve
stability and also improve the centrality of the iteration sequence.
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