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Abstract:Abstract:  Tomographic methods are often used to solve the geophysical inversion
problem. This is the problem of determining the characteristics of an underground
region by using measurement data. With a tomographic method, the pictures of the
physical properties in the region between pairs of boreholes can be reconstructed. In
this paper, we apply genetic algorithms to cross-hole seismic line-integral data. These
data can be generated by the transmission problem through the cross-hole region using
seismic energy. Some test-examples for measuring the performance of the applied
genetic algorithms are presented. The obtained results are promising.
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1. INTRODUCTION

In the last two decades, tomographic reconstruction techniques have had
intensive development. Because of that, these techniques have become widely used both
in medical imaging and in geophysical imaging applications. The application of
geophysical tomography is widespread. It is used in many industrial domains such as
construction, mining, gas and oil exploration, thermal energy exploration, etc. (De
Franco and Cavagna [5], Dyke and Young [7], Lytke et al. [11], [12], [13], Mathisen et
al. [14], Wong et al. [20], Yamamoto et al. [21]).
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In this paper, we propose a method for solving the geophysical inverse problem
using genetic algorithms (GA). The proposed method was tested on a lot of examples
and some of them are presented here.

Various approaches have been used to solve the geophysical inverse problem.
Some of them are: Matrix inversion, the Fourier transform, the convolutional method
and the Algebraic Reconstruction Technique (ART). The most often used method is
ART (Dynes and Lytle [6]). ART poses the integral equation of ray-traveltime in matrix
form. The equations are solved using relaxation techniques taking advantage of the
sparsity of the obtained matrix. The results obtained by GA in this paper are compared
with results obtained by ART.

1.1. Problem formulation1.1. Problem formulation

The problem of seismic P-wave velocity estimation from first-arrival
traveltimes in a two-dimensional cross-hole geometry is considered. The transmitters
are located in one borehole, while the receivers are in another borehole. The
rectangular area between two boreholes - some region of space through which the rays
have passed - is the examined cross-hole region. A straight-line ray model is used for
energy propagation between the boreholes. The velocity distribution is used to
characterize the subsurface.

Standard tomographic procedure is based on discretization of the cross-hole
region (Dines and Lytle [6], Peterson et al. [15]). The rectangular cross-hole area is
divided into a grid of cells and velocity ),( yxv  is assumed to be constant over the area
covered by any one cell. (See Fig.1)

Traveltime is related to the velocity structure by the following equation

∫=
kR

k yxv
ds

t
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(1)

where kt  is the traveltime of the kth ray, ds  is the differential raypath length of the
kth ray, ),( yxv  is the two-dimensional velocity function and kR  is the raypath
trajectory of the kth ray. Reciprocal value ),(/ yxv1  designate slowness and is denoted
by ),( yxu . Then Eq. (1) becomes

∫=
kR

k dsyxut ),( (2)

and we will look for slowness distribution in the cross-hole area. When the cross-
probing area is discretized into nm×  cells, Eq. (2) can be approximated as
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where iju  is the unknown slowness in the ),( ji -cell, ijks∆  is the length of the ray

segment that intercepts the ),( ji -cell, m  is the number of vertical cells and n  is the
number of horizontal cells. It is understood that 0=∆ ijks  for those i and j values for

which the associated cell is not intercepted by the ray kR . For a more detailed
explanation see: Dines and Lytle [6], Ivanson [9], Peterson et al. [15].
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Figure 1:Figure 1:  Discrete model of the region between boreholes

1.2. Genetic algorithms1.2. Genetic algorithms

Genetic algorithms are based on the model of biological evaluation. These
algorithms operate on a population of individuals, which are potential solutions of an
optimization problem. Genetic operators, selection, crossover and mutation, are applied
to successive populations to create a new population as a better region of the search
space. The initial population is randomly determined.

Based on each individual's fitness value that reflects how good an individual is
in the population, selection provides a mechanism for better individuals to survive.
Individuals with a higher fitness value have a higher probability of contributing
offspring in the next generation. Crossover takes parental individuals and mixes their
information for forming their descendants.

Mutation is sporadic and random alternation of genes with some probability
and it regenerates lost genetic material.

For more detailed information about GA see: Alexouda and Paparrizos [1],
Beasley et al. [3], Goldberg [8], Ribeiro-Filho et al. [16], Srinivas and Patnaik [18].
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2. GA IMPLEMENTATION

2.1. Representation2.1. Representation

Fundamental to the GA structure is the encoding mechanism for representing
the optimization problem's variables. Every discretized cross-hole area (i.e. every
individual in the population) has its genetic code. The genes that represent velocities
distributed over the cells in the cross-hole region are obtained by extraction from the
individual's genetic code. These genes have the same fixed length and in our case it is 5
bits. The number of bits for velocity representation has to be given in advance. In
conformity with that, we have obtained the velocity value over a cell as

tmpdvvv *min += , (4)

where dv  is the velocity partition,

nbitvvdv 2/)min(max −= (5)

vmin  is the minimum velocity, vmax  is the maximum velocity, tmp  is the value of the
binary string that represents the velocity over a cell and nbit  is given in advance.

Example.Example.  For 5=nbit  there are 32 values for velocity. Let km/s02.min =v  and
km/s25.max =v , then 10.=dv . If the binary string, that represents velocity over some

cell is 10110 then 22=tmp  and km/s24.=v  in that cell.

2.2. Objective value function2.2. Objective value function

The minimal traveltimes are computed for every ray by using the known
velocity distribution. After that, the cross-hole area is reconstructed to get a new
velocity distribution. We compute
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where T
ijt  is the true traveltime, C

ijt  is the computed traveltime and k is the number of
sensors.

Dynamic allocation of the following arrays provides program implementation.
For every ray, there is an array that holds:

• the index i of the cell ),( ji  cutting that ray

• the index j of the cell ),( ji  cutting that ray and
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• the length of the ray segment in the cell cutting that ray.

These values are obtained by finding the cutting points between rays and
edges of cells, which are calculated only once for every ray, written in arrays and later
used for computations of traveltimes from transmitters to receivers.

This approach provides good execution time, but also requires more available
memory space.

2.3. GA operators2.3. GA operators

GA implementation, presented in this paper, performs rank-based selection,
one-point crossover and simple mutation.

Rank-based selection prevents premature convergence and the loss of genetic
material diversity. It is allowed to set an arbitrary nonnegative sequence of rank
values. Using an experiment, the most favorable rank sequence can be determined for
every particular problem. The fitness function of an individual is the rank value of that
individual and depends only on the ordering of individuals in the population. (See
Whitley [19]). In our rank-based selection scheme, rank decreased linearly from

52.=bestr  for the best individual to 011.=worstr  for the worst individual, by steps of
0.01.

In our implementation, the crossover rate is 850.=crossp , and the mutation
rate mutp  is given in Table 1. The simple mutation operator is based on using a normal
distribution. This implies faster execution, because only muted genes are processed.
The number of mutations is generated by a random pick in ),( σmN  distribution,
where

mutpnelitenpopm ⋅−= )( , (7)

)()( mutmut ppnelitenpop −⋅⋅−= 12σ , (8)

and m is the average number of mutations in the population, σ  is the standard
deviation, npop  is the population size, while nelite  is the number of elitist individuals.
After that, the mutation positions are randomly generated.

Table 1:Table 1:  Mutation rate

Test-example names mutp

A 0.03

B 0.006

C 0.002

D 0.001

E 0.0055
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The mutation rate, given in Table 1, is a good trade-off between two
contradictory requirements: exploration and exploitation.

2.4. Caching2.4. Caching

In this implementation, GA is cached, which is a method for improving the
performance of GA. The idea behind such a technique is the repetition of the same
genetic strings while running GA. Most often, it is more suitable to remember the given
genetic code and its value in the first appearance. Later, in the next appearances, the
values are taken directly from the double hash table, instead of repeated calculation.
Caching does not influence the accuracy of the results obtained by GA itself, it only
serves to improve the GA running time.

In order to successfully cache GA, the same strings in the population should
have frequent occurrences over the generations and the objective value function should
have a large evaluation time. The Least Recently Used caching strategy is implemented
through the double hash table. For detailed information about caching GA see Kratica
[10].

2.5. GA parameters2.5. GA parameters

We tested our program on a population of over 150 individuals. It was
implemented with the steady-state replacement of generations with the elitist strategy,
which means that crossover and mutation are applied only on the replaced portion of
the population. In every generation, 1/3 of the population (50 worst ranked individuals)
was replaced by new individuals, while 2/3 of the population (100 elitist individuals)
remained from the previous generation. To prevent the domination of elitist individuals
over the population, their fitness was decreased by the formula:
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is the average fitness in the entire population.

In every generation, using a method that sets their fitness to zero discards
duplicate strings from the population. In this way, the occurrence of duplicate strings
in the next generation is eliminated. This technique maintains the diversity of the
genetic material, decreases the appearance of dominating individuals in the population
and decreases the possibility of premature convergence to the local optimum.
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Maximal number of generations was 5000. If the best individual in the
population did not change in 1000 generations, execution stopped and results were
printed.

3. EXPERIMENTAL RESULTS

The described genetic algorithm is written in C programming language. The
testing was done using a PC compatible computer AMD 80486 at 120MHz with 8 MB of
memory.

3.1. Test-examples3.1. Test-examples

We generated synthetic examples where the transmitter's position, the
receiver's position and the initial velocity distributions in the cross-probing area are
known. Test examples are grouped according to the refinement of the cross-hole area
discretization.

Table 2 contains information about test-example names, the number of
vertical (M) and horizontal (N) cells in the cross-hole area, the number of transmitters
(K) in one borehole, the distance between boreholes and depth of the boreholes. In our
test-examples, the number of receivers, which are located in the other borehole, is

equal to the number of transmitters, and the number of rays is 2K . Since genetic
operators are nondeterministic, every test example was run 10 times and we computed
the average value.

Table 2:Table 2:  Test-examples

Test-example
names

NM × K Borehole distance
(m)

Borehole depth
(m)

A1 5 × 5 20 100 100
A2 5 × 5 30 80 60
A3 5 × 5 10 80 60
B1 10 × 10 20 100 100
B2 10 × 10 30 80 60
B3 10 × 10 10 80 60
C1 15 × 15 20 100 100
C2 15 × 15 30 80 60
C3 15 × 15 10 80 60
D1 20 × 20 20 100 100
D2 20 × 20 30 80 60
D3 20 × 20 10 80 60
E 8 × 14 15 80 60
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3.2. Computational results3.2. Computational results

The results of running the genetic algorithm are summarized in Table 3-4. For
better comprehension of the results given in Table 4 and for their illustration, Table 3
presents the comparative results obtained by applying GA and the algebraic
reconstruction technique on test-example E for different velocity distributions in the
cross-hole area. The columns in Table 3 contain: name of the test-example, GA results
(average objective function value) and ART results.

Table 3:Table 3:  Comparative presentation of some results

Test-example name GA results ART results

E 0.1231
0.1529

0.1773
0.1661

The columns in Table 4 contain: name of the test-example, average objective
function value, average execution time in seconds and average number of generations.

Table 4:Table 4:  Results of running GA on test-examples A, B, C and D

Test-example
names

Avg. obj.
func. value

Avg. time (s) Avg. num. Of
generations

A1 0.185353 960.49 4054
A2 0.142332 1932.62 3824
A3 0.100935 297.52 4129
B1 0.186264 2050.64 5000
B2 0.134311 4367.56 5000
B3 0.112137 569.88 5000
C1 0.233984 2864.02 5000
C2 0.188705 6051.03 5000
C3 0.111216 801.75 5000
D1 0.227622 3836.98 5000
D2 0.186303 8108.10 5000
D3 0.065027 1041.87 5000

As can be seen from Table 4, which contains the test results of our
implementation on synthetic test-examples, GA gives quite good results. With an
increase in the problem size, the quality of the solution (i.e. the objective function
value) does not decrease much, while the execution time increases quadratically
because the number of rays is 2K .
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4. CONCLUSION

We have presented a new method for solving the geophysical inverse problem.
It seems to be the first GA implementation of this problem. Our version gave promising
and satisfactory results. The chosen genetic operators and individual representations
have provided a good performance, improved by using caching GA.

Different methods have been used to solve the geophysical inversion problem
(Peterson at al. [15], Brzostowski and McMechan [4], Singh and Singh [17], etc.). If
there are many local optimums, these methods find one of them, while reaching the
global optimum can be omitted. The advantage of the described method is the attempt
to reach the global optimum.

The research presented in this paper can be continued and extended in several
directions:

• Hybridization of GA with other methods.
• Testing the presented approach on test-examples of a large size.
• Parallelization of GA implementation to distributed and multiprocessor systems.
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