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AbstractAbstract::  In the present study, we are concerned with the modeling and analysis of
one-machine, two-product, integrated production-sales system, in which three decision-
makers that take different responsibilities are considered. Through the constructed
mathematical model, the relations that show the optimal solutions of decision variables
are derived. It is found that the ratio of the optimal production horizons of two
products is equal to the product of the ratio of the sales rates of the two products to the
ratio of unit costs within their production horizons. Through the sensitivity analysis,
direct or indirect influences on the optimal solution induced by the variation of
parameters are discussed.
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1. INTRODUCTION

Today, market competition has become more and more internationalized and
aggressive. It has become more difficult for a company to increase profits simply by
controlling selling prices. Thus some American companies have proposed the new
management idea of ZWC (Zero Working Capital) and put it into practice. Under the
condition of not increasing a company's fixed assets, employees and liability, the
purpose of ZWC management is to compress the company's current assets, decrease
working capital and lower production costs in order to increase profits [6].

Nowadays, in Taiwan, small and medium enterprises are facing increasingly
aggressive market competition, unexpected economic cycles and the limitation of
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production capacity. In order to ensure a company's growth and long term prosperity,
ZWC provides new opportunities to improve existing difficulties. ZWC management
tries to develop new products to satisfy or increase market demand by utilizing existing
technologies and facilities. It is through ZWC that a company can fulfill the purpose of
developing new products and satisfying customers' needs by way of minimizing
development costs.

Among the published articles, most of the mathematical models that utilize
the same manufacturing facility to produce various products (or one product with
various sizes or types) only focus on scheduling, production lot sizing and selling price
control. These mathematical models were made simply based on one-way decision
making. The problems that have been raised are as follows:

1. Problems concerned with scheduling: Boctor [1] dealt with the two-product, single-
machine, static demand, infinite horizon lot scheduling problem and derived the
necessary and sufficient conditions for the feasibility of two-product schedules
without adding any preliminary requirements. Hodgson and Ge [5] proposed the
modeling and analysis of the optimal dynamic lot size and sequencing policies in a
single-machine, multi-product, integrated production-inventory system.

2. Problems concerned with production lot sizing on inventory: Schwarz [11]
proposed a model for the infinite horizon, continuous review, and deterministic
planning problem. Taylor and Bradley [12] developed the optimal ordering
strategies for situations where the price increase becomes effective at any future
specified time. Chen and Lai [3] considered a monopoly agent's optimal control of
inventory and prices over a given selling planning horizon. Chen and Chen [4]
studied the optimal production rates of a basic assembly system under random
demand and found that the optimal production rates of semi-finished or finished
goods were the same in some circumstances.

3. Problems concerned with controlling the sales price of inventory: Rakesh and
Steinberg [9] considered the relationship between dynamic pricing and ordering
decisions for a monopolistic retailer facing known demand. Raman and Chatterjee
[10] proposed a stochastic optimization model to study the optimal pricing policy
under demand uncertainty in dynamic markets; they found that the degree of
impact of demand uncertainty on the optimal pricing policy is determined by the
interaction among uncertainty, demand and/or cost dynamics, and the firm's
discount rate.

From the above review of the literature, it can be seen that a model which can
deal with the control of manufacturing and selling for small and medium enterprises,
especially for those that produce various products in the same facility, does not exist.
The purpose of this study is to explore the possibility of putting the ZWC management
concept into practice, for small and medium enterprises, in order to fully utilize an
existing facility and reach maximum efficiency.
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2. NOTATIONS AND ASSUMPTIONS

The following notations are used in this paper:

1q : The production rate of Product 1

2q : The production rate of Product 2

1h : The unit inventory holding cost of Product 1 per unit time

2h : The unit inventory holding cost of Product 2 per unit time

1p : The unit price of Product 1

2p : The unit price of Product 2

111 bpa +− : The sales rate of Product 1, where 01 >a , 01 >b , 
1

1
10

a
b

p ≤≤

222 bpa +− : The sales rate of Product 2, where 02 >a , 02 >b , 
2

2
20

a
b

p ≤≤

],[ T0 : The cycle of selling time to sell Product 1 and Product 2, T  is the
length of sales time

E : Production horizon within ],[ T0  for Product 1, where TE ≤≤0

ETE −= : Production horizon within ],[ T0  for Product 2

For the coordination between production and sales, instant production
behavior (manufacturing supply instant needs) can reduce the cost of holding stock,
however the cost of production will be relatively high. This means that under the
situation of limited manufacturing capacity, the cost of production per unit will
increase followed by an increase in the production rate. Therefore, we predict the cost
for unit production as follows:

11 qc : Production cost per unit for Product 1, where 01 >c

22qc : Production cost per unit for Product 2, where 02 >c

where 22221111 hcbaThcba ,,,,,,,,  are parameters of decision-makers I, II and III,
simultaneously, and 11 pq ,  are decision variables of decision-maker I, E is a parameter
of decision-maker I, II, but is a decision variable of decision-maker III, 2q  and 2p  are
decision variables of decision-maker II. In the present study, two assumptions are
made:

(1) Utilize one machine to produce two kinds of products (these two kinds of products
can be two different types of one product), namely, Product 1 and Product 2. The
choice of production interval must match the sales decisions of the two types of
products.
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(2) There are three decision-makers that take different responsibilities. Under a given
production horizon of Product 1, the problem for decision-maker I is how to decide
the production rate and the selling price of this product in order to attain the
maximum profit. Under a given production horizon of Product 2,the problem for
decision-maker II is how to decide the production rate and the selling price of this
product in order to attain the maximum profit. The problem for decision-maker III
is how to arrange (or distribute) the production horizon for Product 1 and Product
2, in order to attain the maximum profits.

Figure 1 shows the behavior of this two-product one-machine production-sales
system. Consider a given cycle of selling horizon ],[ T0 ; as shown in Fig. 1 Product 1 is
online with production rate 1q  in the time interval ],[ E0 , and is sold with a sales rate
of 111 bPa +−  from 0=t . Product 2 is offline in the time interval ],[ E0 , but is online
with production rate 2q  right after Product 1 is offline, and is sold with a sales rate of

222 bPa +− .  Product 1 is supposed to be sold off at time T  and Product 2 is supposed
to be offline at time T .

It is obvious that, under optimal conditions, the offline timing for one product
equals the sold off timing (the timing without stock) for the other product. i.e.

E =Product 1 offline timing = Product 2 online timing
T = Product 2 offline timing = Product 1 online timing

Figure 1:Figure 1:  The relationship between accumulative throughputs and sold amounts of
two products
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It is noted that Product 2 is offline within the interval ],[ E0  and Product 1 is
offline within the interval ],[ TE , so that the quantity of production for Product 1
within ],[ T0  is equal to the quantity of sales for Product 1 at Tt = . i.e.

Eq1 Tbpa )( 111 +−=

Similarly, the quantity of production for Product 2 within ],[ ETE +  is equal to the
quantity of sales for Product 2 within ],[ ETE +  i.e.

Eq2 Tbpa )( 222 +−=

Applying the above relationships, we have

The unit cost for manufacturing Product 1 T
E

bpa
cqc )( 111

111
+−

==

The unit cost for manufacturing Product 2 T
E

bpa
cqc )( 222

222
+−

==

The inventory holding cost of Product 1 within ],[ T0

∫∫ −⋅+−++−−
+−

=
T
E

E
dttTbpatdtbpaT

E
bpa

h ))()())()((( 1110 111
111

1

))(( 1111 2
bpa

ET
h +−=

The inventory holding cost of Product 2 within ],[ T0

∫∫ −⋅+−++−−
+−

= T
E

E dttTbpatdtbpaT
E

bpa
h ))()())()((( 2220 222

222
2

))(( 2222 2
bpa

TE
h +−=

3. MATHEMATICAL MODEL

Using the notations and assumptions of the previous section, the
mathematical model for the problem faced by decision-makers can be constructed as
follows:

Problem faced by decision-maker I:

For decision-maker I, who is responsible for the sales of Product 1, the
problem is, for a given E , how to decide the production rate 1q , and the sales price

1p , in order to attain the maximum profit from Product 1 within the time interval
],[ T0 . The mathematical model (Model I) is as follows:
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Tbpaqcpqpf ))]([(),(max 11111111 +−⋅−= )()(
21111
ET

hbpa +−−           (3.1)

s.t.  TbpaEq )( 1111 +−= ,� 01 ≥q ,�
1

1
10

a
b

p ≤≤ (3.2)

Problem faced by decision-maker II:

For decision-maker II, who is responsible for the sales of Product 2, the
problem is, for a given E  (Note that ETE −= ), how to decide the production rate

2q , and the sales price 2p , in order to attain the maximum profit from Product 2
within the time interval ],[ T0 . The mathematical model (Model II) is as follows:

Tbpaqcpqpg ))]([(),(max 22222222 +−⋅−= )()(
22222

TE
hbpa +−− (3.3)

s.t.   TbpaEq )( 2222 +−= , 02 ≥q , 
2

2
20

a
b

p ≤≤ (3.4)

Problem faced by decision-maker III:

Let ))(),(( EqEp 11 , ))(),(( EqEp 22 be the optimal solutions of Model I and
Model II.  Then the problem that decision-maker III will face is how to determine the
online timing E  for Product 1 and the online timing E for Product 2, in order to
attain the maximum profit from these two products. The mathematical model (Model
III) is as follows:

))(),(())(,)(()(max EqEpgEqEpfEL
TE

22110
+=

≤≤
(3.5)

4. OPTIMAL SOLUTIONS

4.1. Optimal solution of decision-maker I4.1. Optimal solution of decision-maker I

The notation )( 1pf is used instead of ))(,( 111 pqpf , where )( 11 pq  is

determined by constraint (3.2), i.e. TbpaEpq )()( 11111 +−= . Let ),( 11 qp , where
)( 111 pqq = , be the optimal solution of Model I (i.e. 1p  is the optimal solution of

)( 1pf ). Note that 00 <)(f , 0
1

1 =)(
a
b

f , 0
211

1

1 <−−=′ TE
hTb

a
b

f )( .  Hence we have

1

1
11 0

a
b

pp ≠≠ , , and thus 
1

1
10

a
b

p << . Under the condition of 0<′′f , the necessary

and sufficient condition for 1p , which is the optimal solution of the problem for
decision-maker I in Eq.(3.1), can be expressed as
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1
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Hence, the optimal solution ),( 11 qp can be derived as

)( TcaE
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a
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EE
h

Tcb
p
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2

+

++
= (4.1)
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4.2. Optimal solution of decision-maker II4.2. Optimal solution of decision-maker II

Similarly, the notation )( 2pg  is used instead of ))(,( 222 pqpg , where

)( 22 pq is determined by constraint (3.4), i.e. TbpaEpq )()( 22222 +−= . Let ),( 22 qp ,
where )( 222 pqq = , be the optimal solution of Model II (i.e. 2p is the optimal solution

of )( 2pg ). Note that 00 <)(g , 0
2

2 =)(
a
b

g , 0
222

2

2 <−−=′ ET
hTb

a
b

g )( . Hence we have

2

2
22 0

a
b

pp ≠≠ , , and thus 
2

2
20

a
b

p << . Under the condition of 0<′′g , the necessary

and sufficient condition for 2p , which is the optimal solution of the problem for
decision-maker II in Eq.(3.3), can be expressed as

2

2222
2

22
2

212
a
bEh

E
Tcb

p
E

Tca
++=+ )(

Therefore, the optimal solution ),( 22 qp can be derived as
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+

++
= (4.3)
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TbEha
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4.3. Optimal solution of decision-maker III4.3. Optimal solution of decision-maker III

Suppose *E  is the optimal solution of Model III and assume that ),(* TE 0∈

(since 0=*E  or TE =*  implies one of the two products will disappear from the
current market). Hence *E must satisfy the following two necessary conditions:
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Applying (4.1) and (4.3), )(EA  and )(EB  can be expressed as
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Thus, if the optimal solution *E exists, then the following relations must be satisfied
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and we can also obtain
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Eq.(4.10) indicates that the ratio of the optimal production horizons of two
products equals the product of the ratio of the sales rates of the two products and the
ratio of unit costs within their production horizons (the unit cost within the production
horizon is defined as the production cost per unit plus the cost of the first product that
is under manufacture and is sold in the middle of the processing period).

5. SENSITIVITY ANALYSIS

(A) Effects of a variation of parameters on the optimal solution *E

(a) Effect on *E  due to a variation of parameter 1h

By differentiating Eq.(4.5) with respect to 1h , we obtain
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(b) Effect on *E  due to a variation of parameter 2h

By differentiating Eq.(4.5) with respect to 2h , we obtain
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(c) Effect on *E  due to a variation of other parameters

By using similar manipulations as in the cases mentioned above, the
expressions concerning the effect on optimal solution *E  due to variations of

,,,,,,, 222111 cbaTcba  respectively, can be obtained.

Applying the derived expressions, a summary of the sensitivity analysis of
decision variable *E  with respect to parameters is presented in Table 1.

Table 1:Table 1:  The sensitivity analysis of decision variable *E with respect to parameters

Parameters
Decision variable

1a 1b 1c 1h T 2a 2b 2c 2h

*E − + + + + + − − −

"+": Decision variable is an increasing function of the parameter.

"−": Decision variable is a decreasing function of the parameter.

 (B) Effects of a variation of parameters on the optimal solution ),( **
11 qp  and ),( **

22 qp ,
respectively.

The optimal solutions of Model I and Model II under a given *E  are ),( **
11 qp  and

),( **
22 qp , respectively.

(a) Effects on ),( **
11 qp  and ),( **

22 qp  due to variations of Tcbah ,,,, 1111

From Eqs.(4.1), (4.2), (4.3) and (4.4), we obtain
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Differentiating Eqs.(5.3),(5.4),(5.5) and (5.6) with respect to 1h , we obtain
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Similarly, we can obtain the rate of change of ),( **
11 qp and ),( **

22 qp with
respect to 111 cba ,,  and T . It has been mentioned that (5.7), (5.8) represent the direct
effects of a variation of parameter 1h  and (5.9), (5.10) represent the indirect effects of

a variation of parameter 1h . The indirect effects on optimal solution *
2q  due to

variations of 1111 hcba ,,,  and T can be summarized as shown in Table 2.

Table 2:Table 2:  The sensitivity analysis of decision variable *
2q  with respect to parameters

Parameters
Conditions Decision

variable 1a 1b 1c 1h T

02 2
2

22
2

22
2
2 >+−− TbThaThca *

2q − + + + +

02 2
2

22
2

22
2
2 <+−− TbThaThca *

2q + − − − −

(b) Effects on ),( **
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22 qp  due to variations of Tcbah ,,,, 2222
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Differentiating Eqs. (5.11), (5.12), (5.13) and (5.14) with respect to 2h , we obtain
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Similarly, we can obtain the rate of change of ),( **
11 qp  and ),( **

22 qp  with
respect to 222 cba ,,  and T . It is also noted that (5.15) and (5.16) represent the
indirect effects due to a variation of parameter 2h , (5.17) and (5.18) represent the
direct effects due to a variation of parameter 2h . The indirect effects on optimal

solution *
1q  due to variations of 2222 hcba ,,,  and T  can be summarized as shown in

Table 3.

Table 3:Table 3:  The sensitivity analysis of decision variable *
1q  with respect to parameters

Parameters
Conditions Decision

variable 2a 2b 2c 2h T

02 1
2

11
2

11
2
1 >−+ TbThaThca *

1q + − − − +

02 1
2

11
2

11
2
1 <−+ TbThaThca *

1q − + + + −
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6. DISCUSSION AND CONCLUSIONS

Small and medium enterprises have played an important role in Taiwan's
economic development. However, due to changes in the domestic industrial
environment and pressure from internationalization and deregulation, small and
medium enterprises have to consolidate various sources in order to fit into the
changing industrial climate and amplify business performance. To do so, these
companies have to fully utilize the existing facilities to produce products that can cater
to consumers that prefer unique, new and changeable types of products. At the same
time, products have to be diversified within short production time periods. This is the
reason why we considered a problem that utilizes a single machine to manufacture two
products.

In recent years, computerization has become a trend in Taiwan. Small and
medium enterprises realized that they have to computerize their management in order
to improve their business and increase their competitiveness. Due to the prevalence of
a global computer network system, small and medium enterprises can promote the
sales of their products and engage in sales through this system. As a consequence, the
integration between manufacturing and sales becomes easy even for those firms that
are facing insufficient manpower. That is the main reason why this study focused on
the integration of sales and manufacturing.

 With a combined production and sales operations, the objective is not purely
to reduce production costs or control pricing. This is why we have bundled production
cost and sales price together. As to practical business management, due to limited
human resources, the decision-makers of small and medium enterprises do not want
and are unable to collect highly analytical information technology. They can only make
decisions based on some simple signals. This is why the variation of parameters in this
model is presumed to be linear.

In this study, we presented a mathematical model that focused on an
integrated production-sale system for a one-machine, two-product problem. It is
through this model that we can probe problems of this type and find out the optimal
solutions that are the optimal production rate for each type of product, the optimal
selling price, and the optimal production horizon. Under the circumstance of an
optimal production horizon for each type of product, it is shown that the ratio of the
optimal production horizons of the two products equals the ratio of the sales rates of
the two products multiplied by the ratio of unit costs within the production horizon of
the two products.

Among the parameters related to the production of Product 1, it is found that
a variation of 1a  has a direct and negative influence on its production horizon *E and
the variations of 1b , 1c , 1h and T have direct and positive influences on its production

horizon *E .  On the other hand, among parameters related to the production of
Product 2, it is found that a variation of 2a  has a direct and positive influence on
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production horizon *E and variations of 2b , 2c , 2h and T have direct and negative

influences on production horizon *E . In other words, this means that the optimal
production horizon of Product 1 will increase with an increase of its unit inventory
holding cost ( 1h ), but will decrease with an increase of unit inventory holding cost
( 2h ) of Product 2 during production and sales. It is also obvious that the optimal
production horizon for each type of product will increase with an increase of unit
inventory holding cost.

Under a given optimal production horizon *E , the rate of change of ),( **
11 qp

and ),( **
22 qp  with respect to the corresponding parameters are derived ((5.7)∼(5.10),

(5.15)∼(5.18) etc.). When the parameters of Product 2 satisfy the given inequalities the
indirect effects on the optimal production rate of Product 2, due to variations of
parameters of Product 1, are summarized in Table 2. When the parameters of Product
1 satisfy the given inequalities, the indirect effects on the optimal production rate of
Product 1, due to variations of the parameters of Product 2, are summarized in Table 3.
The present study can be extended to the problem of one machine and more than two
products, and that will be our future work.
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