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AbstractAbstract:: In this paper we investigate the problems of disjunctive programming with
an infinite array of components forming a feasible set (as their union). The
investigation continues the theme of the author's earlier work and describes an original
conceptual approach to a) the analysis of saddle point problems for disjunctive
Lagrangian functions, b) the analysis of dual relations for disjunctive programming
problems and c) the technique of equivalent (on argument) reduction of such problems
to the problems of unconstrained optimization.
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1. INTRODUCTION

It is convenient to start with some definitions. Let Ω∈αα )}({ xF  be a given set

of vector-functions defined on αα
α

mFn xFx RRRR ∈→ )(: . Introduce discrete maximum

operation :|| max⋅  if ],,[ k
T zzz K1= , then i

ki
zz

,,
max max||

K1=
= . Let us call the inequality

00 ≥≤
Ω∈

xxF ,|)(|sup maxα
α

(1.1)

conjunctive and the inequality

 00 ≥≤
Ω∈

xxF ,|)(|inf maxα
α

(1.2)

disjunctive (constraint 0≥x  in both cases being included for convenience, in
particular, for the convenience of the dual framework).
                                                                
* This research was supported by the Russian Fund of Fundamental Research (project code 00-15-
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Let us denote })(|{: 00 ≤≥= xFxM αα . The solution sets ∩M  and ∪M  for the
systems (1.1) and (1.2) take the forms: I

Ω∈
∩ =

α
αMM , U

Ω∈
∪ =

α
αMM . The problem

}|)(sup{: ∩∩ ∈ MxxfP (1.3)

is very standard for mathematical programming (MP) theory. The problem
}|)(sup{ ∪∈ Mxxf , i.e.

):(},|)(|inf|)(sup{: max
)(

γα
α

=≥≤∪ 00 xxFxfP (1.4)

is well-known as the problem of disjunctive programming. We are interested in a
special case of (1.4), namely:

},||inf|),sup{( max 00 ≥≤−
Ω∈

xbxAxc αα
α

. (1.5)

In what follows we shall use Lagrangian functions associated with (1.3) and
(1.4). If the set Ω  is finite, i.e. },,{ mK1=Ω , then the classical Lagrangian for (1.3)

takes the form ∑
=

−
m

j
jj xFuxf

1
))(,()( , where 01 ≥= ],,[: m

T uuu K . Along with this it may

be convenient to operate with the function ))(,(max)(:),(
)(

xFuxfuxF jj
j

−=0  too; the

character of the connection between this function and the problem

},,,,)(|)(sup{ 010 ≥=≤ xmjxFxf j K (1.6)

being the same as between it and the classical Lagrangian, e.g. if pair ],[ ux  denotes a
saddle point of ),( uxF0 , then arg∈x (1.6). This is a good reason to define the
Lagrangian function for the general conjunctive instance (1.3) similarly:

0≥−=
Ω∈

∩ ααα
α

uxFuxfuxF )),(,(sup)(:),( . (1.7)

Analogously, with the disjunctive problem (1.4) we shall associate the Lagrangian

0≥−=
Ω∈

∪ ααα
α

uxFuxfuxF )),(,(inf)(:),( . (1.8)

In a couple with (1.7) and (1.8) we shall exploit modified Lagrangians:

0≥−= +

Ω∈

⊕
∩ ααα

α
uxFuxfuxF )),(,(sup)(:),( , (1.7)+

0≥−= +

Ω∈

⊕
∪ ααα

α
uxFuxfuxF )),(,(inf)(:),( , (1.8)+
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where super-index "+" means a positive cut, i.e. if ],,[ k
T zzz K1= , then

],,[)( +++ = k
T zzz K1 , },max{ ii zz 0=+ . Let us emphasize that in (1.7)+ and (1.8)+

}{ 0≥αu  denotes a system of Lagrange multipliers, which under some conditions can
be fixed at a level 0>αR  such that the problem (1.1) is equivalent to

),(sup RxF
x

⊕
∩

≤0
, (1.9)

and the problem (1.2) is equivalent to

),(sup RxF
x

⊕
∪

≤0
. (1.10)

This follows from the well-known exact penalty function framework [4, 14].

Next let us turn our attention to the different notions of solvability of (1.4).

Definition 1.1.Definition 1.1.  Problem (1.4) is value-solvable, if the value γ  is finite (see (1.4)).

Definition 1.2.Definition 1.2.  Value-solvable problem (1.4) is arg-attainable, if =∃ γα :
},)(|)(max{ 00 ≥≤= xxFxf α . In this case some vector }|)(max{arg αMxxfx ∈∈  will be

optimal for (1.4) in the standard sense.

Definition 1.3.Definition 1.3.  Value-solvable problem (1.4) is arg-solvable in general, if
xPx

kk
→∈∃ }arg{ αα  and γ=)(xf , where }|)(sup{: αα MxxfP ∈ . Clearly, the vector x

may belong or not to a feasible set ∪M .

Thus, in this paper we consider

1. a saddle point framework for disjunctive Lagrangians associated with (1.4)
and (1.8)+;

2. a duality framework for disjunctive programming problems;

3. the technique of exact penalty functions for (1.4).

2. SADDLE POINTS OF DISJUNCTIVE LAGRANGIANS

Let us define a saddle point 0≥],[ ux  for the function (1.8) by a pair of
inequalities:

),(),(),( uxFuxFuxF
ux

∪
≥∀

∪
≥∀

∪ ≤≤
00

; (2.1)

in the same way we define a saddle point for ),( uxF∩ .
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Theorem 2.1.Theorem 2.1.  Let 0≥],[ ux  be a saddle point for ),( uxF∪ . Then arg∈x (1.4), and

0=
Ω∈

))(,(inf xFu αα
α

. (2.2)

Proof:Proof:  1) Let us show that U
)(α

αMMx =∈ ∪ . Assume, on the contrary, that ∪∉ Mx ,

i.e.

0≤/∀ )(: xFαα . (2.3)

Take the right-hand side inequality from (2.1):

))(,(inf))(,(inf:
)()(

xFuxFu
u

αα
α

αα
α

γ
0≥∀

≥= . (2.4)

The value γ  is finite. Indeed, if −∞=γ , then taking all 0=αu  in relation
(2.4), one gets a contradiction 0>−∞ . Next take arbitrary positive number 0>γ . By
(2.3) for any α  there exists a positive coordinate )(αγ j  of the vector )(xFα . Let us

denote the coordinate of the vector αu  corresponding to it by )(αδ j . Because 0≥αu  is
arbitrary, it is possible to guarantee the inequality )(αδ j ⋅ )(αγ j 0>>ε , α∀ . Taking all

other coordinates of the vectors αu  as zero and 0>t  as sufficiently large, we can

obtain the inequality γαα >))(,( xFu t  for all α , where αα tuu t = . Due to the
arbitrariness of 0>γ  the last inequality contradicts (2.4). Thus, ∪∈ Mx .

2) Next let us prove that 0== ))(,(inf:
)(

xFu αα
α

γ , i.e. (2.2) is valid. Indeed, since

∪∈ Mx , one has 0≤γ . But if 0<γ , then taking 0=αu  in (2.4) we have 00 ≥> γ , i.e.
a contradiction.

3) Let us show finally that arg∈x (1.4). Since 0=γ , we can rewrite the left-
hand side of the inequality from (2.1) as:

))(,(inf)()(
)(

xFuxfxf
x

αα
α

+≤
≥∀ 0

. (2.5)

For an arbitrary ∪∈ Mx  the second term in (2.5) will be non-positive, therefore
)()( xfxf ≤  for all ∪∈ Mx , and arg∈x (1.4). q

One can prove the following theorem by repeating the reasoning above.

Theorem 2.2.Theorem 2.2.  Let 0≥],[ ux  be a saddle point for ),( uxF∩ . Then arg∈x (1.3), and

0=))(,(sup
)(

xFu αα
α

. (2.6)
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Remark 2.1.Remark 2.1.  Analogs of Theorems 2.1, 2.2 are also valid for modified Lagrangians
),( uxF ⊕

∪  and ),( uxF ⊕
∩ . To verify these facts one can follow the scheme of the proof of

Theorem 1.

As it is known, for a standard MP problem the existence of a saddle point of its
Lagrangian is connected with Kuhn-Tucker's theorem, under some appropriate
conditions, in particular, under the conditions of convexity and constraint
qualifications of some kind.

In order to establish similar results for problem (1.4), it may be expedient to
use the same conditions for each of the sub-problems

},)(|)(sup{ 00 ≥≤ xxFxf α . (2.7)α

Instead of a long discussion about conditions, guaranteeing the existence of a
saddle point for all ))(,()(:),( xFuxfuxF ααα −= , let us take such existence as the initial
point of our way to get results on the existence of a saddle point for ),( uxF∪

( ),(min uxF ⊕
∪ ).

We shall assume the following condition: let a ball nRS∈  exist such that

072 /≠∩∀ αα ).arg(: S . (2.8)

If )(xf  is continuous and (2.8) holds, then +∞<∈= ∪}|)(sup{:
~

Mxxff , i.e.
problem (1.4) is value-solvable. Nevertheless it may not be arg-attainable, i.e. the
property fxfMx

~
)(: =∈∃ ∪  may be wrong. That is why we shall define below the

optimal vector of problem (1.4) as a limit point x  of a convergent sequence
}).arg({ αα 72∈

j
x . Such limit point may belong or not to ∪M . But in any case

U
)(

).arg(:
~

α
α72=∈ Mx , where a bar over a set denotes its closure. Thus we define the

optimal set of problem (1.4) as

)).arg((}
~

)(|
~

{ 41≡=∈ fxfMx .

Let us present the union of all the conditions introduced above:

holds;  (2.8)   3.
;for  point saddle a  is which  0   2.

;over  continuous is     1.
),(],[

)(
yxFyx

Mxf

∪

∪

≥∃∀α (2.9)

and prove the following results.

Theorem 2.3.Theorem 2.3.  Let all the conditions (2.9) hold. If one has 
jjj

xxx ααα ).arg(,}{ 72∈→ ,

fxf
~

)( =  )).(opt( 41= , then
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}{),(),( αuuxfuxF
x

=≤
≥∀

∪ 0
. (2.10)

Proof:Proof:  We have αααα ∀= ,))(,( 0xFu  and 0≥∀≤≤− xxfxfxFuxf ),()())(,()( ααα .
Consequently, )())](,()([sup

)(
xfxFuxf ≤− αα

α
. But the left part of this inequality is equal

to ))(,(inf)(
)(

xFuxf αα
α

− , therefore (2.10) is valid. q

Remark 2.2.Remark 2.2.  The proved theorem is an analog of Theorem 47.2 [12], known for a finite
index set },,{ mK1=Ω .

Theorem 2.4.Theorem 2.4.  Let only the conditions 1) and 3) from (2.9) hold, as well as condition 2)

for the function ),( uxF ⊕
∪ , i.e. for (1.8)+ . If x  and u  are the same as in Theorem 2.3,

then ],[ ux  is a saddle point for ),( uxF ⊕
∪ .

Proof:Proof:  Let us prove the right-hand side inequality in the relation

),(),(),( uxFuxFuxF
ux

⊕
∪

≥∀

⊕
∪

≥∀

⊕
∪ ≤≤

00
, (2.11)

which defines a saddle point ],[ ux . Using (1.8)+ (i.e. using the definition of ),( uxF ⊕
∪ )

one can write this inequality as:

))(,(inf))(,(inf
)()(

xFuxFu
u

+

≥∀

+ ≥ αα
α

αα
α α 0

. (2.12)

The right-hand side of (2.12) is obviously equal to zero. Since xx
j

→}{ α , and

jjjj
xFu αααα ∀=+ ,))(,( 0 , the left-hand side is equal to zero too. Therefore the

inequality is valid.

Let us pass to the left-hand side inequality from (2.11) and rewrite it in detail:

))(,(inf)())(,(inf)(
)()(

xFuxfxFuxf
x

+

≥∀

+ −≤− αα
α

αα
α 0

. (2.13)

When proving (2.12), we already demonstrated that 0=+ ))(,(inf
)(

xFu αα
α

.

Therefore (2.13) takes the form of already proved relation (2.5), which is valid for the
function )(xF ⊕

α  too (see remarks to Theorems 2.1 and 2.2). The proof is complete. q

Remark 2.3.Remark 2.3.  Parameter α , which plays the role of index, enumerating the
components of disjunctive or conjunctive inequalities (1.1), (1.2) (or of systems of such
inequalities), may be of a diverse nature, e.g. be a vector. In particular, instead of
function )(xFα  one can consider a vector function ),( yxF  of two vector arguments

nx RR∈  and my RR∈ , where y  plays the role of index α , and consequently Ω  may be
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a subset of mRR , e.g. be a convex compact set. Then inequalities (1.1) and (1.2) may
take the form

0≤
Ω∈

max|),(|sup yxF
y

, 0≤
Ω∈

max|),(|inf yxF
y

. (2.14)

These inequalities have deep meaning. For example, the general game of two
persons with a zero sum may be re-formulated as the first of them. A whole array of
optimal control problems can be reduced to the second inequality; y  being interpreted
as a time parameter t . One can prove his own variants of Theorems 2.1-2.4 for
optimization problems with constraints of the type (2.14) under appropriate conditions,
e.g. conditions of continuity of ),( yxF  on ],[ yxz = , compactness of Ω , etc. From here
a large area of research may emerge.

3. DUALITY FRAMEWORK

We shall construct a duality framework for disjunctive programming problems
by means of a general scheme, namely, using the Lagrangian function, in our case - the
disjunctive Lagrangian function (1.8).

Let us consider the problems

):(),(infsup: γ=∪
≥≥

∪ uxFP
ux 00

, (3.1)

):(),(supinf: ** γ=∪
≥≥

∪ uxFP
xu 00

, (3.2)

and their analogs for the linear case

 ),(infsup: uxLL
ux

∪
≥≥

∪ 00
, (3.3)

),(supinf:* uxLL
xu

∪
≥≥

∪
00

, (3.4)

where 0≥−−=∪ αααα
α

ubxAuxcuxL ),,(inf),(),(
)(

.

Lemma 3.1.Lemma 3.1.  Problem (3.1) has the same optimal value as the problem (1.4), where
}|)(|inf|{ max

)(
00 ≤≥=∪ xFxM α

α
.

Indeed, consider the internal sub-problem from (3.1) and calculate its optimal
value:





∉∞−
∈

=−
∪

∪

≥ .,
,),(

))](,(inf)([inf
)( Mx

Mxxf
xFuxf

u
αα

α0
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This immediately implies

}|)(sup{ ∪∈= Mxxfγ ,

which proves the lemma. q

We shall call the problem *
∪P , i.e. (3.2), the dual one for ∪P , i.e. (3.1);

similarly *
∪L  will be called the dual for ∪L . According to Lemma 3.1, problem ∪L  is

equivalent to problem (1.5), which is a linear disjunctive problem.

Lemma 3.2.Lemma 3.2.  Problem *
∪L , i.e. (3.4), has the same optimal value as the problem

},,|),(sup{inf
)()(

Ω∈≥≥ αααααα
α

0ucuAub T
u

. (3.5)

Proof: Proof: Let us rewrite problem *
∪L  in another form. At first rewrite its Lagrangian

+=−−=−−=∪∪ ),[(sup)],(),[(sup),(inf),(),(:),(
)()()(

αα
α

ααα
α

ααα
α

ubbxAuxcbxAuxcuxLuxL

)],( xuAc T
αα−+ . Then, taking the internal operation 

0≥x
sup  in (3.4), we get:









≥/∃∞+

∀≥
=−+

≥ .,

,,),,(sup
)],(),[(sup )(

cuA

cuAub
xuAcub

T

T
T

x
αα

αααα
α

αααα

α

α

: if  

 if  

0

This implies

).(opt),(supinf 53
00

=∪
≥≥

uxL
xu

.

q

Thus, we get the dual for problem (1.5) in the form (3.5). It is interesting to
see that the original problem ∪L , i.e. (1.5), can be written in equivalent form

},,|),(sup{sup
)()(

Ω∈≥≤ αααααα
α

0xbxAxc
x

. (3.6)

The above makes it possible to recover the symmetry in the instances ∪L  and *
∪L .

Operations 
)(

inf
u

 and 
)(

sup
α

 in (3.5), as well as 
)(

sup
x

 and 
)(

sup
α

 in (3.6) are commutative.

Consequently, problem (3.6) can be reduced to the problem of seeking an exact upper
bound, i.e. 

)(
sup

α
, for the set of optimal values of the problems

}|),max{(: αα NN∈xxcL , (3.7)α
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where }|{: ααα bxAx ≤≥= 0NN . Analogously, problem (3.5) can be reduced to the
problem of seeking an exact upper bound for optimal values of the problems

}|),min{(: **
ααααα NN∈uubL , (3.7)*

α

where }|{:* cuAu T ≥≥= αααα 0NN . If we assume that all problems (3.7)α  are solvable,

then according to the duality theorem in linear programming one has *optopt αα LL = ,

and therefore *

)()(
optsupoptsup α

α
α

α
LL = .

Theorem 3.3.Theorem 3.3.  Let problem (1.5) (i.e. (3.6)) be value-solvable and assume that there are
no improper problems of the 3rd kind among αL . Then problem (3.5) is also value-

solvable and opt (3.6) = opt (3.5).

Proof:Proof:  Any of the problems αL  and *
αL  may be solvable or not. Unsolvable (improper)

problems may be classified [12]:

1) 00 /≠/= *, αα NNNN  corresponds to improper problems of the 1st kind;

2) 00 /=/≠ *, αα NNNN  - the 2nd kind;

3) 00 /=/= *, αα NNNN  - the 3rd kind.

In mathematical programming, if the feasible set of a problem is empty, its
optimal value is usually put equal to −∞  for sup -problems and +∞  for inf -problems.
In our case it will be considered (according to the classification above):

1. opt −∞=αL , opt −∞=*
αL ;

2. opt +∞=αL , opt +∞=*
αL ;

3. opt −∞=αL , opt +∞=*
αL .

Since the original problem has a finite optimal value, there are no improper problems
of the 2nd kind among }{ αL . As for improper problems of the 3rd kind, they are
forbidden by the assumptions. Thus, the real situation is as follows: each of the
problems αL  is either solvable (with *

αL ), or unsolvable, and then opt =αL opt

−∞=*
αL . Consequently, the sets of optimal values for Ω∈αα }{L  and Ω∈αα }{ *L  coincide,

as do their exact upper bounds. The proof is complete. q

Theorem 3.4.Theorem 3.4.  Let some analog of condition (2.8) hold, namely: there exists a ball
nS RR⊂  such that
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0/≠∪=∀ ααα LSS arg:: .

Then problem (1.5) is arg-solvable in general, problem (3.5) is value-solvable and opt
(1.5) = opt (3.5).

Proof:Proof:  From (1.9) the value-solvability of (1.5) is immediate. Indeed, if =γ opt (1.5),
then one can take a convergent sequence xSx

kk
→∈ }{ αα  and γα =→ ),()},{( xcxc

k
.

That is what we mean when we say that problem (1.5) is arg-solvable in general. The
value-solvability of the dual problem to (3.5) is evident. q

Problems (1.5) and (3.5) may be written more compactly and symmetrically,
when set Ω  is ordered, i.e.

},,,,,{ KK 121 +=Ω ww αααα .

Let us introduce the transfinite matrix AA  and vectors bux
~

,~,~  and c~ :
















=

M
2

1

α

α

A
A

AA , 















=
=

=
M

xx
xx

x
2

1

α

α
~ , 
















=

M
2

1

α

α

u
u

u~ , 















=

M
2

1

α

α

b
b

b
~

, 















=
=

=
M

cc
cc

c
2

1

α

α
~ ,

and functions ),(sup)~(
)(

kk
xcx

k
αα=Ψ , ),(sup)~(

)(

*
kk

ubu
k

αα=Ψ . Then problems (1.5) and

(3.5) may be written as

}~,
~~|)~(sup{ 0≥≤Ψ xbxx AA ,

}~,~~|)~(inf{ * 0≥≥Ψ ucuu TAA .

Let us note that the first of these problems is not convex but the second one is.

The scheme of dual construction for the general problem of disjunctive
programming (1.4) may be the same as for problem (1.5). The dual objects take the
form (1.5) and (3.2), i.e. ∪P  and *

∪P  (in our notation). The required dual relation

opt ∪P =opt *
∪P  is usually connected (and often coincides) with the existence of saddle

point of the function ),( uxF∪ . If we assume the existence of a saddle point for
),( uxF∪ , then this dual relation will hold. Of course, one can apply any condition

guaranteeing the existence of a saddle point for ),( uxF∪  (as in Theorem 2.4 for

modified function ),( uxF ⊕
∪ ). This surely makes it possible to formulate duality

theorems in the general case too. We omit the details here, restricting ourselves to
methodological considerations.
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4. EXACT PENALTY FUNCTION METHOD

Let us consider the question of the equivalence of problems (1.4) and (1.10)
under appropriate value of parameter R .

Theorem 4.1.Theorem 4.1.  Let the Lagrangian ),( uxF∪ , associated with problem (1.4), has a

saddle point }{],,[ 0≥= αuuux . If αα uR ≥  for all Ω∈α , then

opt (1.4) = opt (1.10) (4.1)

Proof:Proof:  According to Theorem 2.1 the following relations hold: ).(arg 41∈x  and
0==

Ω∈
))(,(inf: xFu αα

α
γ . Using the definition of a saddle point and equality 0=γ  one

has

0≥∀≤− xxfxFuxf ),())(,(inf)(
)(

αα
α

. (4.2)

Hence ≤−+≤−= ++⊕
∪ ))(,(inf))(,(inf)())(,(inf)(),(

)()()(
xFRxFuxfxFRxfRxF αα

α
αα

α
αα

α

)())(,(inf))(,(inf)(
)()(

xfxFRxFuxf ≤−+≤ ++
αα

α
αα

α
. Since this inequality holds for any 0≥x ,

we get

)).(()(),(sup 41 opt
0

=≤⊕
∪

≥
xfRxF

x
.

Since the inverse inequality is obvious, the proof is complete. q

Stronger theorems connecting problems (1.4) and (1.10) can be formulated
under the following assumptions on the set Ω  and the functions

],[),(:)( xzzxF αϕα == :










Ω

→

.)()
,)

,:)

zz

F
k

mFn

  in  continuous  is  3
  of  subset  compact  convex  a  is  2

1

ϕ

α
α

RR

RRRR

(4.3)

Since mx RR∈),(αϕ  for any α , then Lagrange vectors αu , used above in the

text, are vectors of dimension m. Let us take the vector 0>∈= δδδδ ,],,[ mRRK
r

 and

choose the penalty constants αR  so that δαα
r

+≥ uR .

Theorem 4.2.Theorem 4.2.  Let all the assumptions of Theorems 4.1, 4.3 and condition δαα
r

+≥ uR

hold. Then

arg (1.4) = arg (1.10). (4.4)
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Proof:Proof:  According to the assumptions made, equality (4.1) holds. Recall the inequality
obtained in Theorem 4.1:

)())(,(inf))(,(inf)(),(
)(

xfxFRxFuxfRxF
x

≤−+≤ ++

≥∀

+
∪ αααα

α0
, (4.5)

where ∈x arg (1.4). From this relation it follows that

opt (1.10) = )(),(sup xfRxF ≤+
∪ = opt (1.4).

But for xx =  one has )(),( xfRxF =+
∪ , therefore ∈x arg (1.10). Consequently, the

inclusion arg (1.4) ⊂  arg (1.10) is valid.

Let us prove the inverse inclusion. Take any ∈x~ arg (1.10) and substitute it in
(4.5):

≤−+≤ +++
∪ ))~(,(inf))~(,(inf)(),~(

)()(
xFRxFuxfRxF αα

α
αα

α
opt (1.4). (4.6)

Since ),~( RxF +
∪ = opt (1.4), one has

))~(,(inf))~(,(inf
)()(

xFRxFu ++ = αα
α

αα
α

. (4.7)

Taking appropriate sequence αα →}{ k  we can rewrite (4.7) as

00 →>=+ ++ }{)),~(,())~(,( kk xFRxFu
kkkk

εε αααα . (4.8)

Because

max|)~(|))~(,())~(,())~(,())~(,( xFxFuxFxFuxFR
kkkkkkkk

+++++ +≥+≥ αααααααα δδ
r

,

then from (4.8) it follows that 0→≤+

δ
ε

α
kxF

k max|)~(| . Therefore we have 0=+
max|)~(| xFα

and 0≤|)~(xFα , i.e.

U
)(

})(|{~

α
ααα MMxFxMx =⊂≤≥=∈ 00 .

Thus, we proved that x~  from arg (1.10) is feasible for problem (1.4) and provides an
optimal value for )(xf , i.e. ∈x~ arg (1.4). Consequently, arg (1.10) ⊂  arg (1.4) and (4.4)
is valid. q

The analogs of Theorems 4.1 and 4.2 for the conjunctive problem (1.3) are
valid too. Let us write problem (1.3) in detail:

},|)(|sup|)(sup{ max 00 ≥≤ xxFxf α (4.9)
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and consider the associated problem (1.9), i.e.

))}(,(sup)({sup xFRxf
x

+

Ω∈
−

≥
αα

α0
. (4.10)

Theorem 4.3.Theorem 4.3.  Let the function ),( uxF∩ , i.e. (1.7), have a saddle point ],[ ux ,

}{ 0≥= αuu  and the conditions (4.3) hold. Then:

1. If ααα uR ≥Ω∈∀ : ,then

opt (4.9) = opt (4.10).

2. If δα αα
r

+≥Ω∈∀ uR:  ( δ
r

 as in Theorem 4.2), then

arg (4.9) = arg (4.10).

The proof of this statement is very similar to the proof of Theorems 4.1 or 4.2.
It is omitted, since in this article the main accent is placed on disjunctive problems.
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