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1. INTRODUCTION

On the 150th anniversary of the birth of Gyula Farkas in 1997, S. Zhang [14]
published two new and finite pivot algorithms for solving linear programming
problems. Zhang's algorithms are generalizations of Terlaky's Criss-cross method [11,
12, 13].1  Klafszky and Terlaky [7,8] gave a constructive proof to the well-known lemma
of Gy. Farkas [2, 3].

Using the first algorithm (FILO/LOFI rule) of Zhang [14, 15] and the so-called
orthogonality theorem (see for instance [7, 8, 5, 6]) we give herein a constructive proof
to Farkas' lemma in a similar way as Klafszky and Terlaky did in their papers [7, 8].
This kind of constructive proof can be extended to verify the well-known strong duality
theorem. We use Zhang's second algorithm with the most-often selected rule [14, 15].
Our proofs of the finiteness of Zhang's algorithms are simpler than the original one.

Let mnnmA RRbby,y,RRxxc,c,RR ∈∈∈ × ,, and }.,...,,{ nI 21=  Without loss of generality

we may assume that the rank of A  is m , thus A  has full row rank. Let ni RRaa ∈)(

denote the thi  row vector of the matrix A, while m
j RRaa ∈  denotes the thj  column

vector of it. In our paper the following form of the Farkas lemma is proved in Section 2.

Theorem 1.1.Theorem 1.1. (Farkas' lemma) From the following two systems of linear inequalities
exactly one is solvable:
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Our second goal in this note is to give constructive proof for the strong duality
theorem of the linear programming problem (Section 3).

Now, let us consider the primal and dual linear programming problems in the
following form
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Furthermore, let P  be the set of primal feasible solutions2, namely

)|{: bbxxRRxx =∈= ⊕ AP n

                                                          
1 Zhang [14, 15] proved the finiteness of one of his algorithm, following the steps of Terlaky's
original proof [11, 12].
2 The n

⊕RR  is the positive orthant, thus }:{ 0≥∈=⊕ xxRRxxRR nn .
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and let the set of dual feasible solutions, D , be given as

}.|{ ccyyRRyy ≤∈= AD Tm

Theorem 1.2.Theorem 1.2. (Strong duality theorem) From the following two statements exactly one
holds:

(1) There exists P∈xx̂  and D∈yŷ  such that .ˆˆ bbyyxxcc TT =
(2) 0/=P  or 0/=D .

Let us introduce the (primal) pivot tableau for the (primal) linear
programming problem, as follows

A bb

Tcc *

where all the data related to the problem are arranged. Under the assumption that
matrix A  has full row rank, there exists an mm×  nonsingular submatrix BA  of A .
Let us interchange the columns of A  to obtain the following partition ),( NB AAA = ,
where the submatrix NA  contains those columns of A  which do not belong to BA .
Now the linear system bbxx =A  can be written as bbxxxx =+ NNBB AA , where we group
the unknowns in the same way as the columns of matrix A , namely ),( NB xxxxxx = .
Similarly, we can reorder the components of the vector cc  as ),( NB cccccc = .

Now we are ready to restate some well-known concepts of linear algebra and
linear programming such as basis, basic solution, feasible basic solution, optimal
solution and orthogonality.

Definition 1.3.Definition 1.3.

1. Any mm×  nonsingular submatrix BA of A  is called a basis.

2. The 00xxbbxx == −
NBB A ,1  is a basic solution of bbxx =A  for a given .BA

3. Variables grouped in Bxx  are called basic variables, while those corresponding
to Nxx  are called nonbasic variables.

4. If 00bb ≥−1
BA  then we say that ),( NB xxxx  is a (primal) feasible solution and BA

is a (primal) feasible basis.

5. The vector mT
B

T
B A RRccyy ∈= − )( 1  is called a dual basic solution.

6. If cccc ≤− AAB
T
B

1  holds then BA is said to be a dual feasible basis.

7. The primal feasible solution P∈xx  is said to be an optimal solution of the
primal problem, if xxccxxcc TT ≤  holds for all .P∈xx
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8. The dual feasible solution D∈yy  is said to be an optimal solution of the dual

problem, if yybbyybb TT ≥  holds for all D∈yy .

The (primal) pivot tableau corresponding to the basis BA for the LP problem3

is the following

AAB
1− bb1−

BA

AAB
T
B

T 1−− cccc bbcc 1−− B
T
B A

and let us introduce the following notations

,,, AAAAAT B
T
B

TT
BB

111 −−− −=== ccccccbbbb  and .bbcc 1−−= B
T
B Aζ

The set of basic indices corresponding to the basis BA  is denoted by ,B  while the set
of nonbasic indices is denoted by .N  Trivially, .NBI ∪=

We need the concept of orthogonality among vectors.

Definition 1.4Definition 1.4. Let kRRbba,a, ∈  then vectors aa  and bb  are said to be orthogonal, if

0=bbaaT .

Using the pivot tableau we can introduce the following n-dimensional
(column) vectors:
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where Bii ∈,)(tt  is equal to the thi  row of T , while Njj ∈,tt  is formed from the thj

column of T  extended by an )( mn − - dimensional negative unity vector.4

                                                          
3 For the system )( 1A  the pivot tableau corresponding to  the basis of  BA  is simpler as you may

see:

AAB
1− bb1−

BA
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The following useful observation is called the orthogonality theorem (see for
instance [7, 8, 6]).

Proposition 1.5.Proposition 1.5. Let a linear system bbxx =A  be given. Furthermore, BA ′  and BA ′′

are bases of the linear system, then

0=′′′ j
Ti tttt )( )(  for all Bi ′∈  and for all Nj ′′∈ ,

holds, where B′  and B ′′  are the index sets corresponding to the bases BA ′  and ,BA ′′

respectively.

Theorem 1.1 is proved in Section 2. First we define an algorithm to solve the
system )( 1A  and prove its finiteness. The algorithm either solves )( 1A  or gives a
certificate for the nonexistence of a solution. In this second case, using elementary
computations, we can compute the solution of system )( 2A . The solvability of the LP
problem )(P  is discussed in Section 3. A pivot algorithm is defined using the (most-
often-selected variable) pivot rule of Zhang, [14, 15]. The finiteness of this second
algorithm is proved. The strong duality theorem, Theorem 1.2., is obtained as an easy
consequence of the finiteness of the algorithm.

Both of the presented algorithms have the general property of the criss-cross
method [4], namely that the system )( 1A  is solved without introducing artificial
variables and using the so-called first phase objective function (or other techniques like
the big-M method, [9]). Consequently, we do not need two phases to solve problem )(P ,
because the algorithm can be initiated by any (not necessarily primal feasible) basis.

Our proofs are purely combinatorial, therefore the only information that is
used is the sign of the entries of the pivot tableau. Thus, we use the Balinski-Tucker [1]
notation which is very convenient for our purposes. Positive, nonnegative, negative and
nonpositive numbers are denoted by +, ⊕, −, signs, respectively. If an entry in the
tableau is denoted by ∗  then there is no information about the sign of that
entry.

2. PROOF OF THE FARKAS LEMMA

First, let us deal with the solution of the system )( 1A . We introduce the
following mapping 0NNuu →Ir : , and let ),...,,( 0000 =uu  and

 
otherwise

iterationtheinmoves variable  theif
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4 The vector jtt  is a column of the dual simplex tableau as it is defined in [10].
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for .,...,, kr 21=  It is easy to show that 1−≥ rr uuuu  and 1−≠ rr uuuu .

The basic idea of the pivot rule is the following: from the infeasible variables
choose the one to leave the current basis which entered most recently and from those
which are candidates to enter the basis choose the one which has left the basis most
recently.

Algorithm 2.1.Algorithm 2.1.

Let a basis BA  for the system )( 1A  be given with the corresponding pivot tableau. Let
.1=r

Step 1.Step 1. Let }.:{: 0<∈= ixBiJ

IfIf 0/=J  thenthen  the system )( 1A  is solved, STOP

elseelse let ),()(:{:max iujuJjJ rr 11 −− ≥∈=  for all }Ji∈

choose an arbitrary index maxJk∈  and go to Step 2.

Step 2.Step 2. Let }.:{: 0<∈= kjtNjK

IfIf 0/=K  thenthen the system )( 1A  is solved, STOP

elseelse let ),()(:{:max iujuKjK rr 11 −− ≥∈=  for all },Ki∈

choose an arbitrary index maxKl∈  and go to Step 3.

Step 3.Step 3. Now, kx  leaves and lx  enters the current basis.

Let us update the vector uu  as follows
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Increase the value of r  by 1 , namely 1+= rr :  and go to Step 1.

Let us extend the definition of the vectors )(itt  and jtt  to the column of bb , as

well. From now on, we assume that the index b  (which belongs to the column vector
bb ) is always in the set of N . Now we can apply the orthogonality theorem for the

matrix ],[ bbA  and then the vectors )(itt  and jtt  become 1+n - tuples.

Lemma 2.2.Lemma 2.2. Algorithm 2.1 is finite.

Proof:Proof: By contradiction. Let us assume that the algorithm is not finite. This means
that there exists (at least) one example in which the algorithm is not finite, thus it
generates an infinite sequence of pivot tableaus, i.e. infinite sequence of bases. But the
number of all possible bases for a given problem (with an nm×  matrix A ) is finite (at
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most 







m
n

, therefore some of the bases should occur infinitely many times.5 From

those examples for which cycling occurs choose one with the smallest possible size. For
such problems all the variables have to change their basis status during a cycle.

Let us consider the sequence of pivot tableaus generated by the algorithm and
let us denote by BT ′  that which satisfies the following criteria:

• there is a variable qx  which changes its basic status for the first time;

• after this pivot tableau all the variables have changed their basic status at least
once.

We have two choices: the variable qx  either enters or leaves the bases at the pivot

tableau BT ′ . It follows from our counter assumption that there should be another basic
tableau, BT ′′  such that the variable qx  will change its basic status for the first time

since BT ′ . Let us analyze the (sign) structure of the pivot tableaus BT ′  and BT ′′ .

Case 1.Case 1. Let us deal with the case when the variable qx  leaves the pivot tableau BT ′

and enters BT ′′ . Then the sign structure of the pivot tableaus BT ′  and BT ′′  are as
follows

bb qx

⊕

M
⊕ ⊕   …   ⊕    −   …    −     − − lx

− qx

Figure 1.Figure 1.

Using the orthogonality theorem (Proposition 1.5) the vectors btt′  and )(ltt ′′  are
orthogonal. On the other hand, based on the pivot rule of Algorithm 2.1 if 0<′′lit , for
some },{\ bqNi ′′∈  then )()( quiu rr 11 −− < , means that the variable ix  did not change
its basic status since the pivot tableau BT ′ , therefore Ni ′∈ , so 0=′ibt . From this
observation we may get that

,)( )( 00 >′′′+′′′≥′′′= qblqbblbb
Tl tttttttt

because 001 <′′<′−=′ lbqbbb ttt ,,  and 0<′′lqt . A contradiction is obtained.

                                                          
5 This phenomena is known in the literature as cycling, see for instance [9, 10, 5, 6].
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Case 2.Case 2. Let us assume that the variable qx  enters the basis at pivot tableau BT ′  and

leaves at BT ′′ .

qx bb

⊕

M
⊕

⊕   …   ⊕    − − lx −

M
−

− qx

Figure 2.Figure 2.

Taking into consideration the sign structure of these tableaus, the pivot rule
of Algorithm 2.1. and using the orthogonality theorem (Proposition 1.5), as in the
previous case, we can show that both BT ′  and BT ′′  cannot occur in the sequence of
pivot tableaus generated by Algorithm 2.1. Therefore Algorithm 2.1. is not cycling.

Now, we are ready to prove the Farkas' Lemma.

Proof of Theorem 1.1:Proof of Theorem 1.1: Let us assume that both )( 1A  and )( 2A  have a solution, then

from bbxx =A  it follows that bbyyxxyy TT A = . Taking into consideration that

00yy ≤AT  and 00xx ≥

it follows that

10 ==≥ bbyyxxyy TT A ,

because 1=bbyyT  holds. This is a contradiction, thus both systems cannot have a
solution.

We need to show that one of the systems is solvable. Let us apply Algorithm
2.1. to system )( 1A . According to Lemma 2.2. Algorithm 2.1. is finite, therefore it
either stops in Step 1 with 0/=J , which means that a (basic) feasible solution of the
system )( 1A  is found, or it reports that 0/=K  (Step 2), thus we obtain a pivot tableau

such that 00tt ≥)(k  and .0<kb 6 Now it is obvious that the following system of
inequalities

                                                          
6 This is known from the literature as primal infeasibility criteria, see for instance [9, 10, 5, 6].
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00xxbbxxtt ≥= ,)( )(
k

Tk (1)

has no solution. Therefore the system )( 1A  cannot have a solution. Using the
corresponding basis we can compute a solution7 of the system )( 2A  as

T
B

T
k

k
A

b
))(( 11 −= eeyy ,

where m
k RRee ∈  is the thk  unity vector.

3. PROOF OF THE STRONG DUALITY THEOREM

Let us consider the primal linear programming problem, )(P . Let us introduce
the following mapping 0NNvv →Ir : , and let ),...,,( 0000 =vv , furthermore
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Vector rvv  counts how many times the variables have changed their basic

status until the end of the thr  iteration.

Algorithm 3.1.Algorithm 3.1.

Let a basis BA  of the primal linear programming problem )(P  be given with the
corresponding pivot tableau and let 1=r .

Step 1.Step 1. Let 0<∈= ixIiJ :{:  or }.0<ic

If 0/=J  then  then the current basic solution is optimal, STOP,

elseelse let }),()(:{:max JiivjvJjJ rr ∈∀≥∈= −− 11  and

choose an arbitrary index maxJk∈ .

Step 2.Step 2. (a) Primal iteration: Nk∈ .

Define the set of indices }:{ 0>∈= ikP tBiK .

If 0/=pK  thenthen 0/=D , there is no dual feasible solution, STOP,

elseelse let }),()(:{:max, PrrPP KiivjvKjK ∈∀≥∈= −− 11

                                                          
7 Using the orthogonality theorem (Proposition 1.5) it is easy to check that if the current pivot
tableau is denoted by T  and the corresponding basis by BA  then

j
T

kkjt aazz )(=  and ,)( bbzz T
kkb =

where T
B

T
kk A ))(( 1−= eezz  and m

k RRee ∈  is the thk  unity vector. See for instance [7, 8, 5, 6].
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and choose an arbitrary index max,PKl∈ .

Now, lx  leaves the basis, while kx  enters it, and


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 ==+
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or   if1
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likiiv
iv

r

r
r

Increase the value of r  by 1  and go to Step 1.
(b) Dual iteration: Bk∈ .

Define the set of indices }.:{: 0<∈= kiD tNiK

If 0/=DK  thenthen 0/=P , there is no primal feasible solution, STOP,

elseelse let }),()(:{:max, DrrDD KiivjvKjK ∈∀≥∈= −− 11

and choose an arbitrary index max,DKl∈ .

Now, kx  leaves the basis, while lx  enters it, and



 ==+

=
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−
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or   if1

1

1
),(

,)(
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iv
likiiv

iv
r

r
r

Increase the value of r  by 1  and go to Step 1.

The most often selected infeasible variable is chosen by the pivot rule of the
algorithm in Step 1. Using exactly the same rule in Step 2 from the candidate variables,
the most-often selected is chosen again. If we have more than one candidate either in
Step 1 (elements of maxJ ) or in Step 2 (in case (a) the elements of max,PK  and in case

(b) the elements of max,DK ) then we may choose from them arbitrarily.

The finiteness of the algorithm will be proved using the orthogonality theorem
(Proposition 1.5). In the case of linear programming, the vectors 1+∈ ni RRtt )(  and

1+∈ n
j RRtt , furthermore )(itt  belongs to the row space, while jtt  belongs to the null

space of the following matrix












0T

A

cc

bb
.

From now on we assume that the index c  (which belongs to the row vector cc ) is
always in the set of B .

Lemma 3.2.Lemma 3.2. The Algorithm 3.1. is finite.

Proof:Proof: The proof of this lemma is very similar to the proof of Lemma 2.2.

Let us assume to the contrary, that the Algorithm 3.1. is not finite. But the
number of possible bases is finite, therefore at least one basis should be repeated
infinitely many times. Thus cycling must occur. From those examples where cycling
occurs choose one with the smallest size, which means all the variables enter and leave
the basis during a cycle.
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Let qx  be the variable which moves last and BA ′  the first basis when qx

changes its basic status. (Without loss of generality we may assume that qx  enters at

basis BA ′ .) Let us denote by BA ′′  that basis when qx  moves for the second time. We

assume that after the basis BA ′ , all the variables have changed their basic status at
least once. It may happen that another variable wx , together with qx , changes its

basic status at BA ′  for the first time. We now have the following cases:

qx qx

⊕ + * wx

M ⊗ ⊕

M M
⊕ ⊗ ⊕

⊕   …   ⊕    − ⊕   …   ⊕ −

(3a) (3b)

Figure 3:Figure 3: At primal iteration qx  enters the basis and (a) qx  is the only candidate to

change its basic status in Step 1.; (b) both qx  and wx  change their basic status for the

first time

If 0≥wb  then (3a) and (3b) are equivalent tableaus.

qx qx

⊕   …   ⊕ − − wx

⊕

⊕   …   ⊕    − − wx M
⊕

⊕   …   ⊕ *

(4a) (4b)

Figure 4:Figure 4: At dual iteration qx  enters the basis: (a) qx  has been selected uniquely; (b)

both qx  and wx  change their basic status for the first time

In (4a) and (4b) the sign structure of the row of wx  is the same. BA ′′  is the
basis when the variable qx  leaves the basis for the first time. We have two cases: qx

leaves the basis either in Step 2 (a), primal iteration, or in Step 2 (b), dual iteration.
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sx qx

⊕

M M
⊕

+ −

M M
+ −

+ qx − qx

− ⊕   …   ⊕    −   …    −

(5a) (5b)

Figure 5:Figure 5: The variable qx  leaves the basis BA ′′  at primal (5a) or at dual (5b) iteration

If 0>′′ist  and }{\ qBi ′′∈  (see Fig. 5, part (5a)) then, according to the pivot rule
of Algorithm 3.1, ,)()( 111 == −− qviv rr  thus Bi ′∈ . Similarly, if )( 00 <′′<′′ jbci tt , where

}){\( qBjNi ′′∈′′∈  then )( BjNi ′∈′∈  holds because === −−− )(()()( jvqviv rrr 111 1
))( 11 == − qvr  using the case (5b).

Now we have the following four possible cases, namely: the variable qx  enters

the basis BA ′  at

a) primal iteration and leaves the basis BA ′′  at primal iteration;

b) primal iteration and leaves the basis BA ′′  at dual iteration;

c) dual iteration and leaves the basis BA ′′  at primal iteration;

d) dual iteration and leaves the basis BA ′′  at dual iteration.

Let us deal with the case (a), where we have the sign structures given at (3a)
(or (3b)) and (5a). Because )(ctt′  is the same vector for both (3a) and (3b) we do not
need to separate these two subcases. From the pivot tableau shown on (5a) we use the
vector stt ′′ . We know that 0=′′′ s

Tc tttt )( )( , according to the orthogonality theorem

(Proposition 1.5). Taking into consideration the signs of the entries in )(ctt′  and stt ′′ ,
especially if }{\, qBitis ′′∈>′′ 0  then Bi ′∈ , thus 0=′cit , we have

.)( )( 00 <′′′+′′′≤′′′= csccqscqs
Tc tttttttt
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The last (strict) inequality holds because 100 =′<′′<′′ cccscq ttt ,,  and 0>′′qst . Thus we

have obtained a contradiction, namely (3a) (or (3b)) cannot occur in the sequence of
pivot tableaus produced by the algorithm together with the tableau shown in (5a).

Case (b). Let us consider the vectors )(ctt′ and btt′  from the pivot tableau (3a), while the

vectors )(ctt ′′  and btt ′′  are from the pivot tableau (5b). Applying the orthogonality
theorem (Proposition 1.5) twice and summing the terms we get

0=′′′+′′′ )()( )()( cT
bb

Tc tttttttt . Using the remark given after Figure 5, we can compute the
previous expression in more detail, thus

,

)()( )()(

0

0

>′′−′+′′′+′−′′=

′′′+′′′+′′′+′′′+″′+′′′≥

′′′+′′′=

ζζζζ qbcq

qbcqbbcbcbccqbcqbbcbcbcc

b
Tc

b
Tc

tt

tttttttttttt

tttttttt

(2)

because 0011 <′′′=′′′=′=′′=′=′′=′−=′′=′ cqcqcbcqqbccccbbbb ttttttttt ,,,,, ζζ  and 0<′′qbt .

Therefore both pivot tableaus (3a) and (5b) cannot occur.

Now we need to pay more attention to the case when pivot tableaus (3b) and
(5b) are considered.

In expression (2) the term wbcw tt ′′′  appears. Unfortunately, we have no
information about the sign of the element wbt′  (see Fig. (3b)). The element wbt′  can be
both negative and nonnegative. Furthermore, it may happen that the element cwt ′′  is
negative or nonnegative. Therefore we have four subcases depending on the sign of wbt′

and cwt ′′ .

If 0≥′wbt  and 0≥′′cwt  then the proof goes along the same lines as for the
tableaus (3a) and (5b).

If 0<′′cwt  then let us consider the vectors qtt′  and )(ctt ′′ . Using the

orthogonality theorem (Proposition 1.5) we have 0=′′′ )()( cT
q tttt . Then

00 <′′′=′′′+′′′+′′′≤′′′= wqcwbqcbqqcqwqcwq
Tc tttttttttttt )( )(

where 0=′′cqt  and 0=′bqt , because Bq ′′∈  and Nb ′∈ , furthermore 0<′′cwt  and

0>′wqt . Thus we have a contradiction in this subcase.

Let us now consider the subcase when 0<′wbt  and 0≥′′cwt . In this situation
cycling may occur in two different ways: (i) if the variables qx  and wx  change their

basic status at the basis BA ′′ , or (ii) if the variable qx  leaves the basis BA ′′  and wx

enters a basis coming after BA ′′ .
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Let us analyze first the case (i). Now, the vectors )(qtt ′′  and btt′  are considered.

The sign structure of )(qtt ′′  has the following properties:

00 <′′<′′ qwqb tt ,  and if 0<′′qit  and wi ≠  then ,Ni ′∈  namely 0=′ibt .

From the orthogonality theorem (Proposition 1.5) we know that 0=′′′ )()( qT
b tttt  and

using the previous information we may compute in more details as follows

,)( )( 00 >′′−′′′=′′′+′′′+′′′≥′′′= qbwbqwqbqqbbqbwbqwb
Tq tttttttttt tt

because 11000 =′′−=′<′′<′<′′ qqbbqbwbqw ttttt ,,,,  and 0=′qbt . Thus we have obtained

contradiction once more.

Now, we need to analyze the case (ii), thus we take into consideration the first
basis BA ′′′  after BA ′′  such that wx  enters the basis and qx  is a nonbasic variable at

BA ′′′
8. The sign structure of BA ′′′  is

⊕

M
⊕

−

M
−

⊕   …   ⊕    −    −   …    −

wx

and because Nq ′′′∈  then according to the pivot rule we have 00 <′′′≥′′′ cwcq tt , .

Furthermore, if witci ≠<′′′ ,0  then Ni ′∈ , therefore

,)( )( 00 <′′′′+′′′′≤′′′′= cqccwqcwq
Tc tttttttt

since 1=′′′cct  and 0<′cqt . Thus a contradiction is obtained.

After this complicated case let us analyze (c) and (d), which are similar to case
(a).

In case (c), we consider the vectors )(wtt′  and stt ′′ . Using the orthogonality
theorem (Proposition 1.5) and the sign structure of the vectors we have
                                                          
8 The existence of such basis BA ′′′  is necessary to get a cycle, because at BA ′  the variable wx
was in the basis, while qx  was out of the basis.
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,)( )( 00 <′′′=′′′+′′′+′′′≤′′′= qswqcswcbswbqswqs
Tw tttttttttttt

where 00 <′=′=′′ wqwcbs ttt ,  and 0>′′qst . Thus a contradiction is obtained.

In the last case, (d), we consider the vectors )(wtt′  and btt ′′  and instead of the
orthogonality of the vectors (proved in Proposition 1.5) we get

00 >′−′′′=′′′+′′′≥′′′= wbqbwqbbwbqbwqb
Tw ttttttttttt )( )( ,

since 00 <′′<′ qbwq tt ,  and .0<′wbt  This contradiction shows that case (d) cannot occur,

as well.

This completes the proof, because none of the possible cases can occur.

Now we are ready to prove the strong duality theorem.

Proof of the strong duality theorem (Theorem 1.2):Proof of the strong duality theorem (Theorem 1.2): The two statements of the
theorem exclude each other. Let us apply Algorithm 3.1. for the linear programming
problem (P). The algorithm terminates with one of the following cases:

1. Variable kx  leaves the current basis and we cannot choose any variable to

enter the basis (Algorithm 3.1, Step 2 (b)). Then we have 0<= kk bx  and
0≥kit , for all Ii∈  thus 0/=P .

2. Variable kx  enters the current basis and we cannot choose any variable to
leave the basis (Algorithm 3.1, Step 2 (a)). Then we have 0<kc  and 0≤ikt ,
for all Bi∈  thus 0/=D .

3. According to the pivot rule of Algorithm 3.1. we cannot choose a variable
either to leave or to enter the current basis, thus 0≥ix  and ,0≥ic  for all

Ii∈  (Step 1., 0/=J ). Therefore the current basis is optimal, so an optimal
solution is found to the primal problem.

It is obvious that if 1 or 2 occurs then the statement (2) of the strong duality
theorem is obtained. For this, we only need to show that statement 1 and 2 are true.

Statement 1 is proved during the verification of the Farkas Lemma (see (1)).
Statement 29 can be verified as follows. Let us assume to the contrary, that there exists
a dual feasible basis BA  for which 0≥)(ctt  has to be orthogonal to the vector 0≤′ktt ,
but

,)( )( 00 <′=′+′≤′= ckbkcbckcck
Tc ttttttttt

                                                          
9 Known in the literature as dual infeasibility criteria, see for instance [9, 10, 5, 6].
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because 10 ==′ ccbk tt ,  and ,0<′ckt  gives a contradiction.

Statement 3 is true because if we denote the basic feasible solution, produced
by the algorithm, by ),(ˆ 00bbxx 1−= BA  where ,01 ≥− bbBA  and T

B
T
B A )(ˆ 1−= ccyy  then

.ˆˆ bbyybbccxxcc T
B

T
B

T A == −1

Now applying the weak duality theorem of linear programming [9, 10, 5, 6], we may
show the optimality of xx̂  and yŷ , thus statement (1) of the strong duality theorem is
obtained if Algorithm 3.1. stops in Step 1.

This completes the proof of the strong duality theorem.
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