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Abstract:Abstract:  In this paper we found an upper bound on the number of items of the
rectangular form ba×  that can be loaded onto a rectangular pallet BA × , such that
the sides of the loaded items are parallel to the sides of the pallet and the interiors of
the loaded items do not overlap.
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1. INTRODUCTION

A rectangular form BA × ),( RBA ∈  is called a pallet (or box). The pallet
loading problem is to load as many as possible rectangular items ba× ),( Rba ∈  (called
also bricks) onto a pallet, such that the interiors of the bricks do not overlap and their
sides are parallel to the sides of the pallet.  The problem is NP complete and there exist
some heuristic and exact methods to solve the problem ([4], [5]).

We call the problem integer if the dimensions of the pallet and bricks are
integer numbers. The optimal solution for the integer pallet problem is known in some
special cases such as harmonic bricks (if one dimension of the brick is a multiple of the
other) (Brualdi and Foregger [3]) and for sufficiently large pallets (Barnes [1]). Some
generalizations for three and higher dimensions are also known ([2],[3]).

Little is known about problems with real dimensions, but some results (Barnes
[2]) suggest an essential difference in their behavior.  A slight generalization of the

result in [2] shows that if the sides of the bricks have a common divisor, i.e. 
b
a  is a

rational number, then the real pallet problem could be reduced to the integer case.

The aim of this paper is to extend some results to the real dimensional case.
First, we show that we can reduce the dimensions of the box to the integer
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combinations of the dimensions of the bricks without changing the number of loaded
bricks. Second, we prove that an expression giving the optimal solution in the integer
case gives an upper bound of the optimal solution in the real case and could be used to
prove optimality.

2. MAIN RESULT

To fix the layout, we choose a coordinate system Oxy  such that the pallet
corresponds to the rectangular },|),{( ByAxyxP ≤≤≤≤= 00 . Every loaded brick is
then a rectangular with down-left corner ),( vu , horizontal dimension d  and vertical
dimension },{},{, bahdh = .

Let us first show two lemmas:

Lemma 1.Lemma 1.    Two bricks with different down-left corners ),( ii vu , lengths id  and heights

21,, =ihi  have no common interior point if and only if:

if 2121 vvuu ≤≤ , , then 112 duu ≥−  or 112 hvv ≥− ;

if  1221 vvuu ≤≤ , , then 112 duu ≥−  or  221 hvv ≥− .

Proof:Proof:   Obvious.

Lemma 2.Lemma 2.  The function },,,;|max{)( Zyxyxcybxaybxacf ∈≥≤++= 0  is well defined

for 0≥c , nondecreasing and bufbufaufauf +≥++≥+ )()(,)()(  for every 0≥u .

Proof:Proof:     The feasible set is nonempty and finite and increases with c. Hence, for every
0≥c , there exists nonnegative integers m and n such that nbmacf +=)(  and

)()( 2121 cfcfcc ≤⇒≤ . From bamanbmaauf ++=++=+ )()()( 1  we conclude
aufauf +≥+ )()( . The rest follows in the same manner.

Let us now show two theorems:

Theorem 1.Theorem 1.     A pallet BA ×  loaded with bricks ba×  can be reduced to a pallet BA ˆˆ × ,

where Â  and B̂  are integer combinations of a and b, having the same number of
loaded bricks.

Proof:Proof:  Let the pallet BA ×  be loaded with some bricks ba× . Let )(ˆ AfA = , )(ˆ BfB =
where f is the function defined in Lemma 2. We translate every loaded brick with down-
left corner ),( vu  having horizontal dimension d and vertical dimension h,

}),{},({ bahd = , such that the translate has down-left corner ))(),(( vfuf . Since ,Adu ≤+

Bhv ≤+ , it follows that AAfdufduf ˆ)()()( =≤+≤+  and BBfhvfhvf ˆ)()()( =≤+≤+ ,

using the properties of f. Hence, the translates are on the pallet BA ˆˆ × . It remains to
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show that any two translates have no common interior point. Consider any two
originally loaded bricks with down-left corners ),( ii vu , lengths id  and heights

21,, =ihi . Since they have no common interior point, using Lemma 1, we conclude:

if 2121 vvuu ≤≤ , , then 112 duu ≥−  or 112 hvv ≥−

and

if  1221 vvuu ≤≤ , , then 112 duu ≥−  or  221 hvv ≥− .

Using the properties of  f , we have in the first case,

)()(),()( 2121 vfvfufuf ≤≤  and 112 dufuf ≥− )()(  or 112 hvfvf ≥− )()(

and, in the second  case

)()(),()( 1221 vfvfufuf ≤≤  and 112 dufuf ≥− )()(  or 221 hvfvf ≥− )()(

Using Lemma 1, we conclude that corresponding translates have no common
interior point and the theorem is proved.

Now, we find an upper bound for the number of loaded bricks on the pallet.

Let p, q, r and s be the remainders of the division of A and B respectively by a
and b. In other words, let

brapNrbpaA <≤<≤∪∈+=+= 000 ,},{,, βαβα

and

bsaqNsbqaB <≤<≤∪∈+=+= 000 ,},{,, δγδγ .

Then, we can state

Theorem 2.Theorem 2.    The number of bricks on the pallet does not exceed





 −−−−−

ab
sbrbrsqapapqAB )}})((,min{)},)((,max{min{ .

That means that in every feasible packing, the wasted area is at least

)}})((,min{)},)((,max{min{ sbrbrsqapapq −−−− .

Proof:Proof:    Consider a coordinate system Oxy  such that the palette equals the rectangle
},|),{( ByAxyxP ≤≤≤≤= 00 . Let },|),{( ZkkayxyxS ∈=+= .
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The set S has the property that the intersection with any correctly loaded item
consists of one or more line segments having the total length 2b . The intersection

PS ∩  consists of line segments having the total length

)]}()()[(
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If aqp ≥+ , then 1++=



 + βα

a
BA , 11 +=



 ++=



 + αγ

a
Aq

a
Bp , , so that

}
))((

{}{
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−−−
=+++−= 22 αγ .

In general, we have

2
a

qapapqAB
L

)})((,min{ −−−
= .

Dividing by 2b , we obtain that the number of loaded items does not exceed








 −−−
ab

qapapqAB )})((,min{ .
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Interchanging the roles of a and b, we obtain that the number of loaded items

does not exceed 






 −−−
ab

sbrbrsAB )})((,min{ . Using the best from the proved upper

bounds, we obtain the theorem.

The theorem asserts that in every feasible loading the uncovered area is
greater or equal than

)}})((,min{)},)((,max{min{ sbrbrsqapapq −−−− .

If the uncovered area is zero, each side of the brick has to divide one side of
the pallet. Notice that, using Theorem 1, each side of the box is an integer combination
of the sides of the brick. This gives new proof of Klarner's result ([6]) for real
dimensions.

In some cases the proved upper bound gives the optimal value for the pallet
problem. This is always true if we find a packing with this number of loaded bricks. In
the harmonic case (if b divides a, using Theorem 1 we could suppose that b also divides
A and B) there exists a packing with the uncovered area )})((,min{ qapapq −− .

If aqp <+ , this is shown in Fig. 1 and if aqp ≥+ , in Fig.  2.

Figure 1.Figure 1. Figure 2.Figure 2.

From ab |  and Ab |  follows pb | . Hence, )( qBp −×  and BpA ×− )(  could be
trivially loaded with bricks. Similarly, ab |  and Bb |  implies qb | . Hence, qa× , ap× ,

BpaA ×−− )(  and )()( qaBpa −−×+  could be trivially loaded with bricks.

The types of packing shown in Figs. 1 (linear) and 2 (turbulent) give the
optimal solution in some nonharmonic cases. The following example confirms this
assertion.

Example 1.Example 1.   Let 15125115 ==+=+= baBA ,,.,. . Using Theorem 1, we can

reduce the box to 2515 +=+= BA ˆ,ˆ  such that 2521 −==== srqp ,,  and
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537−=−−=−−−− ))(()}})((,min{)},)((,max{min{ qapasbrbrsqapapq . Using Theorem

2, we can load maximum 6
5

5372515 =










 −−++ )())((  bricks. Figure 3 shows that

this is possible.

Figure 3.Figure 3.
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