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Abstract: Abstract: The equilibrium programming problem with coupled constraints is stated
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1. STATEMENT OF THE PROBLEM

Let us consider the problem of computing a fixed point of the extreme coupled
constrained mapping

find 0Ω∈*v  such that },,),(|),(min{Arg ***
00 Ω∈≤Φ∈ wwvgwvv (1.1)

where RRRwv nn →×Φ :),( , nmnn RRRRwvg ∈Ω→× 0,:),(  is a convex closed set.
It is assumed that ),( wvΦ  and each component of vector-function ),( wvg  are convex
in 0Ω∈w  for any 0Ω∈v . It is also assumed that the extreme (marginal) mapping

}|),(min{Arg)( 0Ω∈Φ≡ wwvvw  is defined for all 0Ω∈v  and the solution set

0Ω⊂∈Ω∈=Ω )}(|{ **** vwvv  of the initial problem is nonempty.

By definition (1.1), any fixed point satisfies the inequality

.),(,),(),( **** 00 ≤Ω∈∀Φ≤Φ wvgwwvvv (1.2)

Let us introduce the function ),(),(),( vvwvwv Φ−Φ=Ψ  and using it let us present (1.2)
as
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.),(,),( ** 00 0 ≤Ω∈∀≥Ψ wvgwwv

The inequality obtained is a consequence of (1.1) [8].

The statement of (1.1) includes the so-called coupled constraints ,),( 0≤wvg
which associate parameters v  and variables w . The presence of such constraints
makes the model more realistic for the description of conflict situations, but on the
other hand more difficult to solve. This fact explains why there are almost no articles in
the literature devoted to solution methods of problems with coupled constraints.
Among a few we note the J.B. Rosen article (1965) [18].

In this paper, we propose a new method for solving the equilibrium
programming problem with coupled constraints and study its convergence.

2. PROBLEM GOALS

In this section, we will make a brief review of the best known problems where
the presence of coupled constraints matches reality.

1. Two person game with coupled constraints. Two person game with coupled constraints. For the sake of simplicity we consider
the two person game with scalar coupled constraints [10]

},),,(),(|),(min{Arg

},),,(),(|),(min{Arg
*****

*****

222122122122

112112112111

Qxxxgxxgxxfx

Qxxxgxxgxxfx

∈≤∈

∈≤∈

(2.1)

where .:,,, 1
2121 RRRggff nn →×  All of these functions are convex in their own

variables for any value of improper variables, i.e. 11 gf ,  are convex in 1x  for any 2x

and, respectively, 22 gf ,  are convex in 2x  for any 1x .

Any n-person game can always be scalarized and reduced to computing a fixed
point of an extreme map. This procedure was described for the first time in [13] for a
game without coupled functional constraints. However this procedure can be
transferred to coupled constraint games. It can be done as follows. We introduce two
normalized functions of the type:

),,(),(),(),,(),(),( 212211212211 xygyxgwvGxyfyxfwv +=+=Φ

where .,),,(),,( 2102121 QQwvxxwyyv ×=Ω∈==  With the help of these functions
we formulate the problem as follows. Find a vector 0Ω∈*v  satisfying extreme inclusion

},),(),(|),(min{Arg *****
00 Ω∈≤−Φ∈ wvvGwvGwvv . (2.2)

Now let us demonstrate that any solution of (2.2) is a solution of (2.1).
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Problem (2.2) can be presented as

),(),(),(),( ******
212211212211 xxfxxfxxfxxf +≤+

for all 21 xx ,  satisfying conditions

.,),(),(),(),( ******
2211212211212211 0 QxQxxxgxxgxxgxxg ∈∈∀≤−−+

In particular this system of inequalities is correct for all pairs of the type
**, 2121 xQxx ×∈ . The latter means that in this case the system takes the form

),(),( ***
211211 xxfxxf ≤

for all 21 xx ,  subjected to inequality

.),(),( ***
11211211 Qxxxgxxg ∈∀≤

Since the set contains the point *
1x  it is obvious that the last system of inequalities is

equivalent to the first problem from (2.1). Similar reasoning with respect to the pair

21 xx ,*  leads us to the second problem (2.1).

It is easy to see that problem (2.2) in the case of differentiability of the
objective function always can be presented in the form of the variational inequality

),,(),(,),,( ****** vvgwvGwvwvvw ≤Ω∈∀≥−Φ∇ 00

where wvww wvvv =Φ∇=Φ∇ |),(),( .

2. Elementary model for price equilibrium.Elementary model for price equilibrium. Let us consider the elementary market
where one aggregated customer acts [16]. Let )(xf  be his utility function, β  be the
amount of money which the customer has to spend and x  be the vector of resources
which he wants to purchase. The cost of resources is described by the vector of prices
p . The situation is characterized by the fact that, on one hand, the customer cannot

purchase goods which cost more than β  and, on the other hand, it is impossible to
purchase more goods than are present in the market, namely more than .0y  Thus,
assuming that when purchasing goods the customer maximizes the utility function, we
come to the following problem: find the vector of equilibrium prices *pp =  and optimal

resources *xx =  such that

.

},,,|)(max{Arg

*

**

0yx

Qxxpxfx

≤

∈≤∈ β
(2.3)
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Let us strengthen the material balance 0yx ≤*  in this problem by adding it to

the requirement of the financial balance ., ** 00 =− yxp  Then the set of these

conditions will satisfy an inequality of the kind ., ** 000 ≥∀≤−− pyxpp  This means

that the nonpositive linear functional 0yxpp −− **,  reaches its maximum at point

*p  over the positive orthant. In other words, we come to the problem

}|,max{Arg

},,|)(max{Arg

**

**

00 ≥−−∈

∈≤∈

pyxppp

Qxxpxfx β

such that its solution satisfies (2.3). The problem obtained is of the type (2.1).

In the considered market the aggregated producer is submitted by vector 0y .
However, his presence in the market can be essentially strengthened by enabling him
to minimize the production of goods which will never be bought at the specific prices.
Thus, we obtain the following model of the situation

},,|,min{Arg

},,,|)(max{Arg

***

**

Yyyxypx

Qxxpxfx

∈≤∈

∈≤∈ β
(2.4)

where Y is the set of admissible plans of the producer. In the general case, the
admissible set of the producer can appear empty at the price of p, therefore it is
required to select the prices *pp =  so as to ensure the non emptiness of the set

,},|{ * 0/≠∈≤ Yyyxy

and, therefore, the existence of a solution of the problem.

3. Multicriteria decision making model on a subset of effective points.Multicriteria decision making model on a subset of effective points.  The specificity
of the multicriteria decision making problem [19] is that there is some set of
alternatives Qx ∈  on which the vectorial criterion of efficiency

))(),...,(),(()( xfxfxfxf m21=  is given. The decision maker tries to increase each of the
scalar criteria on a specific alternative set. In the convex case the scalarization of
vectorial criterion ,)()(, ∑ =

== mi
i ii xfxf 1 λλ  where 0≥λ  allows the optimal alternative

set (Pareto set) to be described as a set of optimal solutions for the set of scalar
problems }|)(,max{Arg Qxxfx ∈∈ λλ  [12]. In other words, in the general case for a

multicriteria decision making problem the value of parameter *λλ =  and, respectively,
optimal solution *x  must be selected so that both vectors belong to some a priori given
subset of effective points, i.e.
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.)(

},|)(,max{Arg

*

**

0≤

∈∈

xg

Qxxfx λ
(2.5)

Assuming that the dimensionality of vectors λ  and )(xg  is the same and

strengthening the requirement 0≤)( *xg  by condition 0=)(, *xgλ  we come to a

problem where the solution satisfies the following simultaneously

}.|)(,max{Arg

},|)(,max{Arg

***

**

0≥−∈

∈∈

λλλλ

λ

xg

Qxxfx

This is a problem of type (2.1).

If model (2.5) describes some technical project, then the maximization of a
vectorial criterion provides efficiency of the project and conditions 0≤)(xg  denote
financial, ecological and other restrictions.

4. Quasivariational inequalities. Quasivariational inequalities. Consider a bilinear two person game with coupled
constraints, which are put together with the help of convex closed sets

nn RRQQK ×∈×∈ 21  [9]. We conduct two cross-sections through a fixed point

Kxxx ∈= ),( 21  of the kind }),(|{)(},),(|{)( KxxRxxKKxxRxxK nn ∈∈=∈∈= 21222111

and consider the game

)},(|,,min{Arg

)},(|,,min{Arg

***

***

xKxxlxAxx

xKxxlxxAx

22222212

11112111

∈+∈

∈+∈
(2.6)

where ).,( ***
21 xxx =  Let us introduce the matrix AT (T is the transpose operation) with

elements 00 2222111211 ==== aAaAaa TT ,,,  and vector ),( 21 lll = ; then problem (2.6)
can be presented in the equivalent form of the variational inequality

),(,, **** xKxxxlxxxA T ∈∀≥−+− 0 (2.7)

where ).()()( *** xKxKxK 21 ×=

When TA1  and TA2  are differential operators and ∈×∈ 21 QQK ,21 HH ×

where 21 HH ,  are Hilbert spaces, problem (2.7) is a so-called quasivariational
inequality [9].

We note that if ),(),( 212211 xxgxxg =  in (2.1), then this problem takes the
form (2.6).
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5. Two-level programming.Two-level programming.  The well known minimax problem can be considered an
elementary problem of hierarchical programming [11]. We are actually searching for an
optimal strategy for the minimum function

}.,),(|),({minmax},),(|),(min{max YyyxgyxfYyyxgyxf
yxyx

∈≤=∈≤ 00

Here nRyXx ⊂∈ )(  and .nRYy ⊂∈  Any point of a variety
},),(|),(min{Arg)( Yyyxgyxfxy ∈≤= 0  can be a solution of this problem. However, if

),(),,( yxgyxf  are convex in y for any x, and *x  is a fixed point of extreme inclusion

},,),(|),(min{Arg *** Yyyxgyxfx ∈≤∈ 0

then the minimax problem can be reduced to calculating a fixed point of this extreme
map.

3. SPLITTING OF OBJECTIVE FUNCTIONS

In the linear space of bifunctions (functions of two variables) ),( wvΦ  we mark
out two linear subspaces by means of conditions

,,),(),( 000 Ω∈∀Ω∈∀=Φ−Φ vwvwwv (3.1)

.,),(),( 000 Ω∈∀Ω∈∀=Φ+Φ vwvwwv (3.2)

The functions of the first subspace are called symmetric; those of the second
class, antisymmetric. If these functions are defined on a square grid, we have the
conventional classes of symmetric and antisymmetric matrices.

Recall that a pair of points with coordinates vw,  and wv,  is situated
symmetrically with respect to the diagonal of the square ,00 Ω×Ω  i.e., with respect to
the linear manifold .wv =  This allows us to introduce the concept of a transposed
function [3]. If we assign the value of ),( vwΦ  calculated at the point w, v to every point
with coordinates v, w, that is ),,(, vwwv Φ→  then we obtain the transposed function

).,(),( vwwvT Φ=Φ  In terms of this function conditions (3.1) and (3.2) look like

).,(),(),,(),( wvwvwvwv TT Φ−=ΦΦ=Φ

Using the obvious relations =Φ+ΦΦ=Φ TTT wvwvwvwv )),(),((,)),((),( 21

),,(),( wvwv TT
21 Φ+Φ=  we can readily verify that any real function ),( wvΦ  can be

represented as the sum

),,(),(),( wvKwvSwv +=Φ (3.3)
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where ),( wvS  and ),( wvK  are symmetric and antisymmetric functions, respectively.
This expansion is unique, and

)).,(),((),()),,(),((),( wvwvwvKwvwvwvS TT Φ−Φ=Φ+Φ=
2
1

2
1 (3.4)

The classes of symmetric and antisymmetric functions are subsets of more
general functional classes, namely of pseudo-symmetric and skew-symmetric functions.
In the following sections we will investigate properties of these classes.

4. SYMMETRIC FUNCTIONS

Now we introduce the following definitions.

Definition 1.Definition 1.  A differentiable function ),( wvΦ from nn RR ×  in 1R  is called pseudo-
symmetric on 00 Ω×Ω  if there exists a differentiable function )(vp  such that

,|),()( 02 Ω∈∀Φ∇=∇ = vwvvp vww (4.1)

where )(vp∇  is the gradient of )(vp  and ),( wvwΦ∇  is the partial gradient of the
function ),( wvΦ  in w. The function )(vp  is called the potential for the operator

.|),( vww wv =Φ∇

The latter means that there exists function )(wp , such that its gradient
coincides with the operator .|),( vww wv =Φ∇2

If the function )(wp  is twice continuously differentiable, then the Lagrange
formula follows from (4.1)

∫ ++Φ∇+=+
1

0
2 .),,()()( dththvthvvphvp w (4.2)

On the other hand, if the Jacobi matrix )(vF∇  for the operator

vww wvvF =Φ∇= |),()(  is symmetric for all ,0Ω∈v  then (4.2) holds and, in this case,
operator ),( vvwΦ∇  is potential [15].

So, if the objective function of (1.1) satisfies (4.1) or (4.2), then the equilibrium
problem is said to be potential.

The set of all pseudo-symmetric functions makes itself a linear space. The
pseudo-symmetric functions include all symmetric functions (3.1).

Furthermore, the symmetric property plays a crucial role for the description of
both objective functions and functional constraints. Therefore we enter the following
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Definition 2.Definition 2.  A vector function ),( wvg  from nn RR ×  in mR  is called symmetric on
nn RR ×  if the following holds

.,),(),( 00 Ω∈∀Ω∈∀= wvvwgwvg (4.3)

It is not hard to produce examples of symmetric functions. First of all they are
functions generating budget constraints in economic equilibrium models:

wvwvg ,),( =  or ,,),( wAvwvg =  where A is a symmetric matrix. In applications the
Cobb-Douglas and constant elasticity-of-substitution production functions are widely

known: βα wAvwvg =),(  and ,)(),( / ωγωω βα −−− += wvAwvg  where ,,, 000 >>> βαA
0>ω  are parameters. If α  and β  are equal, then these functions are symmetric in

the sense of (4.3). It is possible to check that the function
),,(),(),( 2121 xyfyxfwv +=Φ  where ),(),,( 2121 xxwyyv == , is symmetric.

Let us explore the crucial properties of symmetric functions [6]. To that end
we differentiate identity (4.3) in w and obtain

,,),(),( 00 Ω∈∀Ω∈∀∇=∇ vwvwgwvg T
v

T
w (4.4)

where ),(),,( vwgwvg T
v

T
w ∇∇  are nm×  matrices, and miwvgvwg iwiv ,...,,),,(),,( 21=∇∇

are line-vectors.

If we put vw =  in (4.4), then we have

.),(),( 0Ω∈∀∇=∇ vvvgvvg T
v

T
w (4.5)

Thus, we can formulate the following:

Property 1.Property 1.  The matrices of the gradient-restrictions of vector symmetric functions
),( wvg  with respect to variable v and w on the diagonal of the square 00 Ω×Ω  are

identical.

By the definition of the differentiability of function ),( wvg  we get [20]

),,,,(),(),(),(),( khwvkwvghwvgwvgkwhvg T
w

T
v ω+∇+∇+=++ (4.6)

where 02122 →+ /)|||/(|),,,( khkhwvω  as 022 →+ |||| kh . Let us take vw =  and
kh = ; then using (4.5) we get from (4.6)

),,(),(),(),( hvhvvgvvghvhvg T
w ω+∇+=++ 2 (4.7)

where 0→||/),( hhvω  as 0→|| h . Since (4.7) is a particular case of (4.6) this means

that gradient-restriction ),( wvgT
w∇  onto the diagonal of the square 00 Ω×Ω  is the

gradient ),( vvgT∇  of the function ),( vvg , i.e.
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02 Ω∈∀∇=∇ = vvvgwvg T
wv

T
w ),(|),( . (4.8)

That proves the following [6]:

Property 2.Property 2.  The operator wvw wvg =∇ |),(2  is potential and coincides with the gradient-
restriction of symmetric function ),( wvg  on the diagonal of a square, i.e.

),(),( vvgvvg TT
w ∇=∇2

This key property plays an important role later on.

We have already pointed out that if functions ),( 211 xxg  and ),( 212 xxg  are
equal in (2.1), then this problem reduces to (2.6). Let us verify that in this case the
normalized function ),( wvG  from (2.2) satisfies symmetric property (4.3). Really

),(),(),( 212211 xygyxgwvG +=  and ),(),(),( 212211 yxgxygvwG +=  but as
),(),( 212211 xxgxxg =  it follows that ),(),( vwGwvG = . Thus, problem (2.1) in the

considered case has symmetric coupled constraints.

5. SKEW-SYMMETRIC FUNCTIONS

Let us introduce the following:

Definition 3.Definition 3.  A function ),( wvΦ  from nn RR ×  to 1R  is called skew-symmetric on

00 Ω×Ω  if it obeys the inequality [2]

.,),(),(),(),( 000 Ω∈∀Ω∈∀≥Φ+Φ−Φ−Φ vwvvwvvwww (5.1)

If the inequality

,),(),(),(),( ****
00 Ω∈∀≥Φ+Φ−Φ−Φ wvvwvvwww (5.2)

holds, where ** Ω∈v , then the function ),( wvΦ  shall be called skew-symmetric with
respect to an equilibrium point.

The class of skew-symmetric functions is nonempty, as it includes all anti-
symmetric functions (3.2). If we put wv =  in (3.2), then 0=Φ+Φ ),(),( vvvv , i.e., the
antisymmetric function is equal to zero on the diagonal of the square 00 Ω×Ω . If this
function is convex in w, then it follows from (2.2) that it is concave in v. In this case

),( wvΦ  is a saddle point function. To illustrate that we consider the normalized
function ),( wvΦ  for the saddle-point problem, which obeys the relations [1]

.,),(),(,),( 0000 Ω∈Ω∈∀=Φ+Φ=Φ vwvwwvvv

From the above it follows that skew-symmetric equilibrium problems largely inherit
the properties of saddle-point problems.
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Note that condition (5.1) in the case of monotonicity for ),( wvΦ  in 0Ω∈w

entails the monotonicity of gradient-restriction ),( vvwΦ∇  on the diagonal of square

00 Ω×Ω . Indeed, let function ),( wvΦ  be convex in w, then using the system of convex
inequalities

  xyyfxfyfxyxf −∇≤−≤−∇ ),()()(),( (5.3)

for all x and y over some set, from (5.1) we have the monotonicity of the gradient-
restriction

.),,(),( 000 Ω∈+∀Ω∈∀≥Φ∇−++Φ∇ hvvhvvhvhv ww (5.4)

Note that if ),( wvΦ  is the normalized function of the saddle-point problem [1],

then T
yx yxLyxL )),(),,(( ∇−∇  is a monotone operator. The latter fact follows from

(5.4) and is established in [17].

Let us consider another useful inequality which allows us to estimate the
growth rate of the function ),( wvΦ  in the neighbourhood of a point 00 Ω×Ω∈wv,

|||||)},(),({)},(),({| khLvwkvwvhwkvhw ≤Φ−+Φ−+Φ−++Φ (5.5)

for all ,,,, 00 Ω∈+Ω∈+ kvvhww  where L is a constant. The class of functions
satisfying condition (5.5) is nonempty [2].

It was stated previously that symmetric functions possess the potential
property. But some of them are also skew-symmetric. Indeed, consider a subset of
functions subject to the condition:

00 Ω×Ω∈∀ΦΦ≤Φ wvvvwwwv ,),(),(),( .

Let us write out an expression similar to the left-hand side of (5.1). Using (2.1)
and the condition introduced, we rewrite this expression to obtain:

,,)),(),((),(),(),(),(

),(),(),(),(),(),(),(

0
2 02

2

Ω∈∀≥Φ−Φ=Φ+ΦΦ−Φ≥

≥Φ+Φ−Φ=Φ+Φ−Φ−Φ

wvvvwwvvvvwwww

vvvwwwvvwvvwww

i.e., the function ),( wvΦ  obeys the skew-symmetric condition. From here, it follows
that if ),( wvΦ  is convex in w for any 0Ω∈v , then ),( vvwΦ∇  is the monotone operator.
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6. REDUCTION TO A DOUBLE SADDLE-POINT

Let us consider a function of three variables

,,,),(,),(),,( 000 ≥Ω∈Ω∈∀+Ψ= pwvwvgpwvpwvLL

where ),(),(),( vvwvwv Φ−Φ=Ψ . Point *** ,, pvv  is called a double saddle-point, if the
inequalities hold

,,),,(),,(),,( ******* 00 ≥∀Ω∈∀≤≤ pwpwvpvvpvv LLLLLL (6.1)

and

.,),,(),,(),,( *******
00 Ω∈∀Ω∈∀≤≤ wvpwvpvvpvv LLLLLL (6.2)

The inequality (6.1) means that the last two components of vector *** ,, pvv

(when the first one is fixed) represent a saddle-point of Lagrange function ),,( * pvvLL
for the convex programming problem },),(|),(min{Arg ***

00 Ω∈≤Ψ∈ wwvgwvv .

Inequality (6.2) in turn means that the first two components of vector *** ,, pvv  (when
the third one is fixed) are a saddle point of function ),( wvΨ , i.e.

.),(,),(,,),(),(),( ****** 0000 ≤≤Ω∈∀Ω∈∀Ψ≤Ψ≤Ψ wvgvvgwvwvvvvv (6.3)

In particular, from (6.3) the initial problem follows

.,),(),(),( ****
00 Ω∈∀≤Φ≤Φ wwvgwvvv

If the function ),( wvΦ  is skew-symmetric and convex in w for any v, then a

double saddle-point *** ,, pvv  for function ),,( pwvLL  exists. To calculate a double
saddle-point the system of inequalities (6.1) and (6.2) must be solved.

Let us consider the described situation in more detail. For the fixed value of
parameter *vv =  problem (1.1) represents a convex programming problem with respect
to w. The Lagrange function ),,( * pwvLL  under Slater-type regularity condition has a
saddle point, which satisfies the system of inequalities (6.1). In the case of
differentiability this system can be presented in the form of variational inequalities

.,),(),( ******
00 Ω∈∀≥−∇+Φ∇ wvwpvvgvv T

ww

.),(, *** 00 ≥≤− pvvgpp (6.4)
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Now we transform separately the second term in the first inequality. Taking
into account a key property of symmetric functions (4.8) and the convexity of vectorial
function ),( vvg  component-wise, we have

.),(),(,))(,(,,),( *********** 0
2
1

2
1

≥−≤−∇=−∇ vvgwwgpvwvvgpvwpvvgT
w

In view of the obtained evaluation we copy the first inequality from (6.4) in the form

.),(),(,),,( ******
00

2
1

Ω∈∀≥−+−Φ∇ wvvgwwgpvwvvw (6.5)

If operator ),( vvwΦ∇  is monotone, then by virtue of (5.4) we obtain from (6.5)

.),(),(,),,( ****
00

2
1

Ω∈∀≥−+−Φ∇ wvvgwwgpvwwww (6.6)

This inequality is obtained from the condition of monotonicity of the operator
),( vvwΦ∇ . However, this inequality can be valid for non-monotone operators. As this

inequality is a key and underlies the proof of convergence of gradient-type methods, we
put sufficient conditions providing fulfillment of (6.6).

1. If the function ),( wvΦ  is skew-symmetric in sense (5.1) and convex in w for any v,
then by virtue of (5.3), (5.4) the gradient-restriction of this function ),( vvwΦ∇  is a
monotone operator.

2. If the function ),( wvΦ  is not skew-symmetric, then it has expansion (3.3), and its
gradient-restriction is presented as

.|),(|),(|),( wvwwvwwvw wvKwvSwv === +∇∇=Φ∇

Since the operator wvw wvS =∇ |),(  is symmetric (or in the more general case it is
pseudo-symmetric), then by virtue of (4.1) we have )()/(),( vpvvSw ∇=∇ 21 . This means
that there exists a function ),()()/(),( wvKwpwvP += 21  (which is natural to be named
a saddle-point potential), such that

,|),(|),( wvwwvw wvPwv == ∇=Φ∇

and ),( wvP  is a skew-symmetric function as the sum of a function of one variable and a
skew-symmetric one. In this case inequality (6.5) can be presented in the form

.),(),(,),,( ******
00

2
1

Ω∈∀≥−+−∇ wvvgwwgpvwvvPw

Now, if the function ),( wvP  is convex in w for any v, then by virtue of the same
inequalities (5.3), (5.4) the gradient-restriction ),( vvPw∇  is a monotone operator and,
therefore, we get from the last inequality
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.),(),(,),,( ****
00

2
1

Ω∈∀≥−+−∇ wvvgwwgpvwwwPw

From here, by virtue of ),(),( vvPvv ww ∇=Φ∇  we obtain (6.6).

3. In the previous section we saw that if function ),( wvΦ  is not skew-symmetric,
then there always exists a skew-symmetric function ),( wvP  such that

),(),( vvPvv ww ∇=Φ∇ . In this section we shall expand the class of skew-symmetric
functions and we shall enter following

Definition 4.Definition 4.  A function ),( wvΦ  from nn RR ×  in 1R  is called skew-convex on Ω×Ω ,
if it satisfies the inequality

.,),(),(),,( 000 Ω∈∀Ω∈∀≥Φ+Φ−−Φ∇ vwvvwvvwwww (6.7)

If this inequality is made with respect to the solution of the problem

,),(),(),,( ****
00 Ω∈∀≥Φ+Φ−−Φ∇ wvvwvvwwww (6.8)

then the function ),( wvΦ  is called skew-convex relative to equilibrium.

The class of skew-convex functions is nonempty as it includes all the skew-
symmetric functions convex in w for any v. It is not hard to be convinced of that with
the help of inequality (5.3).

Let us show that the condition (6.6) can hold in the class of skew-convex
functions without the monotone condition for the operator ),( vvPw∇ . We copy
inequality (6.8) as

,),(),(,),(),(

),(),(,),,(

******

****

00
2
1

2
1

Ω∈∀≥−−Φ+Φ−

−−+−Φ∇

wvvgwwgpvvwv

vvgwwgpvwwww
(6.9)

From necessary condition (6.4) and symmetry of function ),( wvg  we have

.,),()/(),( ******
0021 Ω∈∀≥−∇+Φ∇ wvwpvvgvv T

w

Assuming the property of pseudo-convexity for function ),(,)/(),( wwgpwv 21+Φ  we
have from the last inequality

.),(),(,)/(),(),( ******
0021 Ω∈∀≥−+Φ−Φ wvvgwwgpvvwv

Comparing this inequality with (6.9), we obtain (6.6), under the circumstances
that the operator wvw wvP =∇ |),( , generally speaking, is not monotone. This reasoning
is true with respect to function ),( wvP  as well.
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7. SYMMETRIZATION

The argumentation of the previous section indicates that the symmetry of
functional constraints plays a crucial role in the construction of methods for solving
equilibrium problems with coupled constraints. However, the coupled constraints in
(1.1) may not have properties of symmetry, for example, they can be antisymmetric, i.e.
satisfy condition 0Ω∈∀−= wvvwgwvg ,),(),( . We show that in this case the coupled
constraints do not affect the solution of (1.1) and therefore can be discarded. Let us
consider a pair of problems

}|),(min{Arg **
0Ω∈Φ∈ wwvv

and

},,),(|),(min{Arg ***
00 Ω∈∀≤Φ∈ wwvgwvv

where ),( wvg  is an antisymmetric function. Such a function on a diagonal of square

00 Ω×Ω  is always equal to zero, since wv =  from ),(),( vvgvvg −=  it follows that

0=),( vvg . We consider the intersection of two sets }),(|{ * 00 ≤∩Ω wvgw . This

intersection is not empty (contains point *v ) and is a subset of 0Ω . Since *v  is a

minimum point of function ),( * wvΦ  on 0Ω , i.e. it is a solution of the first problem, it is
especially a minimum point of this function on any subset, i.e. it is a solution of the
second problem. Thus, antisymmetric coupled constraints can always be discarded in
equilibrium problems.

In the general case, if the function ),( wvg  is neither symmetric nor
antisymmetric, the constraints of problem (1.1) can be symmetrized. It can be done
under the scheme (3.1)-(3.3). Let us introduce two subclasses of vectorial symmetric
and antisymmetric functions

,,),(),( 000 Ω∈∀Ω∈∀=− vwvwgwvg (7.1)

.,),(),( 000 Ω∈∀Ω∈∀=+ vwvwgwvg (7.2)

These conditions generalize the concepts of symmetric and antisymmetric matrices.
The transposed function can be defined as ),(),( vwgwvgT = . Then any vectorial
function has expansion

),,(),(),( wvkwvswvg += (7.3)

where ),( wvs  is a symmetric and ),( wvk  is an antisymmetric function. This expansion
is unique, and

)).,(),((),()),,(),((),( wvgwvgwvkwvgwvgwvs TT −=+=
2
1

2
1 (7.4)
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Using the obtained expansion we present the functional constraints of (1.1) in
the form },),(),(),(|{ ***

00 Ω∈≤+= wwvkwvswvgw . From the argumentation above,
it should follow that the antisymmetric part of the constraints can be discarded here.
Let *v  be the solution of the problem

}.,),(|),(min{Arg ***
00 Ω∈≤Φ∈ wwvswvv (7.5)

Let us introduce denotations },),(|{ *
00 Ω∈≤= wwvgwD  and =1K

},),(|{ *
00 Ω∈≤= wwvkw , },),(|{ *

02 0 Ω∈>= wwvkwK . We split the admissible set
of the initial problem D in two parts 11 KDD ∩=  and 22 KDD ∩= , and 21 DDD ∪= .

For all 2Dw ∈  it is possible to omit the value ),( * wvk  in the inequality

00 Ω∈≤+ wwvkwvs ,),(),( **  and then one can approve that

}.,),(|{ *
02 0 Ω∈≤⊂ wwvswD  On the other hand, let us consider the intersection

}.,),(|{ *
01 0 Ω∈≤∩ wwvswD  The solution *v  belongs to it and the function ),( * wvΦ

has a minimum point in that. Any point of this intersection satisfies the condition
.,),(),( **

00 Ω∈≤+ wwvkwvs  Therefore, if the solution of problem (1.1) has a feasible

neighbourhood, for example, when condition 00 Ω∈< wwvg ,),( *  holds, then solution
(7.5) is the solution for (1.1). Thus to find the solution of problem (1.1) it is necessary
to solve the symmetrized problem

}.,),(),(|),(min{Arg ****
00 Ω∈≤+Φ∈ wwvgwvgwvv T

The idea of the symmetrization of constraints opens the possibility of solving
equilibrium problems with coupled constraints.

8. GRADIENT PREDICTION-TYPE METHOD

Let us consider the following gradient prediction-type method. Let 00 pv ,  be a
given approximation; then next iteration can be calculated by means of recurrent
formulas [4], [5]
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Ω
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+
+
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απ

απ

απ

απ

0

0

1

1
(8.1)

A steplength nα  can be determined in process (8.1) either from the condition
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,,||)|||(|/ 0
2
1210 22

22
2

1 >+∇+∇<≤< εαε gCn (8.2)

where constants ||,|,||,| gC21 ∇∇  are determined in (8.4), (8.6), or from the condition

.||)()|),(),(|

|)),(),((),(),((|

22

22

1
2
1 nnnnnn

nnnT
w

nnT
w

nn
w

nn
wn

vvvvgvvg

pvvgvvgvvvv

−−≤−+

+∇−∇+Φ∇−Φ∇

ε

α
(8.3)

To check the fulfillment of condition (8.3) we first select any number 0α  (the
same for all iterations, for example 10 =α ), then we calculate two first iterations (8.1),

i.e. vectors nn vp ,  and we check the condition. If it is satisfied, then we take the
obtained value as a steplength. Otherwise we decrease the parameter until the
condition (8.3) is met.

At first sight it seems that the considered selection of steplength is too hard.
Indeed, in order to determine parameter nα , generally speaking, the problem of
minimizing a strong convex function on a simple set must be solved several times. But
such an approach does not assume knowledge of a priori constants of the Lipschitz type
or an upper estimate of the Lagrange multiplier. Besides it is not necessary to
determine new values of parameters at each iteration. It can be sufficient to use the old
values of parameters, occasionally correcting them.

Estimates of deviations for vectors nv  and 1+nv , and also 1+nn pp  can be
obtained from (8.1) as follows:

.|)),(),((),(),(|||

|,),(),(|||
nnnT

w
nnT

w
nn

w
nn

wn
nn

nnnn
n

nn

pvvgvvgvvvvvv

vvgvvgpp

∇−∇+Φ∇−Φ∇≤−

−≤−
+

+

α

α
1

1
(8.4)

Now, we justify the selection of parameter nα  from (8.2) or (8.3). It is

assumed that functions ),( wvg  and ),(),,( vvgvv T
ww ∇Φ∇  satisfy the Lipschitz

conditions

|||||),(),(| hgvvghvhvg ≤−++ (8.5)

for all ,Ω∈v  and ,nRh∈  where || g  is constant and

|,||||),(),(|

|,||||),(),(|

hvvghvhvg

hvvhvhv
T
w

T
w

ww

2

1

∇≤∇−++∇

∇≤Φ∇−++Φ∇
(8.6)

for all ,Ω∈v  and ,nRh∈  where |||,| 21 ∇∇  are constants, moreover .|| Cpn ≤

By virtue of (8.5) and (8.6) we have
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|,||)||||(|
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pvvgvvgvvvv
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21

.|||||),(),(| nnnnnn vvgvvgvvg −≤−

Since ,|| Cpn ≤  then

.||}||)/(|)||{||),(),(|)/(

|)),(),((),(),(|
222
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2121 nnnnnn
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nn
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pvvgvvgvvvv
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+∇−∇+Φ∇−Φ∇
(8.7)

From this it is evident that if the condition holds, ,/)(||)(|)||(| 22
2
12

21 1 ng αε−≤+∇+∇

i.e.

,
||)/(|)||(| 22

21

2

21
1

gC
n

+∇+∇

−≤ εα

then always there exist nα  satisfying evaluation (8.3).

Let us present this process in the form of variational inequalities. We write the
first and the third equation from (8.1) in accordance with the definition of the
projection operator as

,),,( 00 ≥∀≥−−− pppvvgpp nnn
n

nn α (8.8)

and

.),,( 0011 ≥∀≥−−− ++ pppuugpp nnn
n

nn α (8.9)

We present the second and the fourth equations as

,),),(),(( 00 Ω∈∀≥−∇+Φ∇+− wvwpvvgvvvv nnnnT
w

nn
wn

nn α (8.10)

and

.),),(),(( 0
11 0 Ω∈∀≥−∇+Φ∇+− ++ wvwpvvgvvvv nnnnT

w
nn

wn
nn α (8.11)

We will now show that the process (8.1) converges monotonically under the
norm to one of the equilibrium solutions. In the theorem presented below we require
the fulfillment of non-constructive condition (6.6), noting that Section 6 describes three
situations when fulfillment of (6.6) is assured.

Theorem 1.Theorem 1.  Suppose that the solution set of problem (1.1) is nonempty and satisfies
condition (6.6), functions ),(),,( wvgwvΦ  are convex in w for any v, vector-function

),( wvg  is symmetric and its restriction wvwvg =|),(  is convex along each component,
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moreover the Lipschitz conditions hold in (8.5), (8.6), dual sequence Cpn ≤||  is bounded

for all n, and nR⊆Ω  is a convex closed set. Then, the sequence nv , generated by
method (8.1) with selection of parameter nα  using (8.2) or (8.3) converges monotonically

under the norm to one of the equilibrium solutions, i.e. ** Ω∈→ vvn  as ∞→n .

Proof:Proof:  By putting *vw =  in (8.11), we get
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(8.12)

Take 1+= nvw  in (8.10)
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or taking into account (8.4)
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Now add inequalities (8.12) and (8.13)
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Using (4.8) and the convexity of the function ),( vvg , we transform the fourth
term from (8.14) as follows
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and then we obtain

 

.|)),(),((),(),(|

),(),(,

),,(,,

**

**

0
2

22

111

≥∇−∇+Φ∇−Φ∇+

+−+

+−Φ∇+−−+−− +++

nnnT
w

nnT
w

nn
w

nn
wn

nnnn

nnn
wn

nnnnnnn

pvvgvvgvvvv

vvgvvgp

vvvvvvvvvvvv

α

α

α

We put nvw =  in inequality (6.6), which yields

.),(),(,),,( **** 0
2

≥−+−Φ∇ vvgvvgpvvvv nnnnnn
wn

α
α

Adding two last inequalities gives
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Consider (8.8) and (8.9). Put *pp =  in (8.9)

0111 ≥−−−− +++ nnnnnn ppvvgpppp ** ),,(, α (8.16)

and 1+= npp  in (8.8):
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The second term in this inequality can be estimated by means of (8.4), and then we add
both inequalities (8.16) and (8.17)
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Using the relations ,),(,,),(, ***** 00 =≤ vvgpvvgpn  we rewrite the latter

inequality in the form
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We add inequalities (8.15) and (8.18)
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By means of the identity
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323221

2
21

2
31 2 xxxxxxxxxx −+−−+−=− (8.19)

we expand the first four scalar products into a sum of squares
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Taking into account the estimate

,|||||| 22121
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and condition (8.3), we obtain
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If in the process (8.1) the steplength nα  is selected using condition (8.2), then
we estimate the seventh term in (8.21) with the help of (8.5) and (8.6) also using
evaluation 22 ||||, yxyx +≤

.||||||)||)||

|(|((||||||||

**

**

22222
2

2

2
1

221212121

2
1

2
1

21
4
1

2
1

ppvvvvgC

vvppppvv

nnnn

n
nnnnnn

−+−≤−+∇+

+∇−+−+−+−+− ++++ α
(8.22)
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Since εα ≥+∇+∇− 22
2

22
1

2 2121 ||)/()|||(|( gCn , then the obtained inequality
looks like (8.21). Thus, irrespective of how steplength nα  is selected we come to
inequality (8.21) in any case.

Summing (8.21) from 0=n  up to Nn =  we get:
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From the obtained inequality follows the boundedness of the trajectory
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and the convergence of the series
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and, consequently, convergence to zero of quantities

.,||,|| ∞→→−→− ++ nppvv nnnn 00 2121

Since the sequence nn pv ,  is bounded, then there exists a point pv ′′,  such

that vv in ′→ , ∞→′→ i
n npp i , and

.||,|| 00 2121 →−→− ++ iiii nnnn ppvv

Considering inequalities (8.8)-(8.11) for all ∞→in  and, passing to a limit we get
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The inequalities obtained coincide with (6.4), then 0≥=′Ω∈=′ *** , ppvv ,

i.e., any limit point nn pv ,  is an equilibrium solution to the problem. The monotonicity

condition of decreasing value |||| ** ppvv nn −+−  provides uniqueness of the limit
point, i.e. the convergence ** , ppvv nn →→  as ∞→n . The theorem is proved.
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