
Yugoslav Journal of Operations Research
            10 (2000), Number 2, 235-256

ON THE IMPLEMENTATION OF STOCHASTICON THE IMPLEMENTATION OF STOCHASTIC
QUASIGRADIENT METHODS TO SOME FACILITYQUASIGRADIENT METHODS TO SOME FACILITY

LOCATION PROBLEMSLOCATION PROBLEMS

Stefan M. STEFANOV
Department of Mathematics

Neofit Rilski University
Blagoevgrad, Bulgaria

Abstract:Abstract: In this paper we consider the facility location problem in a stochastic
environment. After a brief description of stochastic quasigradient methods (SQM) for
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1. INTRODUCTION

Consider the following simple facility location model in a stochastic
environment ([3]). Determine the amounts jx  of facilities at points j, nj ,,K1=  in
order to meet the demand jw . Since the demand ),,( nww K1=ww  is random, we know

only its distribution function },,{)( nn wwwwPH ≤≤= K11ww . At the moment of
decision making concerning ),,( nxx K1=xx , the actual value of the demand

),,( nww K1=ww  is not known.

Suppose that we have made a decision xx  about the quantities of materials,
facilities, etc., and that the actual demand turned out to be ww . We have to pay for both
oversupply and shortfalls. The penalty charged at the j-th location is )( jj

j xw −1ψ , if
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jj xw ≥ , and )( jj
j wx −2ψ  if jj xw < , where the functions j

1ψ  and j
2ψ  are

nondecreasing. In the simplest case these functions are linear and the total penalty is

∑
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j
jjjjjj wxqxwp

1
)}(),(max{ (1)

where 0≥jp  and 0≥jq  are the expenses for storage and losses because of deficit for

unit of the j-th facility, nj ,,K1= .

In most cases xx  should be determined such that the average penalty is
minimal, that is, to minimize the following function

}))()()()(({),()( ∑ ∫∫
=

∞ −+−==
n

j
x jjjj

x
jjjj

j

j dwxwqdwwxpfF
1 0

PPPPEEwwxxEExx wwww ,

where wwEE  denotes the mathematical expectation with respect to ww . Often there are
some constraints on xx .

If the volume of the store we have to use to keep the facilities is α and we have
to order a quantity of the j-th product which is at least ja  and at most jb , nj ,,K1= ,

we obtain the following minimization problem:

Find ),,( nxx K1=x  such that

xx
ww wwxxEExx min),()( →= fF (2)

subject to

X∈x (3)

where X is defined through
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njbxa jjj ,,, K1=≤≤ . (7)
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Relations "≤" and "=" in (4) and (6) mean "store may not be completely filled" and "store
must be completely filled", respectively.

Here jw  are random variables in closed segments njRR jj ,,],,[ K121 = ,

respectively. The function )(xF  in (2) can be written in the following form
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Since ),( wwxxf  is nondifferentiable at wwxx =  then )(xF  is also a nondifferentiable
function.

Problem (2) - (3) is known as the multi-commodity facility location problem  or
as the inventory control problem  and it is a special case of a (perspective) stochastic
programming problem, that is, a problem of the form:

Find ),,( nxx K1=x  such that

xx
ww wwPPwwxxwwxxEExx min)(),(),()( →=≡ ∫ dffF 000

subject to

midffF iii ,,,)(),(),()( K10 =≤=≡ ∫ wwPPwwxxwwxxEExx ww

nX Rx ⊂∈ .

The functions miF i ,,,),( K10=xx  are called regression functions.

Stochastic quasigradient methods (SQM)  for solving stochastic optimization
problems were suggested by Yu. Ermoliev ([1], [2], [3]).

Given the problem

)(min xxF

subject to

X∈xx

where X is a "deterministic" set.
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SQM are defined through

,,,,)( K101 =−= ∏+ kX
k

k
kk ξξρxxxx (8)

where

− 0xx  is an arbitrary initial guess (initial approximation);
− ∏ X )( yy  is a projection operation of y onto the feasible region X;

− kρ  is a step size;

− )( wwkk ξξξξ =  is a step direction, )(wwkξξ  is a random vector such that

,,,,)(ˆ),,,/( KK 1010 =+= ka kk
k

kk bbxxFFxxxxxxEE xxww ξξ (9)

where 0>ka  is a random variable; ),,( k
n

kk bb K1=bb  is a random vector,

measurable with respect to the σ -algebra kBB  induced by the family of
random variables ),,( kxxxx K0 ; )(ˆ kxxFFxx  is a generalized gradient of )( xxF  at

kxx ; ),,/( kk xxxxEE ww K0ξξ  is the conditional mathematical expectation of kξξ

subject to kxxxx ,,K0 ; kρ  is also measurable with respect to kBB .

When 1≡ka , 00bb ≡k  then kξξ  is said to be a stochastic generalized gradient

(or a stochastic quasigradient) of )(xF . Method (8) - (9) is called the stochastic
quasigradient method.

SQM are direct methods. Convergence theorems have been proved under
certain requirements for kξξ , kρ  (e.g. [1]). SQM are slow methods. That is why one of
the main problems concerning their implementation is the choice of the step-size
sequence }{ kρ . Convergence theory states that any sequence with the properties

0≥kρ ;  0→kρ , ∞→k ;  ∞=∑
∞

=0k
kρ ;  ∞<∑

∞

=0

2

k
kρ

may be used as a step-size sequence. However, this approach does not use information
obtained during the iterative process. A modern method for choosing kρ 's is so-called
adaptive step-size regulation ([9]).

As A. Gaivoronski pointed out ([3]), due to the specificity of stochastic
programming problems and stochastic quasigradient methods (slow convergence,
nonmonotonicity, and sometimes oscillatory behaviour), it is advisible to average the
values of variables and of the objective function during a certain number of last
iterations and take these quantities as the final approximation to the solution.
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The second basic problem regarding the implementation of SQM is finding the
projection of a current point k

k
kk ξξρ−≡ xxyy  onto the feasible set X. As it is known, this

is equivalent to solving the quadratic optimization problem

min|||| →− 2
2
1

xxyyk

X∈xx .

This problem has to be solved at each iteration of the algorithm. That is why
projection is the most onerous and time-consuming part of the SQM (and of any
gradient type projection method for constrained optimization) and we need efficient
algorithms for solving this problem.

The third important question concerning implementation of SQM is
calculation of the stochastic quasigradient of the function to be minimized. For
example, the components of the stochastic quasigradient of )( xxF  (2') at iteration k are
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where k
jx  is the j-th component of xx  at iteration k and k

jw  is the j-th component of the

observation of ww  at iteration k.

Algorithms for finding a projection onto a set defined by an inequality/equality
constraint and bounds on the variables are suggested in [5], [6], [7], [8], etc. Stochastic
programming is discussed, e.g., in [1], [4], etc. This paper is devoted to an efficient
polynomial algorithm for finding a projection onto the set X (4) - (5) and (6) - (7).

2. ON PROJECTION IN THE IMPLEMENTATION OF SQM TO
FACILITY LOCATION PROBLEMS

As pointed out in the Introduction, we need an efficient algorithm for finding a
projection of a point onto certain feasible regions.

Consider the problem of finding the projection of an arbitrary point
n

nxx RRxx ∈= )ˆ,,ˆ(ˆ K1  onto the set X defined by (4) - (5) and (6) - (7). This problem is
equivalent to

min)ˆ()()( →−≡≡ ∑∑
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X∈xx .
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Denote this problem by )( ≤P  in the first case and by )( =P  in the second case. Since
)(xxc  is a strictly convex function and X is a convex closed set, then this problem always

has a unique solution when 0/≠X .

First consider the case when X is defined by (4) - (5), under the assumptions:

1.a) jj ba ≤  for all nj ,,K1= . If kk ba =  for some k, nk ≤≤1  then the value

kkk bax ==:  is determined in advance.

1.b) α≤∑ =
n
j jj ad1 . Otherwise the constraints (4) - (5) are inconsistent and 0/≠X . In

addition to this assumption we suppose that ∑ =≤ n
j jj bd1α  in some cases which are

specified below.

The Lagrangian for )( ≤P  is
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where 1
+∈ RRλ ; n

+∈ RRvvuu, , and n
+RR  consists of all vectors with n real nonnegative

components.

Theorem 1.Theorem 1.  A feasible solution Xxx n ∈= ),,( *** K1xx  (defined by (4) - (5)) is an optimal

solution to problem )( ≤P  if and only if there exists some 1
+∈ RRλ  such that
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Proof:Proof:  The Kuhn-Tucker necessary and sufficient optimality conditions for minimum
*xx  are:

0=+−+− jjjjj vudxx λˆ* , nj ,,K1= (14)

0=− )( *
jjj xau , nj ,,K1= (15)
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0=− )( *
jjj bxv , nj ,,K1= (16)

0
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1
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Here jj vu ,,λ , nj ,,K1=  are the Lagrange multipliers associated with the
constraints (4), jj xa ≤ , jj bx ≤ , nj ,,K1= , respectively. If −∞=ja  or +∞=jb  for

some j, we do not consider the corresponding condition (15) [(16)] and Lagrange
multiplier ][ jj vu .

i) Let ),,( ***
nxx K1=xx  be an optimal solution to )( ≤P . Then there exist

constants jj vu ,,λ , nj ,,K1=  such that Kuhn-Tucker conditions (14) - (20) are

satisfied. Consider both possible cases for λ:

1) Let 0>λ . Then system (14) - (20) becomes (14), (15), (16), (19), (20) and
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n

j
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1

* ,

that is, the inequality constraint (4) is satisfied with an equality for *
jx , nj ,,K1=  in

this case.
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c) If jjj bxa << *  then 0== jj vu . Therefore jjj dxx λ−= ˆ* .

Since 0>jd , nj ,,K1= , 0>λ  by the assumptions then 0≥− *ˆ jj xx . From
*
jj xb > , jj ax >*  it follows that

jjjj xxxb ˆˆ * −≥− , jjjj xaxx ˆˆ* −≥− .
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Since we are not in cases a), b), these inequalities are strict. Hence
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2) Let 0=λ . Then system (14) - (20) becomes

0=+−− jjjj vuxx ˆ* , nj ,,K1= , (15), (16), (18), (19), (20).

a) If jj ax =*  then 00 =≥ jj vu , . Therefore 0≥=−≡− jjjjj uxxxa ˆˆ * .

Multiplying both sides of this inequality by 
jd

1− (<0 by the assumption) we obtain

λ≡≤
−

0
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.

b) If jj bx =*  then 00 ≥= jj vu , . Therefore 0≤−=−≡− jjjjj vxxxb ˆˆ * .

Multiplying this inequality by 01 <−
jd  we get

λ≡≥
−

0
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.

c) If jjj bxa << *  then 0== jj vu . Therefore 0=− jj xx ˆ* , that is, jj xx ˆ* = .

Since *
jj xb > , jj ax >* , nj ,,K1=  by the assumption, then

0=−≥− jjjj xxxb ˆˆ * , jjjj xaxx ˆˆ* −≥−=0 .
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Multiplying both inequalities by 01 <−
jd  we obtain
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Since we are not in cases a), b), these inequalities are strict, that is, in case c) we have
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In order to describe cases a), b), c) for both 1) and 2), it is convenient to
introduce the following index sets: λλλ JJJ ba ,,  defined by (11), (12) and (13),

respectively. Obviously },,{ nJJJ ba K1=∪∪ λλλ . Thus, the "necessity" part is proved.

ii) Conversely, let X∈*xx  and components of *xx  satisfy (11), (12) and (13),
where 1

+∈ RRλ .

1) If 0>λ  then λJjxx jj ∈<− ,ˆ* 0  according to (13) and 0>jd . Set:
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0== jj vu  for λJj ∈ ;

jjjj dxau λ+−= ˆ  ( 0≥  according to the definition of λ
aJ ), 0=jv  for λ

aJj ∈ ;

0=ju , jjjj dbxv λ−−= ˆ  ( 0≥  according to the definition of λ
bJ ) for λ

bJj ∈ .

By using these expressions, it is easy to check that conditions (14), (15), (16), (17), (20)
are satisfied; conditions (18) and (19) are satisfied according to the assumption X∈*xx .

2) If 0=λ  then  λJjxx jj ∈=− ,ˆ* 0  according to (13) and
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Since 0>jd  then 0<− jj bx̂ , 0>− jj ax̂ , 0Jj ∈ . Therefore ),(ˆ*
jjjj baxx ∈= .

Set:
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j

jj

d

xx *ˆ −
=λ  (= 0); 0== jj vu  for 0=∈ λJj ;

)(ˆˆ 0≥−=+−= jjjjjj xadxau λ , 0=jv  for 0=∈ λ
aJj ;

0=ju , )(ˆˆ 0≥−=−−= jjjjjj bxdbxv λ  for 0=∈ λ
bJj .

Obviously conditions (14), (15), (16), (20) are satisfied; conditions (18), (19) are also
satisfied according to the assumption X∈*xx  and condition (17) is obviously satisfied
for 0=λ .

In both cases 1) and 2) of part ii), jjj vux ,,,* λ , nj ,,K1=  satisfy Kuhn-
Tucker conditions (14) - (20) which are necessary and sufficient conditions for a
feasible solution to be an optimal solution to a convex minimization problem. Therefore

*xx  is an optimal solution to problem )( ≤P . q

Theorem 1 is important because it describes components of the optimal

solution to )( ≤P  only through the Lagrange multiplier λ associated with the inequality
constraint (4). Since we do not know the value of λ we define an iterative process with
respect to the Lagrange multiplier λ and prove its convergence in Section 3.

From 0>jd  and jj ba ≤ , nj ,,K1=  it follows that
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for the expressions by means of which we define the sets λλλ JJJ ba ,, .

Consider problem )( =P  of finding a projection onto a set X of the form (6) -
(7):
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and assume the following:

2.a) jj ba ≤  for all nj ,,K1= .
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2.b) ∑∑ == ≤≤ n
j jj

n
j jj bdad 11 α . Otherwise the constraints (6) - (7) are inconsistent

and the feasible region (6) - (7) is empty.

In this case the following Theorem 2, which is analogous to Theorem 1, holds.

For the sake of simplicity throughout Theorem 2 we will use the same
notations jj vu ,,λ , nj ,,K1=  for the Lagrange multipliers associated with (6),

jj xa ≤ , jj bx ≤ , as we have used them in Theorem 1.

Theorem 2.Theorem 2.  A feasible solution Xxx n ∈= ),,( *** K1xx  (defined by (6) - (7)) is an optimal

solution to problem )( =P  if and only if there exists some 1RR∈λ  such that
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The proof of Theorem 2 is omitted because it is similar to that of Theorem 1.

3. THE ALGORITHMS

3.1. Analysis of the solution to problem 3.1. Analysis of the solution to problem )( ≤P

Before the formal statement of the algorithm for )( ≤P  we will discuss some
properties of the optimal solution to this problem which turn out to be useful.

Using (11), (12) and (13), condition (17) can be written as follows
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












−−++ ∑∑∑

∈∈∈
λαλλ

λλλ
,)ˆ(

Jj
jjj

Jj
jj

Jj
jj dxdbdad

ba

(17')

Since the optimal solution *xx  to problem )( ≤P  obviously depends on λ, we
consider the components of *xx as functions of λ for different 1

+∈ RRλ :
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Obviously )(λjx , nj ,,K1=  are piecewise linear, monotonically

nondecreasing, piecewise differentiable functions of λ with two breakpoints at
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If we differentiate (25) with respect to λ we get

02 <−≡′ ∑
∈ λ

λδ
Jj

jd)( , (26)

when 0/≠λJ , and 0=′ )(λδ  when 0/=λJ . Hence )(λδ  is a monotonic nonincreasing

function of λ, 1
+∈Rλ , and )(max λδλ 0≥  is attained at the minimum admissible value of

λ, that is, at 0=λ .

Case 1.Case 1.  If 00 >)(δ , in order that (17') and (18) ≡ (4) be satisfied, there exists some

0>*λ  such that 0=)( *λδ , that is,

α=∑
=

n

j
jj xd

1

* , (27)

which means that the inequality constraint (4) is satisfied with an equality for *λ  in
this case.

Case 2.Case 2.  If 00 <)(δ , then 0<)(λδ  for all 0≥λ , and the maximum of )(λδ  with 0≥λ
is )(max)( λδδ λ 00 ≥=  and it is attained at 0=λ  in this case. In order that (17') be

satisfied, λ  must be equal to 0. Therefore 0=∈= λJjxx jj ,ˆ*  according to (13).

Case 3.Case 3.  In the special case when 00 =)(δ , the maximum )(max)( λδδ λ 00 ≥=  of )(λδ  is
also attained at the minimum admissible value of λ, that is, for 0=λ , because )(λδ  is
a monotonic nonincreasing function in accordance with the above consideration.
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As we have seen, for the optimal value λ we have 0≥λ  in all possible cases, as
the Kuhn-Tucker condition (17) requires. We have shown that in Case 1 we need an
algorithm for finding *λ  which satisfies the Kuhn-Tucker conditions (14) - (20) but
such that *λ  satisfies (18) with an equality. In order that this be fulfilled, the set

},,,,:{ njbxaxdX jjj
n

j
jj

n K1
1

def
=≤≤=∈= ∑

=

= αRRxx

must be nonempty. That is why we have required ∑ =≤ n
j jjbd1α  in some cases in

addition to the assumption α≤∑ =
n
j jj ad1  (see assumption 1.b)). We have also used

this in the proof of Theorem 1, part ii), when 0>λ .

From the equation 0=)(λδ , where )(λδ  is defined by (25), we are able to
obtain a closed form expression for λ:
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because 0<′ )(λδ  according to (26) when 0/≠λJ  (it is important that 0≠′ )(λδ ). This

expression of λ is used in the algorithm suggested for problem )( ≤P . It turns out that
for our purposes without loss of generality we can assume that 0≠′ )(λδ , that is, )(λδ

depends on λ, which means that 0/≠λJ .

At iteration k of the algorithm let us denote by )(kλ  the value of the Lagrange
multiplier associated with constraint (4) [(6)], by )(kα - the right-hand side of (4) [(6)];
by )()()()( ,,, kk

b
k

a
k JJJJ λλλ - the current sets λλλ JJJnJ ba ,,},,,{ K1= , respectively.

3.2. Algorithm 13.2. Algorithm 1

The following algorithm for solving problem )( ≤P  is based on Theorem 1.

Algorithm 1 (for problem Algorithm 1 (for problem )( ≤P ))

0. (Initialization) },,{: nJ K1= , 0=:k , αα =:)(0 , nn =:)(0 , JJ =:)(0 , 0/=:λ
aJ ,

0/=:λ
bJ , initialize Jjx j ∈,ˆ . If α≤∑ =

n
j jj ad1 , go to 1 else go to 9.

1. Construct the sets 000 JJJ ba ,,  (for 0=λ ). Calculate
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αδ −++= ∑∑∑
∈∈∈ 000

0
Jj

jj
Jj

jj
Jj

jj xdbdad
ba

ˆ:)( .

If 00 ≤)(δ  then 0=:λ , go to 8

else if 00 >)(δ  then

if ∑ =≤ n
j jj bd1α  go to 2

else if ∑ => n
j jjbd1α go to 9 (there does not exist 0>*λ such that 0=)( *λδ ).

2. )()( : kk JJ =λ . Calculate )(kλ  by using the explicit expression of λ (see (28)). Go to
3.

3. Construct the sets )()()( ,, kk
b

k
a JJJ λλλ  through (11), (12), (13) (with )(kJj ∈

instead of Jj ∈ ) and find their cardinalities |||,||,| )()()( kk
b

k
a JJJ λλλ , respectively.

Go to 4.

4. Calculate

)()(

)()()(
)ˆ(:)( k

Jj
jjj

Jj
jj

Jj
jj

k

kk
b

k
a

dxdbdad αλλδ
λλλ

−−++= ∑∑∑
∈∈∈

.

Go to 5.

5. If 0=)( )(kλδ  or 0/=)(kJ λ  then )(: kλλ = , )(: k
aaa JJJ λλλ ∪= , )(: k

bbb JJJ λλλ ∪= ,
)(: kJJ λλ = , go to 8

else if 0>)( )(kλδ  go to 6

else if 0<)( )(kλδ  go to 7.

6. jj ax =:*  for )(k
aJj λ∈ , ∑ ∈

+ −= )(
)()( : k

aJj jj
kk adλαα 1 , )()()( \: k

a
kk JJJ λ=+1 ,

||: )()()( k
a

kk Jnn λ−=+1 , )(: k
aaa JJJ λλλ ∪= , 1+= kk : . Go to 2.

7. jj bx =:*  for )(k
bJj λ∈ , ∑ ∈

+ −= )(
)()( : k

bJj jj
kk bdλαα 1 , )()()( \: k

b
kk JJJ λ=+1 ,

||: )()()( k
b

kk Jnn λ−=+1 , )(: k
bbb JJJ λλλ ∪= , 1+= kk : . Go to 2.

8. jj ax =:*  for λ
aJj ∈ , jj bx =:*  for λ

bJj ∈ , jjj dxx λ−= ˆ:*  for λJj ∈ . Go to 10.
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9. The problem has no solution because 0/=X  or there does not exist some 0>*λ
satisfying Theorem 1.

10. End.

Remark 1.Remark 1.  To avoid a possible "endless loop" in programming the algorithm, the
criterion of Step 5 to go to Step 8 at iteration k usually is ],[)( )( εελδ −∈k  instead of

0=)( )(kλδ , where 0>ε  is some given tolerance value up to which the equality

0=)( *λδ  may (for problem )( ≤P ) or must (for problem )( =P ) be satisfied.

3.3. Convergence and complexity of Algorithm 13.3. Convergence and complexity of Algorithm 1

Theorem 3.Theorem 3.  Let )(kλ  be the sequence generated by Algorithm 1.

i) If 0>)( )(kλδ  then )()( 1+≤ kk λλ ;

ii) If 0<)( )(kλδ  then )()( 1+≥ kk λλ ;

Proof:Proof:  Denote by )(k
jx  the components of )()()(

kJjj
k x ∈=xx  at iteration k of Algorithm

1.

Taking into consideration (26), Case 1, Case 2, Case 3 and Step 1 (the sign of

)(0δ ) and Step 2 of Algorithm 1, it follows that 0≥)(kλ  for each k. Since )(k
jx  are

determined from (13): j
k

j
k
j dxx )()( ˆ λ−= , )(kJj λ∈ , substituted in

)()(
)(

k
Jj

k
jjk xd αλ =∑ ∈  at Step 2 of Algorithm 1 and since 0≥)(kλ , 0>jd  then

0≤− j
k
j xx ˆ)( , that is, )(ˆ k

jj xx ≥ .

i) Let 0>)( )(kλδ . Using Step 6 of Algorithm 1 (which is performed when 0>)( )(kλδ )
we get

∑∑∑∑
∈∈∈∈

−==≡
++ )()()()()(

)()(

\

)()()(

k
a

k
a

kkk Jj

k
jj

k

JJj

k
jj

Jj

k
jj

Jj

k
jj xdxdxdxd

λλλ
α

11
. (29)

Let )(k
aJj λ∈ . According to definition (11) of )(k

aJ λ  we have

j

k
jjk

j

jj

d

xx

d

ax
)(

)(
ˆˆ −

=≤
−

λ .
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Multiplying this inequality by 0<− jd  we obtain j
k
jjj xxxa ˆˆ )( −≥− . Therefore

)(k
jj xa ≥ , )(k

aJj λ∈ .

From (29), using that 0>jd  and Step 6 we get

∑∑∑∑
++ ∈

++

∈∈∈
==−≥−=

)()()()(

)()()()()()(

11

11
kk

a
k

a
k Jj

k
jj

k

Jj
jj

k

Jj

k
jj

k

Jj

k
jj xdadxdxd

λλλλ
ααα .

Since 0>jd , nj ,,K1=  then there exists at least one )( 1
0

+∈ kJj λ  such that
)()( 1

00

+≥ k
j

k
j xx . Then

)(
)()(

)(
ˆˆ

1
1

0

0

0

0 +
+

=
−

≤
−

= k

j

k
jj

j

k
jjk

d

xx

d

xx
λλ .

We have used that the relationship between )(kλ  and )(k
jx  is given by (13) for )(kJj λ∈

according to Step 2 of Algorithm 1 and that )(ˆ k
jj xx ≥ , )(kJj λ∈  according to (13) with

0≥)(kλ  and 0>jd .

The proof of part ii) is omitted because it is similar to that of part  i). q

Let us consider the feasibility of Jjjx ∈= )( **xx , generated by Algorithm 1.

Components jj ax =* , λ
aJj ∈  and jj bx =* , λ

bJj ∈  obviously satisfy (5). From

λλ Jj
d

ax

d

xx

d

bx

j

jj

j

jj

j

jj
∈

−
<

−
≡<

−
,

ˆˆˆ *

.

and 0>jd  it follows that jjjjjj xbxxxa ˆˆˆ * −<−<− , λJj ∈ . Therefore jjj bxa ≤≤ *

for λJj ∈ . Hence all *
jx , nj ,,K1=  satisfy (5).

We have proved that if 00 ≥=λλδ |)(  and 0/≠=X  then there exists some

0≥*λ  such that 0=)( *λδ . Since at Step 2 we determine )(kλ  from the equality
)()(

)(
k

Jj
k
jjk xd αλ =∑ ∈  for each k, then (4) is satisfied with an equality in this case.

Otherwise, if 00 <)(δ  then we set 0=λ   (Step 2) and we have
000 <≡−∑ ∈ )()( δαJj jj xd , that is, (4) is satisfied as a strict inequality in this case.

Therefore Algorithm 1 generates *xx  which is feasible for problem )( ≤P .
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Remark 2.Remark 2.  Theorem 3, definitions of λ
aJ  (11), λ

bJ  (12) and λJ  (13) and Steps 6, 7, 8

of Algorithm 1 allow us to assert that the calculation of λ, operations jj ax =:* ,
)(k

aJj λ∈  (Step 6), jj bx =:* , )(k
bJj λ∈  (Step 7) and the construction of λ

aJ , λ
bJ , λJ

are in accordance with Theorem 1.

At each iteration Algorithm 1 determines the value of at least one variable

(Steps 6, 7, 8) and at each iteration we solve a problem of the form )( ≤P  but of less
dimension (Steps 2 - 7). Therefore Algorithm 1 is finite and it converges with at most

|| Jn =  iterations, that is, the iteration complexity of Algorithm 1 is )(nO .

Step 0 takes time )(nO . Step 1 (construction of sets 0
aJ , 0

bJ , 0J ; calculation

of )(0δ  and checking whether X is empty) also takes time )(nO . The calculation of
)(k

jx , nj ,,K1=  and )(kλ  requires )(nO  time (Step 2). Step 3 takes )(nO  time because

of the construction of )(k
aJ λ , )(k

bJ λ , )(kJ λ . Step 4 also requires )(nO  time and Step 5

requires constant time. Each of Steps 6, 7 and 8 takes time which is bounded by )(nO :

at these steps we assign some of jx  the final value, and since the number of all jx 's is

n then Steps 6, 7 and 8 take time )(nO . Hence the algorithm has )( 2nO  running time
and it belongs to the class of strongly polynomially bounded algorithms.

As the computational experiments show, the number of iterations of the
algorithm performance is not only at most n but it is much, much less than n for great
n. In fact, this number does not depend on n but only on the three index sets defined by
(11), (12), (13). In practice, the algorithm has )(nO  running time.

3.4. Algorithm 2 (for problem 3.4. Algorithm 2 (for problem )( =P ) and its convergence) and its convergence

After analysis of the optimal solution to problem )( =P , similar to that of

problem )( ≤P , we suggest the following algorithm for solving problem )( =P .

Algorithm 2 (for problem Algorithm 2 (for problem )( =P ))

1. (Initialization) },,{: nJ K1= , 0=:k , αα =:)(0 , nn =:)(0 , JJ =:)(0 , 0/=:λ
aJ ,

0/=:λ
bJ , initialize Jjx j ∈,ˆ . If ∑∑ == ≤≤ n

j jj
n
j jj bdad 11 α , go to 2 else go to 9.

2. )()( : kk JJ =λ . Calculate )(kλ  by using the explicit expression of λ. Go to 3.
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3. Construct the sets )()()( ,, kk
b

k
a JJJ λλλ  through (21), (22), (23) (with )(kJj ∈

instead of Jj ∈ ) and find their cardinalities |||,||,| )()()( kk
b

k
a JJJ λλλ . Go to 4.

Steps 4 - 8 are the same as steps 4 - 8 of Algorithm 1, respectively.

9. Problem )( =P  has no solution because the corresponding feasible set X (6) - (7) is
empty.

10. End.

A theorem analogous to Theorem 3 holds for Algorithm 2 which guarantees
the "convergence" of )()()()( ,,, k

b
k

a
kk JJJ λλλλ  to the optimal λλλλ ba JJJ ,,, , respectively.

Theorem 4.Theorem 4.  Let )(kλ  be the sequence generated by Algorithm 2.

i) If 0>)( )(kλδ  then )()( 1+≤ kk λλ ;

ii) If 0<)( )(kλδ  then )()( 1+≥ kk λλ .

The proof of Theorem 4 is similar to that of Theorem 3.

It can be proved that Algorithm 2 has )(nO  running time, and point

),,( ***
nxx K1=x  generated by this algorithm is feasible for problem )( =P  which is an

assumption of Theorem 2.

4. EXTENSIONS

If it is allowed that 0=jd  for some j in problems )( ≤P  and )( =P  then for

such indices j  we cannot construct the expressions 
j

jj

d

ax −ˆ
 and 

j

jj

d

bx −ˆ
 by means of

which we define sets λλλ JJJ ba ,,  for the corresponding problem. In such cases jx 's are
not involved in (4) [in (6), respectively] for such indices j .

Let us denote

},,{ nJ K1= , }:{ 00 =∈= jdJjZ .

Here "0" means the "computer zero". In particular, when 0ZJ =  and 0=α
then X is defined only by (5) [by (7), respectively].

Theorem 5.Theorem 5.  Problem )( ≤P  can be decomposed into two subproblems:



S.M. Stefanov / On the Implementation of Stochastic Quasigradient Methods 253

)( ≤1P - for 0Zj ∈ , )( ≤2P - for 0ZJj \∈ .

The optimal solution to )( ≤1P  is









<<∈
≥∈
≤∈

=
,ˆ,ˆ

ˆ,

ˆ,
*

jjjj

jjj

jjj

j

bxaZjx
bxZjb
axZja

x
  and  0
  and  0
  and  0

(30)

that is, the subproblem )( ≤1P  itself is decomposed into || 00 Zn ≡  independent

problems.

The optimal solution to )( ≤2P  is given by (11), (12), (13) with 0ZJJ \:= .

The proof of Theorem 5 is omitted because it repeats in part the proof of
Theorem 1.

An analogous result holds for problem )( =P .

Theorem 6.Theorem 6.  Problem )( =P  can be decomposed into two subproblems:

)( =1P - for }:{: 00 =∈=∈ jdJjZj  and )( =2P - for 0ZJj \∈ .

The optimal solution to )( =1P  is also given by (30). The optimal solution to )( =2P  is
given by (21), (22), (23) with 0ZJJ \:= .

Thus, with the use of Theorem 5 and Theorem 6 we can express components

of the optimal solutions to problems )( ≤P  and )( =P  without the necessity of

constructing the expressions 
j

jj

d

ax −ˆ
 and 

j

jj

d

bx −ˆ
 with 0=jd .

5. COMPUTATIONAL EXPERIMENTS

In this section we present the results of some numerical experiments obtained
by applying a SQM with adaptive step-size regulation to multi-commodity facility
location problems. The projection of the current approximation onto the feasible region
was found by using the polynomial algorithms suggested in this paper.
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Example 1.Example 1.

})}(),(max{)(min{ ∑
=

−−=
5

1j
jjjjjj xwqwxpEF wwxx

subject to

.250
800
70
70
500

20032

5

4

3

2

1

54321

≤≤

≤≤
≤≤
≤≤

≤≤
=++++

x

x
x
x

x
xxxxx

Here

),,,,(),,,,( 2130154321 == ppppppp , ),,,,(),,,,( 3214354321 == qqqqqqq ,

and jw , 54321 ,,,,=j  are random variables uniformly distributed on the closed

segments

],[],,[],,[],,[],,[ 400900170150600 ,

respectively.

Obviously this is a problem of the form (2) - (3) with 5=n  and feasible set X
of the form (6) - (7).

Optimal solution Optimal solution (by using SQM)
(Quantities of the last 10 iterations have been averaged):

).,.,.,.,.(* 806801786273417696639830560825942=xx .

Optimal value of 6385496.)(:)( * =xxxx FF

The equality constraint is satisfied with tolerance: 0.00000000419.

This test example can also be solved analytically by using a nonlinear
programming approach.

The analytical expression of the objective function is

52783243
16
1

60
1

17
2

15
2

30
1

54321
2
5

2
4

2
3

2
2

2
1 .)( +−−−−−++++= xxxxxxxxxxF xx
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Analytic solution Analytic solution (using a nonlinear programming approach, [9]):

).,.,.,.,.(* 334562227456414809220000078805741=xx .

Optimal value of 1008998.)(:)( * =xxxx FF

Example 2.Example 2.

})}(),(max{)(min{ ∑
=

−−=
6

1j
jjjjjj xwqwxpEF wwxx

subject to

.450
4560
270
320
560
450

8725743

6

5

4

3

2

1

65321

≤≤

≤≤
≤≤
≤≤

≤≤
≤≤

≤++++

x

x
x
x

x
x

xxxxx

Here

),,,,,(),,,,,( 153875654321 == pppppppp , ),,,,,(),,,,,( 4487564654321 == qqqqqqqq ,

and jw , 654321 ,,,,,=j  are uniformly distributed random variables on closed segments

],[],,[],,[],,[],,[],,[ 6504680340360570560 ,

respectively.

Obviously this is a problem of the form (2) - (3) with 6=n  and feasible set X
of the form (4) - (5).

Optimal solution Optimal solution (by SQM)
(Quantities of the last 10 iterations have been averaged):

).,.,.,.,.,.(* 149363351728493276325628681501999481341725=xx .

Optimal value of 59309972.)(:)( * =xxxx FF .

The effectiveness of algorithms for problems )( ≤P  and )( =P  has been tested
by many other examples.
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