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Abstract: In this paper we consider the facility location problem in a stochastic
environment. After a brief description of stochastic quasigradient methods (SQM) for
solving stochastic programming problems, algorithms of polynomial complexity are
suggested for projecting the current approximation, generated by the SQM, onto
feasible sets of two important facility location problems. The convergence of suggested
algorithms is proved, and some examples are given.
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1. INTRODUCTION

Consider the following simple facility location model in a stochastic
environment (3]). Determine the amounts x; of facilities at points j, j=1,...,n in

order to meet the demand Wi Since the demand w = (wq,...,w,) is random, we know

only its distribution function H(W)=P{w; EVI‘..,WH £w_n}. At the moment of
decision making concerning X =(Xp,...,Xp), the actual value of the demand
W = (Wq,...,Wp) is not known.

Suppose that we have made a decision x about the quantities of materials,
facilities, etc., and that the actual demand turned out to be w. We have to pay for both

oversupply and shortfalls. The penalty charged at the j-th location is y 1j (wj-xj), if
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w; 3 x;, and yzj(xj-wj) if w;<x;, where the functions ylj and y2j are

it R iTrie
nondecreasing. In the simplest case these functions are linear and the total penalty is

& ma p;(w; - x;), q;(x; - w;)} )
j=1

—

where p; 20 and qg;® 0 are the expenses for storage and losses because of deficit for
unit of the j-th facility, j=1,...,n.

In most cases x should be determined such that the average penalty is
minimal, that is, to minimize the following function

F(x) = Ewf(x W) = Ew{én. (pj(gj(xj - Wj)P(de)Jer(Sj(Wj - xj)P(dw;))},
=1 j

where [E,, denotes the mathematical expectation with respect to w. Often there are
some constraints on x.

If the volume of the store we have to use to keep the facilities is a and we have
to order a quantity of the j-th product which is at least a; and at most b;, j=1,...,n,

we obtain the following minimization problem:

Find x=(Xq,...,Xp) such that

F(x) = Ey,f (X,w) ® min (2)
subject to
x1 X (3)

where X is defined through

n

édej Ea, dj >O,j:1,...,n (4)
=1

aJEXJEbJ, j:].,...,n (5)

or

d .

adjxj =a, dj>0,_]:l,...,n (6)
j=1

aJEXJEbJ, le,,n (7)
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Relations "£" and "="in (4) and (6) mean "store may not be completely filled" and "store
must be completely filled", respectively.

Here w; are random variables in closed segments [R1;,R2;],j=1,...,n,

respectively. The function F(x) in (2) can be written in the following form
d
F(x) = Eyf(x,w)=Eyw q fj(x;,w;) @)
=1
where

Fpi(xi-ws), if x;3 w;
fj(Xj,Wj):}, I R
Fdj(wj - xj), if x5 <wj.

Since f(x,w) is nondifferentiable at x =w then F(x) is also a nondifferentiable
function.

Problem (2) - (3) is known as the multi-commodity facility location problem or
as the inventory control problem and it is a special case of a (perspective) stochastic
programming problem, that is, a problem of the form:

Find x=(Xy,...,Xp) such that
FO(%)° EwfO(x,w) = &f°(x, w)P(dw) ® min
X

subject to
Fi(x)° Eyf'(x,w)=¢f '(x,W)P(dw) £0, i=1,.,m
xI X1 R™.

The functions Fi(x), i=01,...,m are called regression functions.

Stochastic quasigradient methods (SQM) for solving stochastic optimization
problems were suggested by Yu. Ermoliev ([1], [2], [3]).

Given the problem
minF(x)

subject to
xi X

where X is a "deterministic"” set.
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SQM are defined through
x K+t =©X(xk- rxX), k=041,..., (8)

where

- x% isan arbitrary initial guess (initial approximation);

- 9] «(¥) is a projection operation of y onto the feasible region X;
- I is astep size;

- xk= xk(w) is a step direction, xk(w) is a random vector such that

E,, x¥/x% x!,... x¥) = a F (x)+ b, k=01,..., (9)

where a, >0 is a random variable; b*=(bX,...,bX) is a random vector,

measurable with respect to the s -algebra BX induced by the family of

random variables (xo,...,xk) ; IEx(xk) is a generalized gradient of F(x) at

x<: B, (x*/x°,...,.x*) is the conditional mathematical expectation of x*

k

subject to x%, ... xK; r k is also measurable with respect to BK.

When ag°1, b* ° 0 then x* is said to be a stochastic generalized gradient

(or a stochastic quasigradient) of F(x). Method (8) - (9) is called the stochastic
quasigradient method.

SQM are direct methods. Convergence theorems have been proved under
certain requirements for xk, rg (e.g. [1]). SQM are slow methods. That is why one of

the main problems concerning their implementation is the choice of the step-size
sequence {r \} . Convergence theory states that any sequence with the properties

5 L
rg0; rk®0, KB ¥; arg=¥; ark<¥
k=0 k=0

may be used as a step-size sequence. However, this approach does not use information
obtained during the iterative process. A modern method for choosing r 's is so-called

adaptive step-size regulation ([9]).

As A. Gaivoronski pointed out ([3]), due to the specificity of stochastic
programming problems and stochastic quasigradient methods (slow convergence,
nonmonotonicity, and sometimes oscillatory behaviour), it is advisible to average the
values of variables and of the objective function during a certain number of last
iterations and take these quantities as the final approximation to the solution.
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The second basic problem regarding the implementation of SQM is finding the

projection of a current point y¥ ° x* - r x¥ onto the feasible set X. As it is known, this

is equivalent to solving the quadratic optimization problem
1 .
L y*- x F® min

xi X.

This problem has to be solved at each iteration of the algorithm. That is why
projection is the most onerous and time-consuming part of the SQM (and of any
gradient type projection method for constrained optimization) and we need efficient
algorithms for solving this problem.

The third important question concerning implementation of SQM is
calculation of the stochastic quasigradient of the function to be minimized. For
example, the components of the stochastic quasigradient of F(x) (2') at iteration k are

. 1p-, if x<3wk

x'.‘:fj(x'f,w'.‘):|l ! P
i R O N P

t 4 1T Xy =Wy,

j=1...n (10)

where x;( is the j-th component of x at iteration k and W'} is the j-th component of the

observation of w at iteration k.

Algorithms for finding a projection onto a set defined by an inequality/equality
constraint and bounds on the variables are suggested in [5], [6], [7], [8], etc. Stochastic
programming is discussed, e.g., in [1], [4], etc. This paper is devoted to an efficient
polynomial algorithm for finding a projection onto the set X (4) - (5) and (6) - (7).

2. ON PROJECTION IN THE IMPLEMENTATION OF SQM TO
FACILITY LOCATION PROBLEMS

As pointed out in the Introduction, we need an efficient algorithm for finding a
projection of a point onto certain feasible regions.

Consider the problem of finding the projection of an arbitrary point
X =(Xq,....%,)T R" onto the set X defined by (4) - (5) and (6) - (7). This problem is
equivalent to

(Xj - Xj)* ® min
j=1

Qos

g 1
) ®aci(x)° >
i=1

xi X.
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Denote this problem by (PE) in the first case and by (P:) in the second case. Since
c(x) is a strictly convex function and X is a convex closed set, then this problem always
has a unique solution when X 1 0@ .

First consider the case when X is defined by (4) - (5), under the assumptions:

l.a) a; Ebj for all j=1,....n.If ag=by for some k, 1£KEn then the value

Xk = ak = by is determined in advance.

1.b) érj‘:l d;a; £a . Otherwise the constraints (4) - (5) are inconsistentand X * 0. In

n

addition to this assumption we suppose that a £33 =1 djb;j in some cases which are

specified below.

The Lagrangian for (PE) is

10 o N2 n n n
L(xu,v,l) =E-é (xj - Xj)° +1 (é djxj-a)+ é uj(aj- xj)+ évj(xj- b)),
j=1 j=1 j=1 j=1
where | 1 Rﬁ; u,vi R}, and R consists of all vectors with n real nonnegative
components.

Theorem 1. A feasible solution X' = (x,...,x;)T X (defined by (4) - (5)) is an optimal

solution to problem (P£) if and only if there exists some | T RL such that

. 4ot s XA

xj=aj, jl 35 ={j:I 2 T 1 (11)
J

. oo % X b

Xj=bj, jI Iy ={j:I £ : } (12)
J

. ooy defX.-b; X:-a;

xj=%;-1d;, j1 3" ={j: ‘d <l < Jd ly. (13)

i i

Proof: The Kuhn-Tucker necessary and sufficient optimality conditions for minimum
x" are:

Xj-§(j+|dj-Uj+Vj :O, j:l,...,n (14)

Uj(aj'Xj)ZO, j:].,...,n (15)
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vi(Xj-b;)=0, j=1,...,n (16)
n % ~

I (3d;xj-a)=0,1 1R} (17)
i=1

n *

4 d;xj £a (18)° (4)

j=1

aJ£X3£bJ, j:].,...,n (19)0(5)

u;TRL, v;T R}, j=1,...,n. (20)

Here | JUj, v, j=1,...,n are the Lagrange multipliers associated with the
constraints (4), a; £x;, xj £bj, j=1,...,n, respectively. If a; =-¥ or b;=+¥ for

some j, we do not consider the corresponding condition (15) [(16)] and Lagrange
multiplier uj [v;] .

i) Let X =(x{,...,x,) be an optimal solution to (PE). Then there exist
constants | ,uj,vj, j=1...,n such that Kuhn-Tucker conditions (14) - (20) are

satisfied. Consider both possible cases for | :

1) Let | >0. Then system (14) - (20) becomes (14), (15), (16), (19), (20) and

that is, the inequality constraint (4) is satisfied with an equality for x*j, j=1,...,nin
this case.

a) If xj=aj then u;30,v; =0. Therefore xj-X;=u;-1d;3-ld;. Since
d; >0 then

b) If X =b; then u; =0,v; * 0. Therefore xj- X; =-v;-1d;£-1d;.Hence
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242
o) If aj<xj<bj then uj =v; =0.Therefore x; =X;- 1d;
Since d; >0, j=1,...,n, | >0 by the assumptions then ij-x*j3 0. From
b; >Xj., xj >a; itfollows that
bj- Xj 2 Xj-Xj, Xj- X% aj-X;
X:i-X: Xi-a £:-X5: Xi-b
. s * . iT% i” 9 i i"Yi
Using X;-x;30, d; >0, we obtain | = £ , 1= 3 ,
RN ! dj dj dj dj
that is,
%i-b; %i-a
" T g 2
d; dj

Since we are not in cases a), b), these inequalities are strict. Hence

%i-bi  ki-a
J J<| < J ]
d; dj

2) Let| =0.Then system (14) - (20) becomes

Xj-Xj-uj+v;=0, j=1,..,n, (15), (16), (18), (19), (20).

A .3 = L0y . =3
a) If Xj=a; then uj 0,vJ 0. Therefore aj-Xj°%Xj-Xj=uj 0.

Multiplying both sides of this inequality by - % (<0 by the assumption) we obtain
J

Xi-a;
J__Jegog .

dj
b) If xj=bj then u;=0,v;30. Therefore bj-§<j°xj->“<j=-vj£0.

Multiplying this inequality by - % <0 we get
J

JELIPPN
j

¢ If aj<xj<bj then uj=v;=0.Therefore x;-Xx;=0,thatis, xj=Xj.

Since b; > Xj, xj >a;j, j=1,...,n by the assumption, then
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Multiplying both inequalities by - % <0 we obtain
J

Xj'aj

Xj_bj
£0°1 ,1 °0£

J

i
Since we are not in cases a), b), these inequalities are strict, that is, in case c) we have

In order to describe cases a), b), ¢) for both 1) and 2), it is convenient to
introduce the following index sets: J},J},J' defined by (11), (12) and (13),

respectively. Obviously J; EJ} EJ' ={1,....n} . Thus, the "necessity" part is proved.

i) Conversely, let x'T X and components of X satisfy (11), (12) and (13),

where | T RY .
1) If I >0 then x*j - )2j <0, ji J! according to (13) and d; >0. Set:

)’Z"X*' N
! (>0)from(13): & dja;+ J djb;j+ § dj(X;-1d;)=a
il al it} id!

j

. = ool
uj—vj—O for j1 3 ;

uj=a;-X;+ld; (20 according to the definition of J}), v; =0 for ji J};

u; =0, vj =X;-bj-1d;j (30 according to the definition of J; ) for j1 J| .
By using these expressions, it is easy to check that conditions (14), (15), (16), (17), (20)

are satisfied; conditions (18) and (19) are satisfied according to the assumption x1 X.

2)If | =0 then X - )“(1- =0, j1 J! according to (13) and

l=0 _, .. %" bj Xj-aj
J ={j: <0< 1.
{ d; d; '’

Since d; >0 then X;-b; <0, X;-a; >0, j1 3% . Therefore X =>2jT (aj.bj).

Set:
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*

j-bj-1dj=%;-b;@0) for jl 3.

Obviously conditions (14), (15), (16), (20) are satisfied; conditions (18), (19) are also

satisfied according to the assumption x" 1 X and condition (17) is obviously satisfied
for | =0.

In both cases 1) and 2) of part ii), x*j,l Ui, Vi, j=1,...,n satisfy Kuhn-

Tucker conditions (14) - (20) which are necessary and sufficient conditions for a
feasible solution to be an optimal solution to a convex minimization problem. Therefore

x" isan optimal solution to problem (PE). a

Theorem 1 is important because it describes components of the optimal

solution to (P £) only through the Lagrange multiplier | associated with the inequality
constraint (4). Since we do not know the value of | we define an iterative process with
respect to the Lagrange multiplier | and prove its convergence in Section 3.

From dj >0 and a; Ebj, j=1,...,n it follows that

def X;-bj X
UbJ :TE

.aj def .
T =laj, j=1,...,n
i

i

for the expressions by means of which we define the sets J), Jl') L

Consider problem (P:) of finding a projection onto a set X of the form (6) -

@):

(P™)

=}

— (I;l _1 o o) 2 .
¢(x) =g cj(xj)==ax;-x;)°® min
j=1 2 jz1

xi X,
and assume the following:

2.a) aj £bj forall j=1,...,n.
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2.b) é_rj'zl dja;£af é'}zldjbj . Otherwise the constraints (6) - (7) are inconsistent
and the feasible region (6) - (7) is empty.

In this case the following Theorem 2, which is analogous to Theorem 1, holds.

For the sake of simplicity throughout Theorem 2 we will use the same
notations | ,u;,vj, j=1,...,n for the Lagrange multipliers associated with (6),

a;j £ Xj, Xj Ebj , as we have used them in Theorem 1.

Theorem 2. A feasible solution X' = (x,...,x;)T X (defined by (6) - (7)) is an optimal

solution to problem (P :) if and only if there exists some | T R such that

. R ldef_ ij'aj

Xj=aj, T Ja ={j: * = (21)
i

. oo X b

Xj=bj, jI Iy ={j:I £ : } (22)
i

© g oo X -b; Xj - a;

Xj=Xj-1dj, jI 3° ={j: 3 <l < 3 }. (23)

i i

The proof of Theorem 2 is omitted because it is similar to that of Theorem 1.

3. THE ALGORITHMS

3.1. Analysis of the solution to problem (P £)

Before the formal statement of the algorithm for (PE) we will discuss some
properties of the optimal solution to this problem which turn out to be useful.

Using (11), (12) and (13), condition (17) can be written as follows

|-O:

e
1$8 dja;+ & djb;+ & d;(X;-1d;)-a

=0, 130 (17
NS NS jra! :

Q

Since the optimal solution x to problem (PE) obviously depends on |, we
consider the components of x" as functions of | for different | 1 RL:
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la,, !
Xy =x;0)=1b;, ! (24)
155 |

Obviously  x;(1), j=1,...n are piecewise linear, monotonically

nondecreasing, piecewise differentiable functions of | with two breakpoints at

Xi-aj X;i - b;
| =L and | =L
i i
Let
def o o o R
d() = Aaldjaj+Aaldjbj+raldj(xj-ldj)-a. (25)
i3, i3y jia

If we differentiate (25) with respect to | we get

del)e - § d12<o, (26)
id

when J' 1 0, and d§l )=0 when J' =0.Hence d(l) is a monotonic nonincreasing
functionof I, I T R, and max;sod(l ) is attained at the minimum admissible value of
|, thatis,at | =0.

Case 1. If d(0) >0, in order that (17") and (18) ° (4) be satisfied, there exists some
| * >0 such that d(1 ') =0, that s,

n
8 dx’=a, 27)

which means that the inequality constraint (4) is satisfied with an equality for 1” in
this case.

Case 2. If d(0) <0, then d(l )<0 forall | 3 0, and the maximum of d(I) with | 3 0
is d(0)=max|sgd(l ) and it is attained at | =0 in this case. In order that (17 be

satisfied, | must be equal to 0. Therefore x; =%;, ji J'= according to (13).

Case 3. In the special case when d(0) =0, the maximum d(0) = max;sgd(l ) of d(l) is
also attained at the minimum admissible value of |, that is, for | =0, because d(l) is
a monotonic nonincreasing function in accordance with the above consideration.
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As we have seen, for the optimal value | we have | 3 0 in all possible cases, as
the Kuhn-Tucker condition (17) requires. We have shown that in Case 1 we need an

algorithm for finding |~ which satisfies the Kuhn-Tucker conditions (14) - (20) but
such that | * satisfies (18) with an equality. In order that this be fulfilled, the set

_ def n X
X~ ={xI R": §d;x; =a,a;£x;£bj, j=1,...,n}
i=
must be nonempty. That is why we have required a £é';:ldjbj in some cases in

addition to the assumption é';jl djaj £a (see assumption 1.b)). We have also used
this in the proof of Theorem 1, part ii), when | >0.

From the equation d(l )=0, where d(l) is defined by (25), we are able to
obtain a closed form expression for | :

8
o

| =6 & d?
.A|J
jia

: (28)

lee
QAé djaj+Aé djbj+é dej-a
gle' jTab id

OO
N

because d€l )<0 according to (26) when J' * 0 (it is important that d§l ) 0). This

expression of | is used in the algorithm suggested for problem (P£). It turns out that
for our purposes without loss of generality we can assume that dl ) 0, thatis, d(l)

depends on |, which means that J'1p.

At iteration k of the algorithm let us denote by | (¥ the value of the Lagrange
multiplier associated with constraint (4) [(6)], by a ¥ - the right-hand side of (4) [(6)];
by 30,3500 31 9 3109 _the currentsets J ={1,...,n}, 3}, 3], 3", respectively.

3.2. Algorithm 1

The following algorithm for solving problem (P£) is based on Theorem 1.

Algorithm 1 (for problem (P £))

0. (Initialization) J:={1,....n}, k=0, a®:=a, n®:=n, J® =3, J] =0,

Jt') =0, initialize X;, jT J.If é?:ldjaj f£a ,gotolelsegoto9.

1. Construct thesets J2,J2,J° (for | =0). Calculate
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d(0):= é_ djaj"' é djbj+ é dJiJ-a
jra? i ap jTao

If d(O)£0 then | :=0,goto8

else if d(0) >0 then
ifa£d’, djbj goto2

n

Ise ifa >3
elseifa >3 ")

d ;b go to 9 (there does not exist | * >0such that d(I")=0).

J' W= 30 calculate 1 ¥ by using the explicit expression of | (see (28)). Go to
3.

Construct the sets 3}, 3/, 3'® through (11), (12), (13) (with jT 3¥
instead of j1 J)and find their cardinalities |J}® |,]3} ® || 3! (9|, respectively.
Go to 4.

Calculate

d@®y:= § dja;+ & djb;+ & dj(%;-1d;)-a®.
() PN PR
jl Ja jI Jp jla

Go to 5.

Kk — — = — =~ 11 (K
If d@®)=0or 3'®™=p then 1:=10, g} =3LEI®, 3 =3 EI W,
J'=3"0 goto8

else if d(l (k))>0 goto6

elseif d( ¥)<0 goto7.

*

xj=a; for  jTIL0, alDi=a®.g oo gdja;, I0D=300\gl®,

i
n& D =M. 1300 gl =3l EJLO | Kki=k+1.Goto2.

*
Xj

n® D =n®@. 19/ gl =3l B3l W ki=k+1.Goto2.

- 1K) (k1) - (k) _ 2 (k#1) — 10Ky 1! (K)
=b; for jI I, a =a 'ajTJllj(k)djbj, J =J3WANI T

*

xj=aj for jT 3L, xj=b; for ji Il , xj=%;-1d; for jT 3'.Goto10.
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9. The problem has no solution because X =@ or there does not exist some |" >0
satisfying Theorem 1.

10. End.

Remark 1. To avoid a possible "endless loop" in programming the algorithm, the
criterion of Step 5 to go to Step 8 at iteration k usually is d(l (k))T [-e,e] instead of

d(l (k)):O, where e>0 is some given tolerance value up to which the equality

d(l *) =0 may (for problem (P£)) or must (for problem (P:)) be satisfied.

3.3. Convergence and complexity of Algorithm 1

Theorem 3. Let | )" be the sequence generated by Algorithm 1.
i) 1fd(0 ®)>0 then | 0 g] (k+D) .
i) 1f d( ®)<0 then | W 3 (k+D);

Proof: Denote by x(jk) the components of x( = (Xj) i 500 at iteration k of Algorithm
1.

Taking into consideration (26), Case 1, Case 2, Case 3 and Step 1 (the sign of
d(0)) and Step 2 of Algorithm 1, it follows that | (W 3 0 for each k. Since x(jk) are

determined  from  (13): x(jk) =%;-1 (k)dj , jT 3'®  substituted  in
éjTJI(k)de(jk) =a® at Step 2 of Algorithm 1 and since 1®z0, d; >0 then

3 x®)

K _ ¢ e O
X -xj£0,that|s, X i

i) Let d(I ¥)>0. Using Step 6 of Algorithm 1 (which is performed when d(l (¥)>0)
we get

a dpd9e & dpd¥= g a9 =a®- a dix{. (29
%

R - ] - -
il J! (k+1) ii g &+ il J(k)\‘]la(k) i (k)

Let j1 3™ According to definition (11) of J\®) we have

5 % (k)
X: - a; Xi- X
J J£|(k): J J

d.

J J
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Multiplying this inequality by -d; <O we obtain a;- §<j 3 x(jk) - >2j. Therefore

a3 xgk), jT Lo,
From (29), using that d; >0 and Step 6 we get

é_ dJX(Jk) :a(k) - é_ djxgk) 3 a(k) - é_ dJaJ :a(k+l) = é de(-k+1) .
jT 3" ted) IRIC i 3L i 31 )

Since d; >0, j=1,...,n then there exists at least one j, T J'®*1) such that
(K 3 3 (1) Then
SRR NS

I (O I W (S|
| (0 = J Jo EXJ on =] (k¥1)

Jo d Jo
We have used that the relationship between | (K and x(jk) is given by (13) for jT 3'®

according to Step 2 of Algorithm 1 and that X 3 ng) il Jr according to (13) with
1020 and d; >0.

The proof of part ii) is omitted because it is similar to that of part i). a

Let us consider the feasibility of X' = (x]);i ; . generated by Algorithm 1.

Components xj =a;, j1 J; and xj =b;, jT J| obviously satisfy (5). From

and d; >0 it follows that aj->”(j<x*j->”<j<bj-§<j, jl J' . Therefore aj£x*j Eb;

for j1 3" . Henceall xj. j=1,...,n satisfy (5).

We have proved that if d(l ), - 30 and X~ 10 then there exists some
"2 0 such that d(I )=0. Since at Step 2 we determine | from the equality
8, wd ix{9 =a(® for each k, then (4) is satisfied with an equality in this case.

Otherwise, if d(0)<0 then we set | =0 (Step 2) and we have
a iJ d;x;j(0)-a°d(0)<0,thatis, (4) is satisfied as a strict inequality in this case.

Therefore Algorithm 1 generates x" which is feasible for problem (P£).
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Remark 2. Theorem 3, definitions of J} (11), J; (12) and J' (13) and Steps 6, 7, 8
i

iT 350 (step6), x:=b;, j1 3, (Step 7) and the construction of J}, J| ,

of Algorithm 1 allow us to assert that the calculation of |, operations x;:=a;

J 1
J I
are in accordance with Theorem 1.

At each iteration Algorithm 1 determines the value of at least one variable

(Steps 6, 7, 8) and at each iteration we solve a problem of the form (PE) but of less
dimension (Steps 2 - 7). Therefore Algorithm 1 is finite and it converges with at most
n =|J | iterations, that is, the iteration complexity of Algorithm 1is O(n) .

Step 0 takes time O(n) . Step 1 (construction of sets J7, J2, J°; calculation
of d(0) and checking whether X is empty) also takes time O(n) . The calculation of
x{9, j=1,...,n and | ) requires O(n) time (Step 2). Step 3 takes O(n) time because
of the construction of 3™, 3/ ¢ 3" ™ step 4 also requires O(n) time and Step 5
requires constant time. Each of Steps 6, 7 and 8 takes time which is bounded by O(n) :
at these steps we assign some of X; the final value, and since the number of all x;'s is
n then Steps 6, 7 and 8 take time O(n) . Hence the algorithm has O(n2) running time
and it belongs to the class of strongly polynomially bounded algorithms.

As the computational experiments show, the number of iterations of the
algorithm performance is not only at mostn but it is much, much less than n for great
n. In fact, this number does not depend on n but only on the three index sets defined by
(11), (12), (13). In practice, the algorithm has O(n) running time.

3.4. Algorithm 2 (for problem (P :) ) and its convergence

After analysis of the optimal solution to problem (P:), similar to that of

problem (P£) , we suggest the following algorithm for solving problem (P :) .
Algorithm 2 (for problem (P :) )

1. (Initialization) J:={1,....n}, k=0, a®:=a, n@:=n, 3O =3 3! =0,
Jy =0, initialize %;, jT J.1f &7 dja;£a£4_ d;b;, goto2elsegoto.

2. J3'®M =30 calculate | (¥ by using the explicit expression of | . Go to 3.
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3. Construct the sets J1®, 3, 31M through (21), (22), (23) (with jT J%
instead of j1 J)and find their cardinalities [J,® 1,13 ® 1 3' M |. Goto 4.

Steps 4 - 8 are the same as steps 4 - 8 of Algorithm 1, respectively.

9. Problem (P :) has no solution because the corresponding feasible set X (6) - (7) is
empty.
10. End.

A theorem analogous to Theorem 3 holds for Algorithm 2 which guarantees
the "convergence” of | (0 3! (0 gl (K Jé(k) to the optimal I, 3" , 3, J| , respectively.

Theorem 4. Let | (9 be the sequence generated by Algorithm 2.
iy 1fd( ®y>0 then | W g (kD).
i) 1If d(1 0)<0 then | (0 3| (kD)

The proof of Theorem 4 is similar to that of Theorem 3.

It can be proved that Algorithm 2 has O(n) running time, and point

x* =(X{,....Xy) generated by this algorithm is feasible for problem (P~) which is an
assumption of Theorem 2.

4. EXTENSIONS

If it is allowed that d; =0 for some j in problems (PE) and (P:) then for

Xj- aj Xj-bj
dj

and

such indices j we cannot construct the expressions by means of

i

:'s are

which we define sets J; ,Jk'J , 3" for the corresponding problem. In such cases X

not involved in (4) [in (6), respectively] for such indices j.

Let us denote

J={1,...,n}, Zo={jl J:d;=0}.

Here "0" means the "computer zero". In particular, when J=2Z0 and a =0
then X is defined only by (5) [by (7), respectively].

Theorem 5. Problem (P£) can be decomposed into two subproblems:
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P1EY-for ji zo, (P2E)-for j1 J\Z0.

The optimal solution to (PlE) is

iaj, jI Z0and X; £a;
X =ibj, il 20 and %; 2 by (30)
':\ij' Jl Z0 and a]<)A(J<bJ,

that is, the subproblem (P1£) itself is decomposed into ng°|Z0| independent
problems.

The optimal solution to (P2£) is given by (11), (12), (13) with J:=J\Z0.

The proof of Theorem 5 is omitted because it repeats in part the proof of
Theorem 1.

An analogous result holds for problem (P :) .

Theorem 6. Problem (P :) can be decomposed into two subproblems:

(P17)-for ji z0:={jl J:d; =0} and (P27)-for ji J\Z0.

The optimal solution to (P17) is also given by (30). The optimal solution to (P27) is
given by (21), (22), (23) with J:=J\Z0.

Thus, with the use of Theorem 5 and Theorem 6 we can express components

of the optimal solutions to problems (P£) and (P:) without the necessity of

Xi - aj X;i-b;
L1 and L with d; =0.
j dj

constructing the expressions

5. COMPUTATIONAL EXPERIMENTS

In this section we present the results of some numerical experiments obtained
by applying a SQM with adaptive step-size regulation to multi-commodity facility
location problems. The projection of the current approximation onto the feasible region
was found by using the polynomial algorithms suggested in this paper.
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Example 1.

5
min{F(x) = Ew & maq{ p;(x;j - w;),q;(w; - x;)}
j=1

subject to

X1 +Xo +2X3 +3X4 +X5 =200
O£ x; £50

0f£ x, £7

0E X3 £7

O£ x4 £80

O£ x5 £ 25.

Here
P = (1, P2, P3, P4, Ps) =(1,0,3,1,2), q = (41,92, 03,04,05) = (3,4.1,2,3),

and Wi,

segments

j=1,2,3,4,5 are random variables uniformly distributed on the closed

[0,60],[0,15],[0,17],[0,90],[0,40],

respectively.

Obviously this is a problem of the form (2) - (3) with n=5 and feasible set X
of the form (6) - (7).

Optimal solution (by using SQM)
(Quantities of the last 10 iterations have been averaged):

x" =(42.08259 6.98305 3.76966 41.86273,17.80680) .

Optimal value of F(x):F(X ) = 96.63854
The equality constraint is satisfied with tolerance: 0.00000000419.

This test example can also be solved analytically by using a nonlinear
programming approach.

The analytical expression of the objective function is

F(x):ix2 2 242 2+ix§+

300 +EX2 EXg 0 ix52 3X1 - 4%y - Xg- 2% - 3X5+278.5

16
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Analytic solution (using a nonlinear programming approach, [9]):

X =(41.88057,7.0000Q 2.48092 41.27456 22.33456) .

Optimal value of F(x):F(x') = 98.10089

Example 2.

6
min{F (x) = Ey, & maq{ pj(x;j - wj),q;(w;j - x;)}}
j=1

subject to

33X +4Xy +7X3+5x%5 + X5 £872
0£x, £45

0£x, £56

0£x3 £32

0E£x4 £27

0 £ x5 £ 456

0 £ xg £45.

Here

P = (P1, P2, P3, P4, Ps, P) = (5.7,8,35.1) , 4 =(0y,92,U3,04.0s5,6) = (4,56,7,8,4,4) ,

and wj, j=123456 areuniformly distributed random variables on closed segments
[0,56],[0,57],[0,36],[0,34],[0,468],[0,65] ,

respectively.

Obviously this is a problem of the form (2) - (3) with n=6 and feasible set X
of the form (4) - (5).

Optimal solution (by SQM)
(Quantities of the last 10 iterations have been averaged):

x' =(25.13417 48.01999, 15.62868, 25.32763, 49.51728,33.14936 .
Optimal value of F(x): F(X)=97259309.

The effectiveness of algorithms for problems (PE) and (P :) has been tested
by many other examples.
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