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1. INTRODUCTION

On the 150th anniversary of the birth of Gyula Farkas in 1997, S. Zhang [14]
published two new and finite pivot algorithms for solving linear programming
problems. Zhang's algorithms are generalizations of Terlaky's Criss-cross method [11,
12, 13].1 Klafszky and Terlaky [7,8] gave a constructive proof to the well-known lemma
of Gy. Farkas [2, 3].

Using the first algorithm (FILO/LOFI rule) of Zhang [14, 15] and the so-called
orthogonality theorem (see for instance [7, 8, 5, 6]) we give herein a constructive proof
to Farkas' lemma in a similar way as Klafszky and Terlaky did in their papers [7, 8].
This kind of constructive proof can be extended to verify the well-known strong duality
theorem. We use Zhang's second algorithm with the most-often selected rule [14, 15].
Our proofs of the finiteness of Zhang's algorithms are simpler than the original one.

Let AT R™ ", ¢,xT R",y,bl R™and I ={1,2,...,n}. Without loss of generality

we may assume that the rank of A is m, thus A has full row rank. Let a1 R"

denote the i™ row vector of the matrix A, while ajT R™ denotes the jth column
vector of it. In our paper the following form of the Farkas lemma is proved in Section 2.
Theorem 1.1. (Farkas' lemma) From the following two systems of linear inequalities
exactly one is solvable:

Ax = b yTA£0f
%30 E (A1) yTb=1{) (A2)

Our second goal in this note is to give constructive proof for the strong duality
theorem of the linear programming problem (Section 3).

Now, let us consider the primal and dual linear programming problems in the
following form

minc " xU maxy Tbi!
Ax=b § (P) Y PY (o)
x30 Jb yTAECb

Furthermore, let P be the set of primal feasible solutionsz, namely

P:={x1 R} |Ax=b)

1 Zhang [14, 15] proved the finiteness of one of his algorithm, following the steps of Terlaky's
original proof [11, 12].

2The R} is the positive orthant, thus R} ={x1 R":x3 0} .
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and let the set of dual feasible solutions, D, be given as
D={yl R™|yTA£c}.

Theorem 1.2. (Strong duality theorem) From the following two statements exactly one
holds:

(1) There exists XT P and y1 D suchthat c'x=y"b.
(2)P=0or D=0.

Let us introduce the (primal) pivot tableau for the (primal) linear
programming problem, as follows

where all the data related to the problem are arranged. Under the assumption that
matrix A has full row rank, there exists an m” m nonsingular submatrix Ag of A.

Let us interchange the columns of A to obtain the following partition A=(Ag,AyN),
where the submatrix Ay contains those columns of A which do not belong to Ag.
Now the linear system Ax =Db can be written as AgXg +AnyXpn =b, where we group
the unknowns in the same way as the columns of matrix A, namely x=(Xpg,Xy)-
Similarly, we can reorder the components of the vector ¢ as c=(cg,Cy) -

Now we are ready to restate some well-known concepts of linear algebra and
linear programming such as basis, basic solution, feasible basic solution, optimal
solution and orthogonality.

Definition 1.3.
1. Any m” m nonsingular submatrix Ag of A iscalled a basis.

2. The xg = Aélb, Xn =0 is abasic solution of Ax=Db for a given Ag.

3. Variables grouped in X are called basic variables, while those corresponding
to xy are called nonbasic variables.

4. If A|'31b3 0 then we say that (Xg,Xy) is a (primal) feasible solution and Ag
is a (primal) feasible basis.

5. The vector y = (CEA'BI)TT R™ is called a dual basic solution.

6. |If CEA'BlA £c¢ holds then Ag is said to be a dual feasible basis.

7. The primal feasible solution X1 P is said to be an optimal solution of the
primal problem, if ¢c"X £cTx holds for all x1 P.
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8. The dual feasible solution y1 D is said to be an optimal solution of the dual
problem, if bTy2 bTy holds forall yi D.

The (primal) pivot tableau corresponding to the basis Ag for the LP problem3
is the following

AA Ag'b

c’ - cLARlA -cLAgb

and let us introduce the following notations
T=Ag'A, b=Aglb, €' =cT-cLAR'A, and z =-cLAg'b.

The set of basic indices corresponding to the basis Ag is denoted by B, while the set
of nonbasic indices is denoted by N. Trivially, 1 =BE N.

We need the concept of orthogonality among vectors.

Definition 1.4. Let a,bl RK then vectors a and b are said to be orthogonal, if
a'b=0.

Using the pivot tableau we can introduce the following n-dimensional
(column) vectors:

T, if ki N
t® =@ ={1, if k=i
to, if kI Bkt
and
iy, if ki B
T . .
£ = (k= =i- 1 if k=]
10, if kT Nk j
where t(i), il B is equal to the it row of T, while t;, jT N is formed from the jth

column of T extended by an (n- m) - dimensional negative unity vector.4

3 For the system (A;) the pivot tableau corresponding to the basis of Ap is simpler as you may
see:

AL A Aglb
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The following useful observation is called the orthogonality theorem (see for
instance [7, 8, 6]).

Proposition 1.5. Let a linear system Ax=Db be given. Furthermore, Ag¢ and Agg
are bases of the linear system, then

(td7)Tt¢=0 forall il B¢and forall ji N¢,

holds, where B¢ and B® are the index sets corresponding to the bases Ag¢ and Agg,
respectively.

Theorem 1.1 is proved in Section 2. First we define an algorithm to solve the
system (A;) and prove its finiteness. The algorithm either solves (A;) or gives a
certificate for the nonexistence of a solution. In this second case, using elementary
computations, we can compute the solution of system (A,). The solvability of the LP
problem (P) is discussed in Section 3. A pivot algorithm is defined using the (most-
often-selected variable) pivot rule of Zhang, [14, 15]. The finiteness of this second

algorithm is proved. The strong duality theorem, Theorem 1.2., is obtained as an easy
consequence of the finiteness of the algorithm.

Both of the presented algorithms have the general property of the criss-cross
method [4], namely that the system (A;) is solved without introducing artificial

variables and using the so-called first phase objective function (or other techniques like
the big-M method, [9]). Consequently, we do not need two phases to solve problem (P),
because the algorithm can be initiated by any (not necessarily primal feasible) basis.

Our proofs are purely combinatorial, therefore the only information that is
used is the sign of the entries of the pivot tableau. Thus, we use the Balinski-Tucker [1]
notation which is very convenient for our purposes. Positive, nonnegative, negative and
nonpositive numbers are denoted by +, A, -, © signs, respectively. If an entry in the
tableau is denoted by * then there is no information about the sign of that
entry.

2. PROOF OF THE FARKAS LEMMA

First, let us deal with the solution of the system (A;). We introduce the
following mapping u,: 1 ® Ng, and let uy =(0,,...,0) and

u G _ir, if the i" variable movesin the r'" iteration
= _ _
' fupq (i), otherwise

4 The vector t; is a column of the dual simplex tableau as it is defined in [10].
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for r=1.2,..,k Itiseasytoshowthat u,3u,.; and u,* u,_q.

The basic idea of the pivot rule is the following: from the infeasible variables
choose the one to leave the current basis which entered most recently and from those
which are candidates to enter the basis choose the one which has left the basis most
recently.

Algorithm 2.1.

Let a basis Ag for the system (A;) be given with the corresponding pivot tableau. Let
r=1.
Step 1. Let J:={il B:x; <0}.
If J=0 then the system (A;) is solved, STOP
else let J g ={i1 J:u;.1(J)2 up4 (i), forall il J}

choose an arbitrary index ki J, and go to Step 2.

Step 2. Let K:={jl N:t,; <0}.
If K=0 then the system (A;) is solved, STOP
else let K ={j1 K:u,.1(j)3 upq(i), forall il K},

choose an arbitrary index 1T K, and go to Step 3.

Step 3. Now, x, leaves and x; enters the current basis.
Let us update the vector u as follows
o ar, ifi=kori=lI
up(i)=1i . .
iU 1(1), otherwise
Increase the value of r by 1, namely r:=r+1 and go to Step 1.

Let us extend the definition of the vectors t) and t; to the column of b, as

well. From now on, we assume that the index b (which belongs to the column vector
b) is always in the set of N. Now we can apply the orthogonality theorem for the

matrix [A,b] and then the vectors t® and t; become n+1 - tuples.

Lemma 2.2. Algorithm 2.1 is finite.

Proof: By contradiction. Let us assume that the algorithm is not finite. This means
that there exists (at least) one example in which the algorithm is not finite, thus it
generates an infinite sequence of pivot tableaus, i.e. infinite sequence of bases. But the
number of all possible bases for a given problem (with an m” n matrix A) is finite (at
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an o P .
most g +, therefore some of the bases should occur infinitely many times.> From
Mgy

those examples for which cycling occurs choose one with the smallest possible size. For
such problems all the variables have to change their basis status during a cycle.

Let us consider the sequence of pivot tableaus generated by the algorithm and
let us denote by Tg, that which satisfies the following criteria:

there is a variable X, which changes its basic status for the first time;

after this pivot tableau all the variables have changed their basic status at least
once.

We have two choices: the variable x, either enters or leaves the bases at the pivot

q
tableau Tg¢. It follows from our counter assumption that there should be another basic

tableau, Tge such that the variable xq will change its basic status for the first time

since Tge. Let us analyze the (sign) structure of the pivot tableaus Tge and Tge.

Case 1. Let us deal with the case when the variable X, leaves the pivot tableau Tge

and enters Tge. Then the sign structure of the pivot tableaus Tge and Tge are as

follows
b Xq
A
A A .. A - - - x
- Xq
Figure 1.

Using the orthogonality theorem (Proposition 1.5) the vectors tff and té") are
orthogonal. On the other hand, based on the pivot rule of Algorithm 2.1 if t§ <0, for
some il N®{q,b} then u,.,(i)<u,.;(q), means that the variable x; did not change
its basic status since the pivot tableau Tg¢, therefore il N¢ so t§ =0. From this
observation we may get that

0=(t6")T 1§ tftg, + thtg, >0,

because tf, =-1, t§, <0, tff <O and tfy <0. A contradiction is obtained.

5 This phenomena is known in the literature as cycling, see for instance [9, 10, 5, 6].
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Case 2. Let us assume that the variable x, enters the basis at pivot tableau Tg¢ and

leaves at Tgg.

Figure 2.

Taking into consideration the sign structure of these tableaus, the pivot rule
of Algorithm 2.1. and using the orthogonality theorem (Proposition 1.5), as in the
previous case, we can show that both Tz and Tge cannot occur in the sequence of

pivot tableaus generated by Algorithm 2.1. Therefore Algorithm 2.1. is not cycling.
Now, we are ready to prove the Farkas' Lemma.
Proof of Theorem 1.1: Let us assume that both (A;) and (A,) have a solution, then

from Ax =b it follows that y' Ax =y " b. Taking into consideration that

yTAEO and x30

it follows that
03y Ax=y'b=1,

because yszl holds. This is a contradiction, thus both systems cannot have a
solution.

We need to show that one of the systems is solvable. Let us apply Algorithm
2.1. to system (A;). According to Lemma 2.2. Algorithm 2.1. is finite, therefore it

either stops in Step 1 with J =0, which means that a (basic) feasible solution of the
system (A;) is found, or it reports that K =0 (Step 2), thus we obtain a pivot tableau
such that t®30 and Ek <0.6 Now it is obvious that the following system of
inequalities

6 This is known from the literature as primal infeasibility criteria, see for instance [9, 10, 5, 6].
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t"Tx=b,, x30 (1)

has no solution. Therefore the system (A;) cannot have a solution. Using the
corresponding basis we can compute a solution? of the system (Ay) as

1 B
y==(e" Az"",
by
where e, .1 R™ is the k™ unity vector.

3. PROOF OF THE STRONG DUALITY THEOREM

Let us consider the primal linear programming problem, (P). Let us introduce
the following mapping v, :1® Ng, and let vy =(0,0,...,0) , furthermore

v. (i) _iv,_4(i)+1, if thei' variable movesin the r'" iteration
= ! _
' fVe_1(i), otherwise.

Vector v, counts how many times the variables have changed their basic

th

status until the end of the r™" iteration.

Algorithm 3.1.
Let a basis Ag of the primal linear programming problem (P) be given with the
corresponding pivot tableau and let r =1.
Step 1. Let J:={il 1:x; <0 or ¢; <0}.
If J =0 then the current basic solution is optimal, STOP,
else let Jg ={iT J:v,1(Q)3 vy 1 (@), "il J} and
choose an arbitrary index kKT J -
Step 2. (a) Primal iteration: kI N .
Define the set of indices Kp ={il B:tj >0} .
If Kp =0 then D=0, there is no dual feasible solution, STOP,

else let Kp o ={i1 Kp V1 (3)3 vr.1 (i), " il Kp}

7 Using the orthogonality theorem (Proposition 1.5) it is easy to check that if the current pivot
tableau is denoted by T and the corresponding basis by Ag then

tij =(z) aj and b =(z,)" b,

where z, =((e,)T Agh)T and e, 1 R™ is the k™ unity vector. See for instance [7, 8, 5, 6].
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and choose an arbitrary index 1T Kp -
Now, X, leaves the basis, while x, enters it, and

LV (D+1, if i=kor i=I
ve(i) =i . .
TVr.1(i), otherwise.

Increase the value of r by 1 and go to Step 1.
(b) Dual iteration: ki B.
Define the set of indices K :={iT N:t,; <0}.
If Kp =0 then P =0, there is no primal feasible solution, STOP,
else let Kp o ={i1 Kp v 1 ()2 v (), "il Kp}
and choose an arbitrary index 1T Kp g -
Now, x leaves the basis, while x, enters it, and

v ()+1, if i=kor i=|I
V(i) =i . .
TVr.1(i), otherwise.

Increase the value of r by 1 and go to Step 1.

The most often selected infeasible variable is chosen by the pivot rule of the
algorithm in Step 1. Using exactly the same rule in Step 2 from the candidate variables,
the most-often selected is chosen again. If we have more than one candidate either in
Step 1 (elements of J,, ) or in Step 2 (in case (a) the elements of Kp 5 and in case

(b) the elements of K, 5 ) then we may choose from them arbitrarily.

The finiteness of the algorithm will be proved using the orthogonality theorem
(Proposition 1.5). In the case of linear programming, the vectors t®7 R™ and
th R™! furthermore t® belongs to the row space, while t; belongs to the null
space of the following matrix

& b

c’ oy
From now on we assume that the index ¢ (which belongs to the row vector c) is
always in the set of B.

Lemma 3.2. The Algorithm 3.1. is finite.
Proof: The proof of this lemma is very similar to the proof of Lemma 2.2.

Let us assume to the contrary, that the Algorithm 3.1. is not finite. But the
number of possible bases is finite, therefore at least one basis should be repeated
infinitely many times. Thus cycling must occur. From those examples where cycling
occurs choose one with the smallest size, which means all the variables enter and leave
the basis during a cycle.
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Let xq be the variable which moves last and Agg the first basis when X
changes its basic status. (Without loss of generality we may assume that x, enters at
basis Agg.) Let us denote by Agg that basis when x, moves for the second time. We
assume that after the basis Apgg, all the variables have changed their basic status at
least once. It may happen that another variable x,,, together with Xx,, changes its

basic status at Agg for the first time. We now have the following cases:

Xq Xq
A + * | Xy
A A
A A A
A . A - A . A -
(3a) (3b)

Figure 3: At primal iteration x, enters the basis and (a) x is the only candidate to
change its basic status in Step 1.; (b) both x, and x,, change their basic status for the

first time

If BW 3 0 then (3a) and (3b) are equivalent tableaus.

Xq Xq
A A - - | X
A
A A - - | xw
A
A .. A =
(4a) (4b)

Figure 4: At dual iteration x, enters the basis: (a) x4 has been selected uniquely; (b)

both x, and x,, change their basic status for the first time

In (4a) and (4b) the sign structure of the row of x,, is the same. Agg is the
basis when the variable Xq leaves the basis for the first time. We have two cases: Xq

leaves the basis either in Step 2 (a), primal iteration, or in Step 2 (b), dual iteration.
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+ X - X

- A A - -
(5a) (5b)

Figure 5: The variable X, leaves the basis Agg at primal (5a) or at dual (5b) iteration

If t§ >0 and iT B®\{q} (see Fig. 5, part (5a)) then, according to the pivot rule
of Algorithm 3.1, v,_4 (i) =Vv,.1(q) =1, thus il B¢. Similarly, if t§ <0 (t§ <0), where
il Ne¢(jT B®{q}) then il N¢jT B9 holds because v, 1(i)=V,.1(q)=1(v,.1(j)=
=V,.1(0) =1) using the case (5b).

Now we have the following four possible cases, namely: the variable x, enters
the basis Agg at

a) primal iteration and leaves the basis Agg at primal iteration;
b) primal iteration and leaves the basis Agg¢ at dual iteration;
c) dual iteration and leaves the basis Agg at primal iteration;

d) dual iteration and leaves the basis Agg at dual iteration.

Let us deal with the case (a), where we have the sign structures given at (3a)

(or (3b)) and (5a). Because t69 is the same vector for both (3a) and (3b) we do not
need to separate these two subcases. From the pivot tableau shown on (5a) we use the

vector t¢. We know that (téc))Ttgt:O, according to the orthogonality theorem

(Proposition 1.5). Taking into consideration the signs of the entries in 69 and te,
especially if t§ >0,il B®{q} then il B¢, thus t§ =0, we have

0=(t69)T t@£ tg,th + Gt <0.
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The last (strict) inequality holds because t# <0, t& <0, t& =1 and tf >0. Thus we

have obtained a contradiction, namely (3a) (or (3b)) cannot occur in the sequence of
pivot tableaus produced by the algorithm together with the tableau shown in (5a).

Case (b). Let us consider the vectors 69 and tff from the pivot tableau (3a), while the
vectors t#9 and tf are from the pivot tableau (5b). Applying the orthogonality
theorem  (Proposition 1.5) twice and summing the terms we get
(6N T tg+ (tf) T té% =0 . Using the remark given after Figure 5, we can compute the
previous expression in more detail, thus

0=(t6) " tg+ (6T tg

SRt +thty + UGt +tBLG + thth +th s @
=z ¢ z G+t th +2 ¢ 2 €>0,

because tf, =t =-1,t& =t§ =1,t§ =t§ =0,t% =z ¢t =z €% <0 and tf <O.

Therefore both pivot tableaus (3a) and (5b) cannot occur.

Now we need to pay more attention to the case when pivot tableaus (3b) and
(5b) are considered.

In expression (2) the term t#, t§, appears. Unfortunately, we have no
information about the sign of the element t§, (see Fig. (3b)). The element t§, can be
both negative and nonnegative. Furthermore, it may happen that the element t§;, is
negative or nonnegative. Therefore we have four subcases depending on the sign of t§,
and t&, .

If t§, 20 and t&, 3 0 then the proof goes along the same lines as for the
tableaus (3a) and (5b).

If t#, <O then let us consider the vectors t§ and t69 . Using the

orthogonality theorem (Proposition 1.5) we have (tg)Ttﬁﬁc) =0. Then

0= (t6)) Tt £ t@,th, +thtg, + e, = thtf, <O

where t# =0 and tg, =0, because qi B® and bl N¢, furthermore t§, <0 and

t§q >0 . Thus we have a contradiction in this subcase.

Let us now consider the subcase when t§, <0 and t#, 3 0. In this situation

cycling may occur in two different ways: (i) if the variables x,; and x,, change their

q
basic status at the basis Agg, or (ii) if the variable x, leaves the basis Agg and xy,

enters a basis coming after Apg.
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Let us analyze first the case (i). Now, the vectors t69 and tf are considered.

The sign structure of t69 has the following properties:
t# <O, t§, <O andif t§ <0 and i* w then il N¢ namely tf =0.

From the orthogonality theorem (Proposition 1.5) we know that (tf)" té% =0 and
using the previous information we may compute in more details as follows

0=(t6)T g2 th, thy + thth + thts = thifs - th >0,
because tgt,\, <0, t$, <O, tgg <0, tf =-1, t&;4 =1 and t&b =0. Thus we have obtained
contradiction once more.

Now, we need to analyze the case (ii), thus we take into consideration the first
basis Agg after Agg such that x,, enters the basis and X, is a nonbasic variable at

AB¢8. The sign structure of Agg is

and because qi N® then according to the pivot rule we have t# ° O, td, <O0.

Furthermore, if t$<0,it w then il N¢, therefore
0= (1)) T tf £ td 1, +tétg, <O,
since t# =1 and t& <0 . Thus a contradiction is obtained.

After this complicated case let us analyze (c) and (d), which are similar to case

(VR

In case (c), we consider the vectors t6") and t¢. Using the orthogonality
theorem (Proposition 1.5) and the sign structure of the vectors we have

8 The existence of such basis Apg is necessary to get a cycle, because at Agg the variable X,

was in the basis, while X, was out of the basis.

q
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0=(t6"))TLBE thothh + thyth + otk = thytf <O,

where tfk =tf. =0,t§, <0 and t§ >0 . Thus a contradiction is obtained.

In the last case, (d), we consider the vectors t6") and t# and instead of the
orthogonality of the vectors (proved in Proposition 1.5) we get

0=(t6")Ttf2 th,th +thoth = thyth - thy >0,

since t% <0, tgg <0 and t§, <0. This contradiction shows that case (d) cannot occur,

as well.
This completes the proof, because none of the possible cases can occur.
Now we are ready to prove the strong duality theorem.

Proof of the strong duality theorem (Theorem 1.2): The two statements of the
theorem exclude each other. Let us apply Algorithm 3.1. for the linear programming
problem (P). The algorithm terminates with one of the following cases:

1. Variable x, leaves the current basis and we cannot choose any variable to

enter the basis (Algorithm 3.1, Step 2 (b)). Then we have x =5k <0 and
;2 0, forall il I thus P=0.

2. Variable x, enters the current basis and we cannot choose any variable to
leave the basis (Algorithm 3.1, Step 2 (a)). Then we have ¢, <0 and t;  £0,
forall il B thus D=0.

3. According to the pivot rule of Algorithm 3.1. we cannot choose a variable
either to leave or to enter the current basis, thus x;3 0 and ¢;3 0, for all

il 1 (Step 1., J=0). Therefore the current basis is optimal, so an optimal
solution is found to the primal problem.

It is obvious that if 1 or 2 occurs then the statement (2) of the strong duality
theorem is obtained. For this, we only need to show that statement 1 and 2 are true.

Statement 1 is proved during the verification of the Farkas Lemma (see (1)).
Statement 29 can be verified as follows. Let us assume to the contrary, that there exists

a dual feasible basis Ag for which t(92 0 has to be orthogonal to the vector tf£0,
but

0=(tO)Ttg £, th +tpth = th <O,

9 Known in the literature as dual infeasibility criteria, see for instance [9, 10, 5, 6].
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because tff =0,t,. =1 and t§ <O, gives a contradiction.

Statement 3 is true because if we denote the basic feasible solution, produced
by the algorithm, by X = (Ag!b,0) where Az'b2 0, and ¥ =(cLAzH)T then

c'x=ctAglb=y"b.

Now applying the weak duality theorem of linear programming [9, 10, 5, 6], we may
show the optimality of X and y, thus statement (1) of the strong duality theorem is
obtained if Algorithm 3.1. stops in Step 1.

This completes the proof of the strong duality theorem.

Acknowledgement. The authors are grateful to Filiz Erbilen for reading an earlier
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this paper.
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