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Abstract:Abstract:  A special class of bilevel monotone variational inequalities arising in the
parametric analysis of monotone operator equations is investigated. Sufficient
conditions for the existence of a solution are given and some numerical methods for
these problems are proposed. Improper problems of mathematical programming,
complementarity and game theory may be regarded as an area of application of the
results of the theory and practice of ill-posed parametric systems of equations and
convex inequalities.
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1. INTRODUCTION

Let X  be a real reflexive Banach space having dual ∗X , let Q  be a convex

closed subset of X and let )(⋅F be a monotone mapping from X  into ∗X . The
variational inequality problem ),( QFIV  is the problem of finding Qx ∈~  such that

QxxxxF ∈∀≥− 0~),~( , (1)

where xx ,∗  denotes the value of ∗∗ ∈ Xx  at Xx ∈ .

Below we are interested in the case

}),(:{:, YyyxAXxQ ∈=∈=ΩΩ=   somefor   0cl , (2)

                                                          
1 This research was supported by Russian Found of Fundamental Research (project codes
99-01-00136, 00-15-96041).
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where ),( ⋅xA  denotes a parametric family of monotone nonlinear mappings from

another reflexive Banach space Y  into its dual ∗Y , x  being a parameter (see Section
2 for precise definitions).

The instance (1)-(2) arises from [13], [3], [4], [7], [12] and others where
singular (unstable, ill-posed, improper) optimization problems and methods of their
optimal correction have been analyzed. Along with that, the problem (1)-(2) may be
regarded marely as a special two-level monotone lexicographical variational inequality
with variables splitting into two groups in such a manner that the variables of the first
group enter only in a lower level of the subproblem and the variables of the second
group only in an upper level (see [5], [10]). Related results may be found in [9], [6], [1].

Obviously, the main difficulty with the problem (1)-(2) is connected with the
non-constructive definition of the set Ω .

The article is organized as follows. In Section 2 we present some definitions and facts
from the operator theory used in the sequel. Method description and weak convergence
theorems can be found in Section 3. Section 4 contains theorems about strong
convergence. Section 5 is devoted to a regularized variant of the method.

2. SOME DEFINITIONS AND CONSTRUCTIONS

We shall use some facts and definitions from the operator theory [2], [8], [11], [14].

A Banach space X  is said to be strictly convex if 2<+ yx  whenever

Xyx ∈, , xy ≠ , 1≤y , 1≤x , and uniformly convex if )(tgyx −≤+ 2  whenever

Xyx ∈, , tyx =− , 1≤y , 1≤x  where function )(tg  is strictly increasing on

0020 =)(],,[ g .

A norm of the uniformly convex Banach space satisfies the well-known H -

property: a weak convergence xx
w

n
~→  and a convergence of norms xxn

~→  both

imply a strong convergence xx
s

n
~→ . We shall say that the function 1RX →φ :  satisfies

the H -property too if xx
w

n
~→  and )~()( xxn φ→φ  both imply xx

s
n

~→ .

Let the dual space ∗X  be strictly convex, 1>p . The relations

Xxxxxxx p
p

p
p ∈∀=ℑ=ℑ −1

)(,),(

define the mapping ∗→ℑ XXp : , called dual. We can similarly define the dual

mapping 1>→ℑ ∗∗ qXXq ,: . For uniformly convex spaces ∗XX ,  we have

1111 =+ℑ=ℑ −∗ qpqp ,)( .
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Given an arbitrary mapping
oXXF 2→: , let us define in the usual way its

effective domain })(:{:)( ∅≠∈= xFXxFD  and its graph ),(:);{(:)( FDxuxFGr ∈=

)}(xFu ∈ .

The multi-valued mapping F  is said to be

1) bounded over X  if ∞<
∈∈

u
xFuGx )(

supsup  for all bounded sets XG ⊂ ;

2) monotone over X  if
)()";"(),';'("',"' FGruxuxxxuu ∈∀≥−− 0 ;

3) strictly monotone over X  if
"'),()";"(),';'("',"' xxFGruxuxxxuu ≠∈∀>−− 0 ;

4) strongly monotone over X  if there exists a 0>µ  such that

)()";"(),';'('''"',"' FGruxuxxxxxuu ∈∀−µ≥−− 2 ;

5) coercive with respect to the unbounded domain XQ ⊂  if there exists a
vector )(FDQx ∩(

∈  such that

∞=−−

∈∞→∈
xxux

xFuxFDQx

(
∩

,inflim
)(),(

1 .

The mapping 
∗

→ XXF 2:  is said to be maximal monotone if its graph is not
properly contained in a graph of any other monotone mapping. It is well-known that for

any reflexive Banach space X  and any maximal monotone mapping 
∗

→ XXF 2:  the
set )(FDcl  is convex.

The single-valued mapping ∗→ XXF :  is said to be demi-continuous if  strong

convergence xx
s

n → , where )(, FDxxn ∈ , implies weak convergence )()( xFxF
w

n → .
Demi-continuous monotone mappings defined on the whole space X are simple
examples of maximal monotone mappings. In particular, if the space X  and its dual
are strongly convex then the mappings )(⋅ℑ p  are strictly monotone and demi-

continuous.

In the paper the following well-known facts are used:

1. Let a multi-valued mapping 
∗

→ XXF 2:  be maximal monotone and let
∅≠)(int FDQ∩ . A vector x~  is a solution of ),( QFIV  if and only if

)(,~, xFuQxxxu ∈∀∈∀≥− 0 .

2. If in addition to the previous assumptions the mapping )(⋅F  is coercive
over an unbounded set Q , or if Q  is bounded, then the solution set of

),( QFIV  is nonempty. Moreover, if this mapping )(⋅F  is strictly
monotone then ),( QFIV  has the unique solution point.
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3. Using the definition of the algebraic sum of two sets, we can define the

sum of two multi-valued mappings 
∗

→ XXFF 221 :,  as

)()())(( xFxFxFF 2121 +=+  for )()()( 2121 FDFDFFDx ∩=+∈ .

If both mappings 21 FF ,  are maximal monotone and their effective domains have a
common interior point then their sum is maximal monotone too.

3. THE METHOD AND ITS WEAK CONVERGENCE

The method we are going to propose for the problem (1)-(2) is based on the
following assumptions.

Assumption 1.Assumption 1.  The parametric mapping ),( yA ⋅  satisfies the extended monotonicity

condition, i.e. there exists a mapping ∗→⋅ YYxB :),( , depending upon parameter
Xx ∈ , such that

0≥−−+−− '"),','()","('"),','()","( yyyxByxBxxyxAyxA

YyyXxx ∈∈∀ ",',",' .

In other words it means that the mapping ∗∗ ×→× YXYXC :  defined by
),(),(),( yxByxAyxC ×=  must be monotone over YX × .

Note that under Assumption 1 all the mappings ),( ⋅xB  will be monotone over Y .

Next, let us define multi-valued auxiliary mapping 
∗

→ X
AB XG 2:  as

∪
oyxAy

AB yxBxG
=

=
),(:

),()( . (3)

One can verify [9], that under Assumption 1 this mapping will be monotone
and Ω=∅≠∈= })(:{)( xGXxGD ABAB .

Assumption 2.Assumption 2.  The auxiliary mapping ABG  is maximal monotone and its effective
domain )( ABGD  has interior points.

Assumption 2 provides the convexity of the set Ωcl  and makes it possible to
formulate the existence results for the problem (1)-(2) as well as for auxiliary sub-
problems involved with the method described below.

The method we present is based on exploiting the following systems of
equations with a small parameter

000 >α=+α= ,)(),(,),( xFyxByxA  is a small parameter, (4)
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and on the following generalized equation (inclusion)

0∋+α )()( xFxGAB , (5)

which is the result of convoluting the system (4) by y .

Directly from the definition of the auxiliary mappings (3) it follows that the
problems (4), (5) are solvable or not simultaneously, and the solution set of the
equation (5) is just a projection of the solution set of the system (4) onto the subspace
of variables x , i.e. any solution x~  of the inclusion (5) may be completed by some Yy ∈~

to form the solution of system (4) and, vice-versa, the left part of any solution yx ~;~  of
the system (4) is a solution of the inclusion (5).

Note that the system (4) is defined in a constructive way. To solve it one can
apply many different methods. On the other hand, the inclusion (5) involves the
auxiliary mapping )(⋅ABG  which has no constructive definition. This inclusion will be
used only in the theoretical analysis of (4).

The following proposition describes the relations between the problems (4)-(5)
and the original problem (1)-(2).

Lemma 1.Lemma 1. Let the Assumptions 1, 2 hold and the mapping )(⋅F  be demi-continuous
over X  (i.e. maximal monotone). If a sequence }{ nx of any solution points of the
inclusion (5), associated with 0+→α n , has a weak cluster point x~  then this point
solves the problem (1)-(2).

Proof:Proof: According to the assumed properties of )(⋅F  and the convexity of Ωcl  it is
sufficient to prove the relations Ω∈∀≥− xxxxF 0~),(  (see Section 2). Fix an

arbitrary )()),(( xGgGDx ABAB ∈≡Ω∈ . From the relation (5) it follows that

)()(: nABnnn xGxFg ∈α−= −1 . This inclusion and monotonicity of )(⋅F  and )(⋅ABG
imply

xxgxxgxxgxxxFxxxF nnnnnnnnnn −α−≥−α≥−α=−≥− ,,),(),(

Hence, passing to the limit as ∞→n  one obtains the desired relation.♦

Lemma 1 leads us to the following questions:

1) which assumptions can provide existence of a solution of (1), (5) and
guarantee that the solution sets of (5) are bounded for all sufficiently small

0>α ;

2) which assumptions can provide not only weak but also strong convergence
of the method under investigation.

The answer to the first question is given by
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Assumption 3.Assumption 3.  Let monotone mapping )(⋅F  be defined over the whole space and be
bounded, demi-continuous and coercive in the following sense: there exists an element

Ω∈x(  such that

∞=−−

∞→Ω∈
xxxFx

xx

(
),(lim

,

1 .

Indeed, from the previous section it is easy to see that Assumption 3 and
Assumptions 1, 2 together guarantee the existence of a solution not only to the
variational inequality (1)-(2), but to the generalized equation (inclusion) (5) too; it is
sufficient to note that the sum of the mappings on the left-hand side of this inclusion
will be maximal monotone and coercive.

Theorem 1.Theorem 1. Suppose that Assumptions 1-3 hold. Then the generalized equation (5) is
solvable and any sequence }{ nx  of its solution points, associated with 0+→α n , is
bounded and all its weak cluster points solve the problem (1)-(2).

Proof:Proof: As it was already noted, under the Assumptions 1-3 the equations (5) are
solvable for all 0>α . According to Lemma 1 it is sufficient to prove only that the
sequence }{ nx  is bounded. Let us assume the contrary, that ∞=

∞→
n

n
xlim . Choose some

)(xGg AB
((

∈ . From (5) it follows that )()(: nABnnn xGxFg ∈α−= −1 . Both this inclusion
and the monotonicity of )(⋅ABG  imply

nnnnnnnnn xxgxxgxxgxxxF −α≤−α≤−α=−
((((((

,,),( ,

i.e.

)(),(
11 1 −− +α≤− nnnnn xxgxxxFx ((( .

Therefore, passing the limit as ∞→n , one can obtain an obvious contradiction to
Assumption 3. ♦

4. HOW TO GET STRONG CONVERGENCE

Let us present two results where strong convergence of the method under
consideration is obtained.

Theorem 2.Theorem 2. Suppose that Assumptions 1-2 hold and mapping )(⋅F  is bounded, demi-
continuous and strongly monotone on X  with a constant 0>µ . If in the equations (5)
one takes 0+→α n , then any corresponding sequence of solution points }{ nx strongly
converges to the unique solution point x~  of the problem (1)-(2).

Proof:Proof: Since every strongly monotone mapping is coercive, the sequence }{ nx  weakly
converges to the solution point x~ of the problem (1)-(2) (see Theorem 1). From the
strong monotonicity of )(⋅F  it follows that
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xxxFxxxFxFxx nnnnn
~),(~),~()(~ −≤−−≤−µ 2 .

Let us choose an arbitrary 0>σ∈σ<−Ω∈ σσσσ ),(,~, xGgxxx AB . The relation (5)

implies )()(: nABnnn xGxFg ∈α−= −1 . Hence

;,

,),(

~),(),(~),(~

σ+−α≤σ+−α≤

≤σ+−α=σ+−≤

≤−+−=−≤−µ

σσσσ

σσ

σσ

NxxgNxxg

NxxgNxxxF

xxxFxxxFxxxFxx

nnnn

nnnnn

nnnnnn
2

(6)

where 0>N  is some constant not dependent upon σ . Since }{ nx  is bounded, from the
last inequality, passing to the limit as ∞→n  one can conclude

σ≤−µ Nxxn
n

2~suplim
)(

.

Because 0>σ  is arbitrary, the proof is complete. ♦

Corollary 1:Corollary 1: Suppose all the assumptions of Theorem 2 hold and Ω∈x~ . Then

gxx
xGg

nn
AB )~(

min~
∈

−µα≤− 1 .

Proof:Proof: To obtain the desired inequality it is sufficient to replace in (6) vector σx  by

vector x~  and σg  by arbitrary )~(~ xGg AB∈  (so 0=σ ). ♦

The second result will be formulated for the sub-differential2 mapping
)()( ⋅φ∂=⋅F of some convex function )(⋅φ , defined on X  and satisfying the H-property.

Theorem 3.Theorem 3. Let )()( ⋅φ∂=⋅F   be a sub-differential mapping for some convex function
)(⋅φ  defined on X  and satisfying the H-property. If this function is strictly convex and

coercive (i.e. ∞=φ−
∞→ )(lim xxx

1 ) and if Assumptions 1-2 hold, then the conclusion of

Theorem 2 is valid.

Proof:Proof:  It is clear that under the given assumptions the mapping )(⋅F  is strictly
monotone and satisfies Assumption 3. According to Theorem 1 the sequence }{ nx
weakly converges to the unique solution point x~ of the problem (1)-(2). Since a convex
function is weakly lower semi-continuous, one has

                                                          
2 An element Xg ∈  is said to be a sub-gradient of a convex function )(⋅φ  at a point Xa∈  if the

inequality abgab −≥φ−φ ,)()(  holds for all Xb∈ . A set of all such g  is said to be a

sub-differential of )(⋅φ  at point a  and is denoted by )(aφ∂ .
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)~()(inflim
)(

xxn
n

φ≥φ .

To establish the desired strong convergence let us prove the inverse relation
(see definition of H-property)

)~()(suplim
)(

xxn
n

φ≤φ .

Choose an arbitrary 0>ε∈ε+φ<φΩ∈ εεεε ),(,)~()(, xGgxxx AB . From (5)

it follows that )()(: nABnnn xGxFg ∈α−= −1 . This inclusion together with the properties
of the sub-differential mapping of a convex function and the monotonicity of )(⋅ABG
imply

.)~(,)(

,)(),()()(

nnnn

nnnnnn

xxgxxxgx

xxgxxxxFxx

−α+ε+φ<−α+φ≤

≤−α+φ=−+φ≤φ

εεεεε

εεεε

Hence, passing to the limit as ∞→n  one gets

ε+φ<φ )~()(suplim
)(

xxn
n

.

Since 0>ε  is arbitrary, the proof is complete. ♦

5. TIHONOV′S REGULARIZATON OF THE METHOD

Below the results are presented, where strong convergence is obtained by
means of Tihonov′s regularization of the system (4), (5).

Let us consider the regularized system (4)

00 =+ℑβ+α= )()(),(,),( xFxyxByxA p , (7)

and the regularized equation (5) corresponding to it, i.e.

0∋+ℑβ+α )()()( xFxxG PAB (8)

where 0>βα,  are small parameters and ∗→⋅ℑ XXp :)(  is a dual mapping mentioned

above. Let us recall that

)()(,),( 11 >∈∀=ℑ=ℑ − pXxxxxxx p
p

p
p .

As before, the system (7) and inclusion (8) are solvable or not simultaneously,
and the solution set of (8) is just the projection of the solution set of (7) onto the
subspace of variables x . The properties of the dual mapping )(⋅F  (see Section 2) make
it possible to assert the existence of a solution of the systems (7), (8) for all 0>βα,

without any coercive assumptions for the mapping )(⋅F . Nevertheless, Assumption 3
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will be used below to provide solvability of the original problem (1)-(2) and guarantee
that  the solution sets of inclusions (8) are bounded.

Lemma 2.Lemma 2. Suppose that all the assumptions of Lemma 1 hold. If a sequence }{ nx  of
solution points of the inclusion (8) with 00 +→β+→α nn ,  has a weak cluster point
x~ , this point solves the problem (1)-(2).

Proof:Proof: Obviously, it is sufficient to prove that

Ω∈∀≥− xxxxF 0~),( .

As before, choose an arbitrary ))(( ABGDx ≡Ω∈ , )(xGg AB∈ . From the relation (8) it

follows that )())()((: nABnpnnnn xGxxFg ∈ℑβ+α−= −1 . These inclusions and the

monotonicity of )(⋅F , )(⋅ℑ p  and )(⋅ABG  imply

.

),(,

),(,),(),(

xxxxxg

xxxxxg

xxxxxgxxxFxxxF

n
p

nnn

nnpnnn

nnpnnnnnnn

−β−−α−≥

≥−ℑβ+−α≥

≥−ℑβ+−α=−≥−

−1

Hence passing to the limit as ∞→n , one obtains the desired relation.♦

Lemma 3.Lemma 3. Suppose that Assumptions 1-3 hold. Then the generalized equation (8) is
solvable and, if 00 +→β+→α nn , , then any corresponding sequence of its solutions

}{ nx is bounded.

Proof:Proof: The proof is similar to the scheme applied in Theorem 1. Let us assume the
contrary, that ∞=

∞→
n

n
xlim . Choose some )(xGg AB

((
∈ . From the relation (8) it follows

that )())()((: nABnnnnnn xGxxFg ∈ℑβ+α−= −1 . This fact and monotonicity of )(⋅ℑ p ,

)(⋅ABG  imply

,)(),(,

),(,),(

nnnnpnnn

nnpnnnnnn

xxxgxxxxxg

xxxxxgxxxF

−β+α≤−ℑβ+−α≤

≤−ℑβ+−α=−

− (((((((

(((

1

i.e.

)()(),(
111 1 −−− +β+α≤− n

p
nnnn xxxgxxxFx ((((

.

Passing to the limit as ∞→n  here, we get an obvious contradiction with
Assumption 3. ♦

In what follows we need

Assumption 4.Assumption 4.  Suppose that a solution point of the problem (1)-(2) with the minimal
norm belongs to Ω .
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The proof of the following proposition is based on the H-property of the dual
mapping.

Theorem 4.Theorem 4. Suppose that Assumptions 1-4 hold, space X  is uniformly convex and
}{ nx is an arbitrary sequence of solution points of the equations (8), associated with

00 +→β+→α nn , , where 01 +→βα= −
nnnr : . Then xx

s
n

~→ , where x~  is a solution of
the problem (1)-(2) with the minimal norm.

Proof:Proof: The existence of weak cluster points of the sequence }{ nx is established by
Lemma 3. Let x~ be one of them. According to Lemma 2 this point solves (1)-(2). Since
the norm (as the convex function) is lower semi-continuous, we have

xxxn
n

~inflim
)(

≥≥ .

Let us prove the inverse inequality

xxxn
n

≤≤ ~suplim
)(

.

As before, choose an arbitrary )~(~ xGg AB∈ . From (8) it follows that

)())()((: nABnpnnnn xGxxFg ∈ℑβ+α−= −1 . Taking into account the properties of the

inequality (1)-(2), the properties of the dual mapping and the properties of mapping
)(⋅ABG , we can write

,~~~~

~,~~)(

~,~),(~),(

~),(~),(

n
p

nnn
p

n

nnnp

nnnnnnnp

nnpnp
p

n

Nrxxxxgrxx

xxgrxx

xxgrxxxFxx

xxxxxx

+≤−+≤

≤−+ℑ≤

≤−+−β+ℑ=

=−ℑ+ℑ=

−−

−

11

1

where 0>N  is some constant, not dependent upon n . Therefore any separated from
zero subsequence }{

knx  satisfies

p
nnn kk

xNrxx
−

+≤
1~

(if all sub-sequences converge to zero then the proof is immediate). Passing to the limit
as ∞→kn , we can conclude that

xx
kn

k
~suplim

)(
≤ .

Hence, every weak cluster point appears to be a strong cluster point and its norm is
equal to the norm of x~ , being the projection of zero onto the convex closed solution set
of (1)-(2). Since under our assumptions this projection is unique, all weak cluster points
are the same and are equal to x~ . ♦
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Assumption 4 looks a bit difficult. But, as simple examples show, when
dropping it we will need to correlate the speed of decrease of 1−βα= nnnr  with the speed

of increase of ng  for }{ nx  converging to boundary points of Ω  which are not

properly in this set.

Assumption 5.Assumption 5.  Suppose that the a priori estimation is known

)(,~:)( σω<σ<−∈∃Ω∈∃>σ∀ σσσσσ gxxxGgx AB0 ;

where )(⋅ω  is a scalar function defined for a positive argument, +∞→σω )(   whenever
0+→σ , x~  is the minimal (with respect to norm) solution point (1)-(2).

The following proposition is valid (a new parameter 0>γ  plays an auxiliary
role).

Theorem 5.Theorem 5. Suppose that Assumptions 1-3, 5 hold, space X  is uniformly convex and
}{ nx  is some sequence of solution points to (8). If 000 +→γ+→β+→α nnn ,,  and

01 →βγ= −
nnnr :' , 01 →γωβα= − )(:"

nnnnr , then xx
s

n
~→ .

Proof:Proof: The proof corresponds to the previous schemes. The main difference
from the proof of Theorem 4 is as follows. When proving the inequality xxn

n
~suplim

)(
≤

we now have to apply auxiliary sequence Ω⊂}~{ nx  and )~(}~{ nABn xGg ⊂  such that

nnxx γ<− ~~ , )(~
nng γω< . They exist due to Assumption 5.

As before, from (8) it follows that )())()((: nABnpnnnn xGxxFg ∈ℑβ+α−= −1 .

Taking into account the properties of the variational inequality (1)-(2), the properties
of the dual mapping and mapping )(⋅ABG , as well as the fact that the sequence nn gα

is bounded, we have

,~

~)(~)(

~~~~~)(

~,~~~,~)(

~,~~,~)(

~,~),(~),(

~),(~),(

"'
nn

p
n

nnnnnnnnnnp

nnnnnnnnnnp

nnnnnnnnnnp

nnnnnnnnnnp

nnnnnnnnp

nnpnp
p

n

MrNrxx

xxgxx

xxgxxgxx

xxgxxgxx

xxgxxgxx

xxgxxxFxx

xxxxxx

++≤

≤−γωβα+γβα+ℑ≤

≤−βα+−βα+ℑ≤

≤−βα+−βα+ℑ≤

≤−βα+−βα+ℑ≤

≤−βα+−β+ℑ=

=−ℑ+ℑ=

−

−−

−−

−−

−−

−−

1

11

11

11

11

11

where 0>N , 0>M  are some constants, not depending upon n . The last inequality
shows that every separated from zero subsequence }{

knx  (if any exists) satisfies
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p
nnnn kk

xMrNrxx
−

++≤
1

)(~ "' .

Hence, passing to the limit as ∞→kn , we get

xx
kn

k
~suplim

)(
≤ .

The rest of the proof is the same as the proof of Theorem 4 and is omitted here ♦
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