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Abstract: An approach to the optimization of raster-scan circle-drawing algorithms is
presented. The approach is based on the program transformation theory, which is a
subset of Dijkstra's weakest precondition calculus. In this way, care of the correctness
of the algorithm is incorporated in the optimization process. The authors propose that
a designer and an implementor define the problem together, translating quality re-
quirements and technology constraints into algorithm requirements. Then the
standard solution should be explained and optimized in terms of weakest precondition.
Thanks to the approach with an invariant and a bound function, it is possible to
separate aspects concerning optimization and correctness. The method is illustrated by
the optimization of an integer case circle algorithm.
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1. INTRODUCTION

There are several approaches to circle drawing in raster. Although there are
solutions based on parallel computational models, [9, 19], as well as those based on
neural networks [13], it seems that today commercial raster devices mostly use sequen-
tial models to implement basic raster algorithms.

At the same time, there are different criteria as to whether a certain pixel
belongs to a given circle or not. The most popular is Bresenham's criterion, thanks to
its simplicity. However, it has some major drawbacks: the problem of so-called gaps in
disk tracing [11], the problem of circle thickness, difficulties with generalization to
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higher dimensions, etc. A novel approach based on the discrete analytical definition of a
circle [1] eliminates these drawbacks, but it gives much slower solutions.

Algorithm speed is so important that most commercial graphical applications
still include a routine for 2D circle generation in raster based on Bresenham's criterion
and restricted to integer radius and centre co-ordinates. This simplification provides
the eight-way symmetry of a circle. Thanks to this, the algorithm calculates the points
of the circle in one octant of the plane only (e.g. 0-45 degrees). The remaining 7 octants
are covered by symmetry arguments and need no further computation. At the same
time, the restriction to integer operations makes the algorithm very fast.

In the last couple of years there have been several papers on straight line and
circle [8, 21] acceleration algorithms based on short horizontal or vertical line segment
generation. Unfortunately, it seems that till now there has been no computer system
that directly produces adequate axial segments, which is a basic assumption of such, so-
called "run-length slice" algorithms.

The fact that the latter approach is slower than conventional solutions when
there is no means for parallel output of several pixels at a time, inspired us to turn
back to conventional algorithms. Is it possible to speed them up by transforming known
algorithms? Program transforms are often used in rasterization, but their correctness
is usually supported on a case-by-case basis via raster semantics or sometimes
intuitively. The consequence is the fear that the optimization process could destroy
program reliability, which prevents authors from coming to the best solutions. Is it
possible to use "code improvement techniques" without fear that they could destroy
program reliability? We suggest the use of techniques based on weakest precondition
calculus. In this way, we are able to check any idea keeping the algorithm correctness
through the optimization process.

The approach to optimization presented herein can be used to improve a wide
class of sequential circle generating algorithms. For the sake of simplicity, we illustrate
the approach on conventional algorithms with restrictions to integer radius and centre
co-ordinates. It is applicable to algorithms with arbitrary radius and centre co-
ordinates, including those generated with a novel approach based on the discrete ana-
lytical definition of circles. It can be seen through the case study that our approach is
applicable to platforms with instruction level parallelism, as well as to pipeline
architectures.

In the next section we comment on the drawbacks of existing solutions. In
Section 3 we introduce our approach to the optimization, and demonstrate it through
the case study given in Section 4. We conclude in Section 5 with some comments and
open questions.
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2. EXISTING SOLUTIONS

The obvious general approach to circle drawing in raster based on computing x
and y values for various angles by using trigonometric functions must be rejected as too
inefficient. There exist a few efficient incremental solutions for circles with arbitrary
centre and radius. The latest of them [1] is based on the discrete analytical definition of
circles, which provides more properties and easier control over them. On the other
hand, the solutions with arbitrary centre and radius are still less efficient when
compared to those with restrictions to integer radius and centre co-ordinates: they per-
form several times more operations, they use several times more variables, and their
source code is several times longer.

The restrictions to integer radius and centre co-ordinates provide the
possibility of exploiting the eight-way symmetry of a circle. The task is usually reduced

to plotting a circle defined by x% + y2 =r? with its centre in origin and with radius r as
a nonnegative integer. The algorithm calculates the points of the circle in one octant of
the plane only (e.g. 0-45 degrees). The remaining 7 octants can easily be covered by
symmetry arguments and need no further computation.

There are several kinds of sequential algorithms for drawing circles with
integer radius and centre co-ordinates in raster. Yao and Rokne in [21] classified all
algorithms published prior [8] as generated by the "conventional approach".
"Conventional” algorithms [4, 6, 15, 17, 20] generate co-ordinates of each pixel, while so
called run-length slice circle algorithms generate just the co-ordinates of the ends of
horizontal line segments built of the pixels that approximate the circle (see Fig. 1).

Most efficient conventional algorithms are based on Bresenham's approach.
They start on a quadrant boundary and generate pixel by pixel making either an axial
or a diagonal move. The decision depends on the sign of the "decision variable". For the
midpoint algorithm the decision variable is defined as:

Pdc: d=x2+y2+2*x- y- r2 +1.

The short and nice synthesis process given in [18] leads to the solution as in
Program 1:

void circle_bres (int r)

{ int x=0;
inty=r;
intd=1-r;

while (x <=vy) {
PutPixel (x, y);
if (d<0) d+=3+ 2%*x;
elsed +=5-2*((y- -)- x);
X++:

}
Program 1. A standard conventional solution




220 N. Ostoji}, D. Star~evi} / Optimization of the Raster-Scan Circle-Drawing Algorithm

In addition to restrictions to integer radius and integer centre co-ordinates, an
important characteristic of conventional algorithms is that they draw pixel by pixel. We
can say that they are optimized for implementations that lack the means for parallel
output of more than one pixel at a time. Other major drawbacks of conventional
algorithms are: it is difficult to generalize them to higher dimensions, and it is difficult
to determine and control the properties of generated primitives. Besides, if the
restrictions to integer radius and centre co-ordinates are abandoned, this leads to
immediate loss of symmetry. In any case, it seems that on account of efficiency most of
today's commercial solutions include a routine based on this approach. Therefore, there
is still interest in improving the performance of this approach that is over 30 years old.

Hsu, Chow and Liu proposed in [8] an approach recognized by Yao and Rokne
in [21] as the run-length slice approach. The approach is based on the identification of
the ends of horizontal line segments defined by the pixels that approximate the circle
(see Fig. 1).

Two algorithms which incrementally find the ends of horizontal line segments
are derived in [8]. Test results reveal that as the radius changes from 1 to 128 those
algorithms are more than 1.36 times faster than the midpoint algorithm and
Bresenham's circle algorithm. However, these algorithms have certain drawbacks, the
most important being: calculation of the square in the loop, too many variables, and
large values in some variables. The gain in speed over conventional algorithms is
obtained due to the reduction in the number of output operations and not due to the
reduction in the number of arithmetic operations. We can say that they are optimized
for implementations that have the means for the parallel output of more than one pixel
at a time. A consequence is that the proposed algorithms become less efficient than
conventional algorithms when the value of the x variable becomes large sufficiently
during execution of the algorithm.

Figure 1: "Horizontal line based" algorithms determine just the co-ordinates of the
ends of horizontal line segments (black points), while "conventional” algorithms deter-
mine the co-ordinates of each pixel.




N. Ostoji}, D. Star~evi} / Optimization of the Raster-Scan Circle-Drawing Algorithm 221

Yao and Rokne in [21] improved the run-length slice approach in three ways.
First, they eliminated almost all the mentioned drawbacks. Second, they speeded up
the algorithms introducing larger steps. And third, they introduced a hybrid approach
that uses the run-length slice circle algorithm while there are long runs of pixels, and
then switches to the midpoint approach when the length of the remaining runs is at
most two.

Analyzing solutions from [21] we noticed that, compared to conventional
solutions, run-length slice circle algorithms still use about 50% more variables and a
larger number of arithmetic operations per iteration. Besides, there is the calculation of
a square and a multiplying operation when switching from the run-length slice circle
algorithm to the conventional algorithm. Still, we can say that run-length slice circle
algorithms are optimized for implementations that have parallel output of more than
one pixel at a time. A consequence is that they become less efficient than conventional
algorithms when the generation of short axial lines is not available. It seems that till
now there has been no computer system that directly produces adequate axial
segments.

3. AN APPROACH TO OPTIMIZATION BASED ON
PREDICATE TRANSFORMERS

We suggest the use of techniques based on weakest precondition calculus so
that the algorithm's correctness can be easily maintained through the optimization
process. We propose that a designer and an implementor together, as the first step,
consider problem definition by translating quality requirements and technology
constraints into algorithm requirements. After that a recapitulation of the algorithm
design is to be made, where the standard solution should be explained in terms of
weakest precondition calculus. Then the implementor and the designer should try to
optimize the algorithm using weakest precondition calculus, bearing in mind the
requirements from the problem definition step. If possible, different solutions of the
problem are to be optimized, and their efficiencies analyzed and compared.

Thanks to this approach, we can separate aspects concerning optimization and
correctness. Raster space properties and program code, together with implementation
dependent characteristics, give inspiration for the introduction of new predicates. In
order to initialize and maintain these predicates, new mechanisms are introduced.
Immediately after that, attention is paid to algorithm correctness. If any invariant has
been destroyed, compensation mechanisms are introduced to restore the destroyed
invariant. As a consequence, it could happened that a modified algorithm is less
efficient than the original one. The careful analysis and comparison of available
solutions is suggested as a separate phase.
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3.1. Task specification

Different approaches exist to program specification. According to [3] they can
be classified into three basic families based on: the algebraic, the state machine, and
the predicate transform model. In order to use predicate transformer based techniques
in optimization efficiently, we suggest using the predicate transform model for the
program specification, as well.

There are also other approaches, e.g. [10], but for this purpose we accept that
there are two parts of a specification. The most important part is specification of "what
the execution of an algorithm is to accomplish". The other part deals with other aspects
concerning speed, size and so forth.

The first part of a specification is given in the form: {Q} S{R} , where Q and R

are predicates, and S is an algorithm, with the following interpretation: "If the
execution of S is begun in a state satisfying Q, then it is guaranteed to terminate after
a finite amount of time in a state satisfying R." Q is called the precondition, or input
assertion of S; and R is called the postcondition, conclusion, output assertion or result
assertion.

The other part of the algorithm specification deals with other aspects
concerning speed, size and other implementation dependent characteristics. Certain
quality requirements and technology characteristics (constraints and supports) which
are to be satisfied and exploited are usually given to the implementor. He/she should
translate these characteristics into algorithm requirements and place them into this
part of the algorithm specification. This part of a specification should be the basis for
implementation dependent optimization.

3.2. Recapitulation of the algorithm design using the wp predicate
transformer

After the algorithm specification has been reviewed and supplemented with
the part which specifies optimization requirements and possibilities, the algorithm
design phase should be recapitulated by the designer and implementor together. We
suggest the approach with weakest precondition calculus presented in [5]. The use of
predicates and predicate transformers could be very useful when optimizing an al-
gorithm. So, the most important thing in this step is to recognize the predicates which
should hold after the execution of certain algorithm portions.

Weakest precondition is a predicate, denoted by wp{S, R}, that represents the
set of all states such that the execution of S begun in any one of them is guaranteed to
terminate in a finite amount of time in a state satisfying R. The general properties of a
particular mechanism S are given when we are able to determine wp{S,R} for any R.
The derivation of wp{S, R} can be impractical for certain mechanisms (e.g. for loops).
Usually we are not interested in wp{S, R}, but in some stronger precondition, say Q,
for which we can show that Q P wp{S, R} without actually forming wp{S,R} .
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The approach to algorithm design based on weakest precondition is nicely
presented again in [7], with a lot of explicitly stated strategies, principles, and rules;
and with a number of carefully chosen and intently ordered examples. In short,
algorithm design starts from R, the predicate which specifies the conclusion. We search
for an appropriate mechanism S such that

Qb wp{S,R}.

Often, it is difficult to recognize S at once. Therefore, we try to make a
sequence of predicates Q;...Qq for which it is not difficult to recognize mechanisms

S; ...S;, such that:

(QP wp(S1,Qq)) and(Qq P wp(S;3,Qz)) and...and(Qp.1 P Wp(Sp.Qp)) and(Qp P R).

In this way, n problems of algorithm synthesis are specified in the form:
{Qi.1} Si{Q;} . If itiis still difficult to recognize Sj, then the refinement procedure is to

be repeated (until each S; is either a primitive statement, or a statement list). The
final solution is concatenation: " S;;S5;...; Sy "

While the use of mechanisms such as assignment or alternation is relatively
simple, and their weakest precondition can be easily calculated, the use of repetition or
recursion mechanisms is much more complicated. The approach suggests converting
recursion into iteration for correctness purposes. The general structure of the
simplified deterministic iterative mechanism, usually denoted by DO, is:

do BB ® Spgod,

where BB is a Boolean expression called a "guard”, and Spg is a mechanism. While BB
holds, Spq is executed. Therefore, if DO terminates, it must obtain non BB.

The approach suggests designing an iteration with a clearly defined goal. It
must terminate after a finite number of iterations in a state satisfying the given
predicate Rpg. There are two important concepts concerning the iterative mechanism:
the "invariant" and the "bound function". An invariant is a predicate, say P, which must
not be destroyed by the DO mechanism. If P is established before DO is executed, it
should hold after DO terminates, if it terminates at all. So, if DO terminates, it must
obtain P and non BB. A bound function t is a finite integer function of the current
state. It has two important properties:

1. PandBBP (t=0);and

2. each iteration decreases t at least by 1. Attention to these properties guarantees
termination of the iterative mechanism.

The approach suggest designing the DO mechanism carefully choosing P such
that Rpo P P. After that, non BB is determined so that P and non BB P Rpo.
Therefore, if DO terminates, it should terminate in a state where Rpgy holds. When the
approach is mastered, it becomes easy to design correct loops. Using this approach,
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algorithm correctness would be checked and stated in terms of weakest precondition
calculus. Implementation independent optimization should also be reconsidered in this
step. We suggest the use of known techniques based on weakest precondition calculus.
Different solutions of an algorithm design task are to be considered. If there is only one
solution, the designer and implementor should try to find another one. Some solutions,
although more expensive in a way, could prove to be more efficient in certain
implementations.

3.3. Optimization

A good introduction to the optimization phase is a critical look at a solution
obtained through algorithm design. If there are implementation independent pos-
sibilities for optimization, they are to be recognized and exploited.

The implementor also has to recognize possibilities based on implementation
dependent characteristics. We assume that the implementor is acquainted with the
techniques of locating the parts of an algorithm which are of interest for possible
optimization. The issue has been discussed in [2].

The problem is that the optimization process could destroy algorithm
correctness. Because of that, formal proof of optimized algorithm correctness could be
given after optimization. Other approaches propose the use of correct transformations
of suitable segments of correct algorithms [14, 16]. What we suggest here is to develop
the proof in parallel, hand-in-hand with the optimization. This has already been
applied in algorithm design [5, 7, 10]. In this way weakest precondition calculus is not
just a tool for proving algorithm correctness. It helps us find optimal mechanisms, and
optimization could be considered the final phase of algorithm development.

The optimization techniques we use are not new. We just translate known
techniques into a form based on weakest precondition calculus. From the optimization
point of view, the most interesting pieces of code are those in iteration bodies. Thanks
to the approach with an invariant and a bound function, we are able to separate aspects
concerning optimization and correctness. Code and implementation dependent
characteristics give us inspiration for the introduction of new predicates. The result is
the introduction of new mechanisms in order to initialize and maintain these
predicates. Immediately after that, we can pay attention to algorithm correctness. As
first, we calculate the impact of new mechanisms on previously defined invariants.

Most calculations to be done are due to the impact of assignment mechanisms
on the invariants. Let us consider a simple assignment to simple variable:

X=e€

where x is a simple variable, and e is an expression of the same type as x. Assuming
expression e can be properly evaluated, the semantics of the assignment mechanism is
often given in the simple form:



N. Ostoji}, D. Star~evi} / Optimization of the Raster-Scan Circle-Drawing Algorithm 225

wp("x=¢",R)° RX

where the right side of the relation denotes the predicate obtained by simultaneously
substituting e for all free occurrences of x in R (which is called textual substitution).
The problems that could arise from this just given definition, as well as a more precise
definition of textual substitution, are discussed in [7]. In practice, almost all
calculations are reduced to textual substitution according to the form given above.

In this way, we can check if invariant predicates still hold after the execution
of any assignment mechanism. If any invariant has been destroyed, we can determine
compensation mechanisms and restore the destroyed invariant. As a consequence of the
introduction of compensation mechanisms, it could happened that a modified algorithm
is less efficient than the original. A careful analysis and comparison of available
solutions is to be made as a separate phase.

3.4. Evaluation and comparison of the solutions

If there are more than one algorithm solving the same problem, they are to be
compared. If we have only one solution, it is good practice to try to design another one.
In any case, optimized solution efficiency should be analyzed and compared to other
known solutions.

Co-operation between the designer and implementor is very important. It is
possible that an algorithm design involves constraints which prevent the implementor
from obtaining the best solution. Because of that, we propose that the designer and
implementor work together during the optimization phase.

4. CASE STUDY: OPTIMIZATION OF THE CIRCLE
GENERATING ALGORITHM

4.1. Conditions and assumptions

We have discussed the motivation for optimization of the circle generating
algorithm in Section 1. For the sake of simplicity, we consider here conventional circle
generation in raster restricted to integer radius and centre co-ordinates. Using the
approach presented in the previous section, we have arrived at an algorithm which
seems to be more efficient than the other available circle-drawing algorithms. The same
approach can be used for the optimization of both run-length slice circle algorithms,
and those based on the discrete analytical definition of a circle.

The task is usually defined as the problem of activating the sequence of pixels
whose centres are the "nearest" to the circle defined by "f(x, y):x2 +y2 -r?=o"
where r is a nonnegative integer. So, the precondition is

Q: rso,
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and the postcondition is

R: All pixels whose centres are the "nearest" to the circle defined by
f(x,y)=x2+y?- r?> =0 have been activated.

For the sake of presenting our approach, we have chosen a circle with its centre at the
origin and integer radius. Pixels lie on grid lines. The algorithm has to select the same
pixels as the most widely used Bresenham circle algorithm.

The part of the algorithm which has to determine the next approximation
pixel may use only integer addition and/or subtraction, as well as repetition and
selection mechanisms. Magnitude comparisons are to be avoided.

4.2. A view of the standard solution

Exploiting the eight-way symmetry, authors usually consider one octant of a
circle. Assuming the last activated pixel has co-ordinates (x, y), the invariant relation

for the first octant (counting from 0° counterclockwise), can be stated as

P: All approximation pixels with ordinates less than y have been activated.
The job is finished when all pixels in the first octant are initialized, i.e. when

non BB: x££y
holds, which implies the guard of the iteration mechanism

BB: x>y.

For the first octant, the first pixel to be initialized can be (x=r,y=0). After
that, only north (x,y+1) and north-west (x-1, y+1) pixels are available. For the

integer case the choice can be made according to the sign of the sum of the function
values in north and north-west pixels: f (x, y+1)+ f(x-1, y+1). If the value is negative

the north pixel is selected, otherwise the north-west pixel is selected.

The technique of "updating the value already stored" is used to avoid the
calculation of squares. The invariant relation

Pd: d=f(x-1,y+1)+f(x, y+1)=(x- 1)2 +x% +2*((y+1)? - r?)
is initialized at the point (x =r, y =0) executing the statement"d:=3- 2*r".

The bound function that satisfies the required properties from section 3.2, can
be defined as t: x- y. There are two progression statements which decrement function

t, depending on whether the next point is to be activated by an axial move

Sa:"y=y+1"
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or a diagonal move
Sd:"x,y:=x-1,y+1"

Using the weakest precondition calculus we can calculate how progression
statements impact the relation Pd. Consider the axial move:

wp(Sa,Pd) ° wp("y:= y+1",d = (x- 1) +x? +2*((y+1)? - r?))
which, after substituting all occurrences of y by y+1 yields
od=(x-1)%+x?+2*((y+1)® - r?)+4* (y+1)+2.
From here we recognize the progress sequence
Sacd:"y=y+1l;,d=d+4*y+2"

which keeps Pd invariant. After similar analysis it can be recognized and proved that
the sequence

Sded: "x,y:=x-1,y+1;d:=d-4*(x- y)+2"
keeps Pd invariant, simultaneously making a diagonal move.

The solution in a C/C++ notation can take the form:

void circle (int r)

{
int x,y, d;
X=ry=0;d=3- 2*r;
while x >y {
activate_circle_points (X, y);
y ++;
if (d<0) d+=2+4%*y;
else {
X- -5
d+=2- 4*(x--vy);
}
}
if (x==y) activate_circle_points (X, y);
}

Program 2. A standard conventional solution

At this point, we should consider the drawbacks of the solution from the
implementor's point of view. The algorithm body asks for shifting and four arithmetical
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operations per axial move or six arithmetical operations per diagonal move. In addition,
magnitude comparison is needed in the guard of the iteration mechanism.

4.3. The optimization

We have to eliminate the shifting and the magnitude comparison. Also, the
number of additions/subtractions should be reduced.

Let us consider again the mechanisms Sacd and Sdcd. The idea is to eliminate
the multiplication by 4 introducing a new variable, say dd, and a new invariant
relation:

Pdd: d=2*dd

Now we have to answer the question: "how do the progression mechanisms
Sacd and Sdcd impact the relation Pdd?" Using the weakest precondition calculus we
obtain

wp(Sacd, Pdd) © wp('y :=y+1; d := d+4*y+2", d = 2*dd)
°wp('y :=y+1", d+4*y+2 = 2*dd)
° d+4*(y+1)+2 = 2*dd.
So, the result of executing the mechanism Sacd is the enlargement of the left
side in Pdd by 4*(y+1)+2. To restore the truth of Pdd, the right side has to be
enlarged by the same amount. This can be achieved by enlarging dd by 2*(y+1)+1.

Again, we can make use of the previously stored value in the new variable dy defined by
the following invariant relation:

Pdy: dy=2*y+1.

The invariant relation Pdy can be initialized executing "dy := 1" when y = 0.
The progress sequence for axial move now becomes:

Sac: "y :=y+1; dy := dy+2; dd := dd+dy".

After a similar analysis of wp(Sdcd, Pdd) we recognize the need to introduce
another variable, say dxy, defined by the invariant relation:

Pdxy: dxy=2*(x-y)-1.

The invariant relation Pdxy can be initialized executing "dxy := 2*x - 1" when
y = 0. Therefore, the progress sequence for a diagonal move is:

Sdc: "x:=x- 1;y:=y+1;dy:=dy+2;dxy :=dxy - 4;dd :=dd - dxy".

Keeping Pdd invariant ensures that both variables d, dd have the same sign in
all states encountered in the course of computation. So, there is ho need to use both of
them.
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We can summarise our algorithm into the following form:

void OstCircle (int r, int Colour)

{
int x, y, d, dy, dxy;
X=r;
y=0;
d=1-r; /I Pd has been initialised
dy =1, /I Pdy has been initialised
dxy = 2*x - 1; /I Pdxy has been initialised
putpixel (x, y, Colour);
while (dxy > 0) {
if(d<0){ /I select axial or diagonal move
y++; dy += 2;dxy - = 2; /lincrement like phase
d +=dy; putpixel (x, y, Colour); [ltrue addition - 1/0 phase
} else {
X--; y++; dy +=2; dxy - = 4; /lincrement like phase
d - = dxy; putpixel (x, y, Colour); [ltrue addition - 1/0 phase
}
}
}

Program 3. An optimised solution

It has been noted in [12] that "an octant could not be left" by its axial move. In
this particular case, the first octant could not be left by a vertical move. Hence, we
make an unnecessary test of "end of octant condition" after each axial move. Notice that

the while loop can be implemented as follows:

SA: putpixel (x, y, Colour);

dxy-=2;dy +=2; y++;

if (d +=dy) < 0)goto SA;
SD: putpixel (x, y, Colour);

if ((dxy - = 4) <= 0)goto EXIT;

dy +=2; x- -; y++;

if ((d - = dxy) < 0) goto SA,; else goto SD;
EXIT:

Program 4. An implementation of the while loop without "end of octant testing™ after an

axial move
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4.4. Efficiency considerations

Program performances are very machine specific. Although the number of
operations is not sufficient for algorithm speed estimation, we used it as a rough
estimation of performance. To complement this analysis, we tabulated numerical
results from some tests of our solution and the Algorithm from [6], Algorithm YR3
from [21], and Algorithm AJ from [1].

Let us start with considerations regarding implementations with parallelism
on the instruction level. Each iteration step of the optimized solution produces exactly
one approximation point and consists of one "increment like" phase and one "true
addition" phase.

The first phase is to simultaneously increment or decrement some of the
registers x, y, and d. The addition of 2 or 4 on registers dy and dxy, realized in VLSI
technology lasts as an increment operation. All these operations are independent and
can be performed simultaneously, consuming the same time as one increment
operation.

In the second phase, one of the register-variables dy, or dxy is chosen to be
added/subtracted to/from register-variable d. Simultaneously with this, the values of x,
y are followed to the part for activating circle points. This is a true addition phase.

It asks for two phases in both the diagonal (outer loop) and the axial (inner
loop) parts. The former is an increment like phase (changes to x, y, dx and dxy), and the
latter is a true addition phase (changes to d). There is no need to compare values; just a
sign test is required. In total, we need about

»I’/«/E» 0.7*r
true addition phases, and the same number of increment like phases.

The best available solution published in [6] also consists of an "increment like"
phase and a "true addition" phase:

void MidpointCircle (int radius, int Colour)
{/l Foley at all.
int X, y, d, deltaE, deltaSE;

X =0;

y = radius;
d=1- radius;
deltaE = 3;

deltaSE = - 2*radius + 5;
putpixel (x, y, Colour);

while (y > x) {
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if(d<0){ /I Select E
d +=deltaE; /ltrue addition phase
deltaE += 2; deltaSE += 2; x++; /lincrement like phase
} else {
d +=deltaSE; /ltrue addition phase
deltaE += 2; deltaSE += 4; x++; y--; /lincrement like phase
}
putpixel (x,y,Colour);

}
}

Program 5. Midpoint circle algorithm from [6]

The output procedure putpixel is sequentially concatenated to the selection
mechanism, while our solution executes it in parallel with the true addition operation.
Although this solution uses the same number of variables, it performs the "end of
octant" test in each point, i.e. more than twice times. In addition, it asks for a value
comparison in the "end of octant” test. It can be noticed that the value of variable d is
first tested then calculated, while our solution tests it just after calculation, having the
value of the sign test in accumulator without further operations. Hence, we expect our
solution to be faster than alternative algorithms in implementations with parallelism
on the instruction level, as well as on pipeline architectures.

Although our algorithm is optimized for platforms with the possibility of
simultaneously executing several instructions, we can compare it to other solutions
under consumption that instructions are executed sequentially.

The total number of pixels in the region x £y is approximately equal to
w=2/2)*r.

The number of diagonal moves in the same region, which is equal to the
number of axial line segments, is approximately equal to

h=(1-+2/2)*r.
The number of axial moves in this region is equal to the differencew - h.

Denoting by Na, Ni, Ns, and Nc the number of true additions, increments,
shifts, and comparisons respectively, we can calculate the number of operations in
different solutions. In the loop of our solution, we have

Na=h+w» 0.71*r,
Ni =h + 3*w » 2.41*r.

We can notice that there are no comparisons or shifts. The total number of
arithmetic operations in our algorithm is approximately



232 N. Ostoji}, D. Star~evi} / Optimization of the Raster-Scan Circle-Drawing Algorithm

N = Na + Ni » 3.12*r.

In the same way we calculate the number of operations in solutions from the
literature. The totals are tabulated in Table 1. We can see that alternative algorithms
perform 18-23% more operations than our solution. Algorithm AJ from [1] solves a
more general case without any restriction, but it performs more than 15 times more
operations than our solution. This is why conventional algorithms are still in use, in
spite of all their drawbacks. When radius and centre co-ordinates have non-integer
values there is no symmetry, and each pixel co-ordinate is calculated separately. Even if
we compare the number of operations for only one octant, Algorithm AJ requires 90%
more operations compared to our solution.

Table 1: Comparison of the number of operations

Number of operations /r
Algo e Ni N Ne N | NAD:
rithm N(Ours)
Ours 71 241 - - 3.12 --
Foley 71 241 - 71 3.83 1.23
YR3 .36 .92 .21 51 3.68 1.18
Al 2211 7.93 - 17.42 A47.42 15.20

Table 2 gives a comparison of the best computation times of our solution and
the algorithm from [6] for some specific radii. The testing is done on two hardware
platforms.

Table 2: Comparison of computation time

Pentium-S AMD K-5
. Pg5: Pg5:

radius | Pg4 Pg5 Pg4 Pg4 Pg5 Pg4

60 12 32 267 32 56 1.75
125 22 56 255 6.0 11.0 1.83
250 6.6 10.0 1.52( 11.0 22.0 2.00
500 11.0 19.8 1.80] 22.0 380 1.73
1000 230 396 1.72( 60.0 1100 1.83
2000 46.2 78.0 1.69] 1100 1700 1.55

The times listed in Table 2 do not reflect real running times since no pixels are
written. A function call and output operations are too expensive in so short a code. We
must switch them of if we want to compare computation times. The figures in Table 2
shows that our algorithm is 52-167% faster, which is considerably better than expected
from the number of operations comparison. This is because there is not much
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dependence among the instructions of our algorithm. This offers better possibilities for
parallel execution on the instruction level, as we commented earlier in this section.

5. CONCLUSION

We presented a disciplined approach to raster algorithm optimization based on
implementation dependent characteristics. The method is based on the weakest
precondition calculus. In this way, the care of algorithm correctness is taken through
the optimization process. This gives more freedom in implementing the ideas for
optimization.

We expect that this approach can be of help in the implementation dependent
optimization phase of algorithm development. To illustrate our approach we considered
the optimization of a conventional circle generating algorithm restricted to integer
radius and centre co-ordinates. Using the method presented herein we have come to a
solution which seems to be more efficient than the other available circle-drawing
algorithms. The approach can be used for circles with arbitrary radius and centre co-
ordinates, regardless of whether the circle definition is based on the conventional
definition or the discrete analytical definition.

The proposed approach can prove helpful in optimizing circle generating
algorithms for different target video adapters. We expect that this approach can be
used to improve sequential circle generating algorithms when a computer system can
make the simultaneous output of as few as two pixels. Developers of circle-based
algorithms (e.g. circle brush or general arc) may also benefit from this approach. We
expect this approach to influence parallel circle-drawing algorithms, as well.

There is the danger that the output from the design phase could involve such
constraints that optimization could fail to achieve the best solution. The careful
analysis and comparison of available solutions is suggested as a separate phase.

The question arises as to what extent this kind of the optimization could be
achieved automatically by a compiler. Our approach to the matter is that too many
implementors expect compiler optimizers to compensate for their own intellectual
inadequacies. We are working on the specification of computer aided facilities that
should help us reach better solutions on manipulating algorithms and influencing the
way we think, but not completely solving problems instead of us.
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