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Abstract: In this paper we propose a modification of the finite termination algorithm
which reduces the dimension of the primal-dual linear programming problem. We note
that the similar approach is possible in any primal-dual algorithm for linear
programming.
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1. INTRODUCTION

We are concerned with the linear programming problem, which we write in
the standard form as

minchsubjectto Ax=b, x30, (1.2)

wherec,x] R",bl R™,and A isan m’” n real matrix. The dual problem for (1.1) is

maxb'y subjectto ATy+s=c, s20, 1.2)

where yI RMand sl R".

It is known that the vector x" T R" is a solution of (1.1) if and only if there
exist vectors s 1 R™ and yI R™ for which the following conditions hold:

AT y* +s*=c, (1.33)

*

AX" =b, (1.3b)
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Xjsj =0, i=1,...,n, (1.3¢c)
(x",s")3 0. (1.3d)

All primal-dual methods generate iterates (xk, yk,sk) that satisfy the bounds

(1.3d) strictly, that is, x>0 and sk>0, and instead condition (1.3c) deal with
condition x;s; =t,i=1,...,n, where t® 0. We define the residuals for two linear

equations as
— _ AT
r, =Ax-b, rg=A"y+s-c,

and use the following notations

X =diag(Xq,..., Xn) S=diag(sy,...,Sn), e=(11,..1)".
Let
Wp ={x" |x" solves (1.1)}, Wp ={(y",s")|(y".s")solves (1.2)}.

For every solution (x*,y*,s*), we know that x; =0 and/or s} =0 for all
j=1,...,n. Let

B={jl {1,...,n}|x} 10 forsome X 1T Wp},

N ={ji {1,...,n|s} 1 0 for some (y",s")T Wp}.

Clearly, BN N =/ . Primal-dual strictly feasible set F° is
FO={(x,y,s)|Ax=b, ATy+s=c,(x,s)>0}.

The next result is well known as the Goldman-Tucker theorem [5].

Definition 1.1. There exist at least one primal solution x” T Wp and one dual solution

(y',s)T Wp suchthat x" +s” >0.

The solution from Theorem 1.1 is a strictly complementary solution. Note that
if (x,y,x) and (x",y",s") are two strictly complementary solution pairs, then x; >0 if
and only if x; >0,i=1,...,n, and similarly, s; >0 if and only if s; >0,i=1,...,n, i.e.

the sets of indices of positive coordinates are the same for all strictly complementary
optimal pairs [6].
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Notice that in many practical applications of linear programming, a sequence
of closely related problems has to be solved. When two closely related problems are
solved problems the previous optimal solution should and can be used to solve the new
problem faster. In the context of the simplex algorithm the aim is achieved by starting
from the previous optimal basic solution. In the context of an interior-point method the
warm start procedure still does exist [1], [4]. The approach adopted nowadays is to
solve the first problem of a sequence of closely related problems using IPM and then
cross-over to the simplex method. In this case the advantages of both methods are
exploited. The algorithm to generate an optimal basis has been proposed by Megiddo
[7]. 1t constructs an optimal basis in less than n iterations starting from any
complementary solution, so Megiddo& algorithm assumes that the exact optimal
solution is known. This assumption is never encountered in practice, because the
primal-dual algorithm only generates a sequence converging towards the optimal
solution. Due to the finite precision of computations, the solution is neither exactly
feasible nor complementary. The finite termination strategy proposed by Andersen and
Ye [2], [10] attempts to jump from a path-following iterate to an exact primal-dual
solution. The algorithm is sufficiently advanced - advanced enough for the index sets
B and N to be well resolved. If not, the algorithm will produce a point that violates
one or more constraints in (1.1), (1.2) and in this case we can return to the primal-dual
method and take a few more steps before attempting finite termination again. In this
paper we suggest an improvement of this algorithm.

1. FINITE TERMINATION ALGORITHM

In the sequel we consider the linear programming problem in the symmetric
form. Note that the linear problem is usually given in that form and that every problem
can be transformed in to the symmetric form. Consider the linear programming
problem

min CijX; +---+¢ X

subject to
a11Xl+-~-+a]JX| Ebl (21)
App Xy ot am X £bm
X; 3 O, |:1,,|

The standard form (2.1) is (with I+m=n)
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min ¢ Xq +---+ ¢ X +---+ChXp
subject to
apyXg +eetag X X =hy

am1 Xy ot amX + Xiem = bm
;3 0, i=1,..,n.

Notice that

Cl+1 =+ Cl4m =0.

The dual problem (2.2) is

max blyl+"'+bmym
subject to

a1t taym S =¢

yypttamy +§=¢
Y1 541 =G4
Ym+3|+m:C|+m
$20, i=1..,n

(2.2)

(2.3)

(2.4)

Let x =X, ==X =0 and I={ij,...,i,}. Denote by A the matrix A

without i-th columns, il | and let X,¢,58T R™ P be, respectively, vectors x, ¢ and s

without i-th (iT 1) coordinates. Denote with j ;(y) linear function

ji)=ci- (@yr+-+amiym), il 1.

Lemma 2.1. Suppose that X =X, ==X, =0 is known. Then the primal-dual

problem (2.2), (2.4) is equivalent to

min ¢'X subjectto AX=h, %30, X =0, il 1,

max bTy subjectto Ay +§=¢ 820, 51 j:(y), il I.

Proof. It is enough to prove the Lemma for one index il I . Suppose now that x; =0.

We use the following notation:

AT =[A; A A - Agl,
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¢ =(Cy, 1 Ci1,Ciug 1 Cp) s

§' =(s1,,Si-1,Sis1. 1 Sn)
Now (2.2) is equivalent to x; =0 and

min (€T %' subjectto Aiki =b, %i3 0. (2.5)
The dual problem for (2.5) is

max bTy subjectto (A)Ty+8§ =¢, &30 (2.6)

Now we have that (2.6) and

S;j =Cj - (aliyj_ +"‘+amiym):j I(y)

are equivalent to (2.4). "

Let q+h=s|+j2:~--:s|+jq:0 and J={jy,..., jq} . Denote with AT the

matrix AT without j-th columns and without (I+j)-th rows, ji J. Let

X,¢,8T R" 9 be, respectively, vectors X, ¢, s without (I+j)-th ( jT J) coordinates, and
let 9,67 R™ 9 be, respectively, vectors y,b without j-th (j1 J) coordinates. Denote
with y j(X) linear function

Yi(®)=bj- (ajpq+---+ajx).

Lemma 2.2. Suppose that s, =5+, = =84, =0 is known. Then the primal-dual

problem (2.2), (2.4) is equivalent to
min¢TX subjectto Ax=b, 30, X+ =y (0, i1 3,
max b’y subjectto ATy +8§=¢, §30, s;j=0, jI J.

Proof. It is enough to prove the Lemma for one index ji J. Suppose now that
Sj+j =0 for some 1£ j£m. Because (2.3) we have y; =0, and (2.4) is equivalent to

max by subjectto ATy+§=8 §230, (2.7)

where (Aj)-r isamatrix AT without j-th columns and without (1+j)-th rows and

y =YY Y Ym)

bl =By, by 1, Bjer, )
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$1=(s1,,S14j-1,S1+j4127 2 Sn) »

) =(C Ot Cra a1 1 Cn) -
The primal problem for (2.7) is
min(¢ )T %J subjectto Alxi =p, %i30, (2.8)
where
% =(Xg, Xy o1 X4 ja1s s Xn) -
As (2.2) is equivalent to (2.8) with
Xje1 =bj - (@jpxg +-+ajx) =y j(X),
the proof follows. ~

Note that, because Theorem 1.1, 1NJ' =&, 3'={j+1]ji I} for strictly
complementary solution. The next theorem immediately follows from Lemma 2.1 and
Lemma 2.2.

Theorem 2.3. Suppose that X =X, ==X =0 and s+, =5+j, = =8y, =0 is
known. Then the primal-dual problem (2.2), (2.4) is equivalent to

min ¢' X subject to A)?:B

)23 0, Xi =0,ii I,X|+j =yj()2)’ Ji J,
max bTy subjectto ATy +8=¢,
§30,5;=0,jT1 3,5 =) (9, il I.

A theorem similar to Theorem 2.3 is proved in [8]. It is evident that Theorem
2.3 is valid even in the case when in (2.1) we have some equalities.

Note that for any point (x,y,s)T N.y(g), we can estimate the set B and N
as follows [8]:

B(x,s)={il {1,....,n}]|%; ® s;},

(2.9)
N (x,s) ={1,...,n} \ B(X,S),

where

N_y (@ ={(x.y.9)1 F°|x;s;2 gn forall i=1,...n}
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where g=(0,1) .
The next finite termination is due to Ye [8].
Procedure FT
Given g=(0,1) and (x,y,s)T N.y(9):
Find B(x,s) and N(x,s) from (2.9);

Solve the following problem:

. 1)+ 2 1.+ 2
min —"x - x" +—||s s" , (2.10a)
(y's)2 2
Ax =b, ATy +s" =¢, (2.10b)
X =0foril N(x,s), s; =0foril B(x,s), (2.10c)

if xg >0 and sy >0

declare success: (x* , y* , s*) is a strictly complementary solution;
else

declare failure and return to the primal-dual algorithm.

The following result [9] shows that a successful outcome for Procedure FT is
guaranteed when m is sufficiently small.

Theorem 2.4. Let g=(0,1) be given. Then there is a threshold value m such that for
all (x,y,s) that satisfy

(% ¥,91 Ny (9, 0<m=x"s/n£m,

we have

i) B(x,s)=B and N(x,s)=N ; that is, actual index sets B and N are
estimated correctly by the procedure (2.9);

ii) the projection procedure (2.10) yields a strictly complementary solution
(x*,y*,s*).
An important practical issue is the choice of indicator B(x,s) for optimal

partition B . Indicator (2.9) is not invariant with respect to the column scaling. A
better indicator is [3].
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B(x,s) ={il {1,....n}[(IDx{" |/x;) £ (I1Dsf |/5))} , (2.11)

where (Dxia,Dsia) is primal-dual affine scaling search direction. This indicator is

scaling invariant [1].

Now we propose the following modification of the finite termination
procedure. Let e>0 be given. Use (2.9) or (2.11) to estimate sets B and N . Sets

L={i]x <eil N}={iy,....i},

J :{j|5|+j <e1|+ Ji B} :{jli---vjp} .

in Theorem 2.3 and if
X+ =y (0>0,j1 J,ands =j ;(§)>0,il 1, (2.12)

apply Procedure FT on the primal-dual problem

min &7 X subject to AX=b,
max b § subjectto ATy =¢.

where A is matrix without i-th and (I+j)-th columns, and without j-th rows,
it 1={iy,....i5}, jT I={j1,.... jq} - Condition (2.12) ensures that we have a strictly

complementary solution. Note that in this variant of algorithm we reduce the primal-
dual problem with matrix A, ,, to the primal-dual problem with matrix

Am-ay (n-a-p)-
A similar approach is possible in the iteration steps of any primal-dual
algorithm. It is known that the linear system to be solved at each primal-dual iteration

can be formulated in three equivalent ways. The unreduced form for the infeasible-
interior-point algorithm is

€0 A Ouébyu ¢ -1 U
é uUé. u_é a
AT 0 1 @xi=E - g (2.13)
B0 S XHEDSH & XS, +smef
where m=x"s/n. Eliminating Ds form (2.13) and using notation D=5"12xY2 we
obtain the augmented system
eo0 A uéyu é -1y u
& TR T 2.14a
EAT D 2USxITE r +sosmiLel (2.142)

Ds=-s+smX te- X 1SDx. (2.14b)
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Now, we can eliminate Dx from (2.14a) to obtain the normal equations form

AD?ATDy=-r, - A(S™IXr, +x- snBle), (2.15a)
Ds=-r.- ATDy, (2.15b)
Dx=-x+smB le+S 1XDs) . (2.15¢)

The normal equations form is used by most primal-dual codes. For both (2.14)

and (2.15), particular issues of stability arise because the presence of very small and
very large diagonal elements is both

D? =diag(xy /sq,..., Xy /sp) and D2 =diag(sy / Xq,...,Sn / Xp) .

Applying Theorem 2.3 we can eliminate some of these elements and improve

stability and also improve the centrality of the iteration sequence.
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