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Abstract. The economic design of statistical process control procedures has at-
tracted the attention of the academic community for over 30 years. However, those
models have not gained analogous popularity in industry. Omne reason for the lim-
ited utilization of the economic design of control charts in industry is apparently
the mathematical complexity of the associated models and their optimization pro-
cedures. The main purpose of this paper is to present a simple search procedure to
get the optimal design of c-charts.
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1. INTRODUCTION

Since the 1950s, considerable attention has been devoted to the economic de-
sign of X-control charts. However, there have been a number of papers dealing
with the economic design of p charts and np charts. Ladany (1973), Chiu (1975),
Gibra (1978), and Duncan (1978) have developed economic models of the fraction
defective control charts when the process is disturbed by a single assignable cause.
Chiu (1976), Collani (1989), Gibra (1981) and Montgomery, Heikes and Mance
(1975) have presented models on the economic design of fraction defective control

charts for process subject to a multiplicity of assignable causes.

Collani (1989) is based on Behl’s results (1985) and utilizes the approxima-
tion procedure developed in Collani (1987a, 1987b). Collani’s optimum solution
technique is very complicated and involved. So, Collam (1989) presents a simple
graphical algorithm to determine the optimal economic design for a given set of
process and economic parameters. The graphical algorithm requires the manual
computations and the uses of many tables. The optimal solutions depend on the
users. We hardly get a unique optimum solution through the use of the graphical
algorithm. So, the graphical algorithm frequently limits the application of Collani’s
model (1989). For example, if the shift parameter d or the control limit k in Collani
(1989) is more than 10, then Figures 1, 2 and 3 in Collani (1989) will be useless.
This paper presents a simple computer program for the optimal economic design of
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c-charts on the cost model of Collani (1989). The results and the execution times
of all numerical examples show that our computer program is quite accurate and
efficient indeed.

2. THE PROCESS AND CONTROL MODEL

A c-chart consists of three quantities, the sampling interval h, the sample size n
and the control limit k£ with the following decision rule: Every A hours of production
take a sample of size n (n consecutive items produced), if the cumulative number
of defects of the n items sampled is less than or equal to the control limit k, the
process continues to operate, otherwise it is stopped and a process inspection is
undertaken. If necessary a renewal is performed, after which the process starts
anew 1n the in-control state.

The quality of the i-th item produced is measured by the random number X; of
its defects. The X, are assumed to be a sequence of independent random variables
each distributed according to a Poisson distribution with mean u and variance u.
The production process is said to be in-control, if ¥ = uy and out-of-control, if
u = u; with 0 < uy < uy, i.e. a single assignable cause model is assumed, where the
assignable cause is represented by a fixed size shift in the mean number of defects
on an item produced.

‘The In-control parameter up and the out-of-control parameter u; and hence
their quotient d = u;/up > 1, which is called the shift parameter, are assumed
to be known. Furthermore we assume that the length of an in-control period 7 is
distributed according to an exponential distribution with parameter A > 0.

Let « be the probability of Type I error and 3 the probability of Type II error,
then we have:

= v
a=1 —Zﬂ (m :;D) g~ " Ho and (1)
B R TY A O D
ﬂ—; Y “‘Zn Y | (2)

In order to formulate the profit function P*, the following notations will be
used. Let

a*n — be the cost associated with taking and analysing a sample of size n:

e* — be the total expected cost of a process inspection when the process is operating
in-control;

b* — be the expected benefit per renewal, i.e. the expected additional profit derived
from operating for some time 7 in control after a renewal, reduced by the total
cost of a process inspection (to detect the assignable cause) and the following
renewal (to remove the assignable cause);

g2 — be the expected profit per item produced while operating out-of-control; and
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v — be the expected number of items produced per hour of operation.

Based on the model described in this section and the parameters just defined,
Collani (1989) has shown that the expected profit function P* per item in the long

run is
P'(h,ﬂ,k) B i l{((b-/c')(ckh — 1) — ﬂ’)(l "‘ﬁ) _ (a-/c-)n} + g (3)
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The problem is to determine the sampling interval A*, the sampling plan (n*, k")
which maximizes the objective function P*(h,n, k). By setting z = Ah, b = b* /e”
and @ = a*/e*, the above standardization of P* leads to so-called Standardized
Profit Function

P(z,n, k) = % {b(ez:_l)ﬁ" Z(1-8) - an}. (4)

Obviously this problem is equivalent to determine z*, n* and k*, maximizing
P(z,n,k) where z* is called standardized sampling interval. The parameters a,
b can be described as the “relative sampling cost per item”, and the “relative ben-
efit per renewal”, respectively. The parameter a is clearly positive valued and in
practice should always be very much less than 1. In practice, b should also always
be positive and will generally be much greater than 1.

3. THE EXPLICIT EQUATION FOR =z

It can be shown that the following two relations hold

1 1
(a). 1>;-e:_

. 1 1 1
® Jim (3~ 77) =5

Arnold and Collani (1989, pp. 153) indicate that all economic approaches con-
sidered heretofore lead to optimum values of z which are In general not greater
than 0.1. By relations (a) and (b), we take 0.5 as a correction number. Replacing
1/(e* — 1) in equation (4) by 1/z — 1/2, we get equation (5).

(b+a/2)z — « an

-F(I'n’k)=(1_ﬁ)((1+ﬂ)/2)r2+(1—ﬁ): oz (5)

1>0forallz>-0.

For a given (n, k), setting the partial derivative of P with respect to z equals
to zero yields riz? + roz + r3 = 0, where

"= (1+ﬁ)(%(b+ g)(l -8) - ;ll-an(1+ﬁ)),

ry = —(1 = B%)(an + a),
rs3 = —(1 = B)?(an + a).
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So

—Tar \é’? =TS8 - wln, B, (6)
1

X =

4. THE SEARCH PROCEDURE

In the process of obtaining the optimal solution n*, k* and z*, both n and
k are integers. The value of n has no upper bound. The stopping rule for n 1S
described in the program listing. Let [nug] be the greatest integer less than or
equal to nug. Then the search procedure is as follows.

(i) Given 1 < n, and [nug] € k < [nug] + 6 /nug = U(n).
(i) Calculate @ and 8 from equations (1) and (2).
(ili) Calculate z from equation (6).
(iv) Calculate P(z,n, k) from equation (4).

(v) Find PP(n) = [nTﬁ:nSukmSlél(]l)(PP(n)).

(vi) Calculate PP* = ma:iuglum (PP(n)) = P(z",n*, k") (say).
In general, the values n*, £* and z* will be the optimal design values of the c-
chart. When the value of n is large, 6,/nug will be quite large. Hence, the search
procedure requires the stopping rule for k to accelerate the process of getting the
optimal design. Let nbound and kbound be two positive integers. The stopping
rules on n and k are described as follows.

The stopping rule for k: Suppose that P} , = P(no,ko,z(no, ko)) is the
current optimum value and P . > Pr . .. forall j = 1,2,... kbound. The
search procedure will execute the next ngy (that is ng + 1) and terminate on k.

The siopping rule for n: Suppose that P; = P(no, ko, z(ng, ko)) is the current

optimum value and P > P; ., forall j =1,2,... ,nbound. The search procedure
will be n* = ng, &* = kg and =* = z(ng, ko).

Montgomery (1982, pp. 41) remarks: “The second phase of the optimization
finds the optimal k and h for each value of n in the interval max(1,n* —10) < n <
n* + 10.”

Based on the above statement, we take nbound = kbound = 10 in the pro-
gram listing. Usually our search procedure will get the optimal design of c-charts.
However, if up is small, 6,/nuy may be quite small as well. We may let nbound
be larger. We recommend nbound = 30 and kbound = 10 to assure to get the
optimal design of c-charts when ug is small. In general, the larger nbound will not
influence the efficiency of the search procedure when ug is small. The details about
the search procedure are described in the program listing.
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5. NUMERICAL EXAMPLES

EXAMPLE 1: ug = 0.10, d = 4.00, a = 0.0025 and b = 100.

Following our search procedure, we get the optimal solution s n* = 19,
k* = 5, 2* = 0.028 and P(19,5,0.028) = 95.651. Collani (1989) reports as an
optimal plan for Example 1 the values (19, 5,0.033) for a maximum expected profit
per item. However, the actual optimal plan for Example 1 is (19,5,0.020) and
P(19,5,0.020) = 95.403 following the search procedure in Collani (1989). Collani’s
calculation is in error because the actual value of 3 is 0.2307 but not 0.1057. Our
optimal solution is better than Collani’s solution.

EXAMPLE 2: py = ug = 0.02, d = 4.00 (i.e. p; = 0.08), a = 0.002 and & = 100.

Following our search procedure, we get the optimal solution is n* = 64, k* = 3,
z* = 0.047 and P(64,3,0.047) = 92.679. However, Collani’s optimal solution is
n" =63, &¥ = 3, 2™ = 0.047 and P(63,3,0.047) = 92.676. So, our optimal solution
1s better than Collani’s optimal solution.

EXAMPLE 3: ug = 1.00, d = 2.00, a = 0.03 and b = 100.

Following our search procedure, we get the optimal solution 1s n* = 6, k* =
0.059 and P(6,9,0.059) = 90.991. However, Collani’s optimal solution is n* = 6,
k* = 8, z* = 0.022 and P(6,8,0.022) = 83.567. Collani’s optimal profit is 8.16%
lower than the true optimum.

EXAMPLE 4: ug = 4.00, d = 5.00, a = 0.16 and b = 100.

Following our search procedure, we get the optimal solution is n* = 1, k* = 10,
z* = 0.058 and P(1,10,0.058) = 94.291. On the other hand, we follow Collani’s
search procedure (1989). We get ag = 0.04, b = 1.0000, C = 1.0021, a = 0.3712

and # = 0.0000. Since C' > 0.9999, Figure 3 in Collani (1989) becomes useless.
Hence, Figures 1, 2 and 3 in Collani (1989) do not provide an approximately optimal
solution.

Optimum designs for 2200 numerical examples were obtained by using our
search procedure. The parameters values of d and arange 2 < d < 11 and 0.0001 <
a < 0.2000, respectively. The value of b 1s fixed as 100. The value of ug is 0.02, 0.10,
1.00, 4.00 or 16.00, respectively. Table 1 shows the results for uo = 0.10, & = 100
and d = 4.00. All calculations were executed on a personal computer ENSONTECH
(PC-386). The execution times of all numerical examples of Table 1 are between
0.38 and 3.46 seconds. The execution times of all other numerical examples for
b = 100, ug = 0.02, 0.10, 1.00, 4.00, 16.00 and 2 < d £ 11 are summarized as

follows.

(A) up =0.02 = po, b=100and 2 < d < 11.

The execution times are between 0.16 and 24.50 seconds. The execution times
of the great many numerical examples are within 2.00 seconds.

(B) up =0.10, b =100 and 2 < d < 11.
The execution times arc between 0.38 and 24.88 seconds. The execution times
of the great many numerical examples are within 2.00 seconds as well.
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Table 1: The Optimal Solutions for ug = 0.10, d = 4.00, and b = 100

Execution times
To ¢ B Profit (CPU seconds)®
lo.oco1| 42 | 12 | o.008| 0.0004 | 0.1454 3.
0.0005| 29 8 | 0.016| 0.0031| 0.1830 2.
0.0010| 26 7 | 0.021{ 0.0053 | 0.1863 2.
0.0015| 22 6 0.023| 0.0075 | 0.2256 1.
0.0020| 23 6 | 0.028] 0.0094 | 0.1892 1.
0.0025| 19 5 | 0.028| 0.0132 0.2307 1.
0.0030| 18 5 | 0.030/ 0.0132| 0.2307 1.
0.0035 | 15 4 | 0.029| 0.0186 | 0.2581 1.
0.0040 | 15 4 | 0.030] 0.0186 | 0.2581 1.
0.0045| 16 4 | 0.035]0.0237]| 0.2351 1.
0.0050 | 16 4 | 0.037|0.0237/ 0.2351 1.
0.0055| 16 4 | 0.038]0.0237| 0.2351 1.
0.0060| 12 3 | 0.035| 0.0338 | 0.2942 1.
0.0065| 12 3 | 0.036| 0.0338| 0.2942 | 1.
0.0070| 12 3 | 0.037]0.0338]| 0.2942 | 1.
0.0075| 12 3 | 0.038]|0.0338]0.2942| 93.411 1.04
0.0080| 12 3 | 0.039]|0.0338]| 0.2942| 93.255 1.04
0.0085| 12 3 | 0.040] 00,0338 0.29842| 93.102 1.04
| 0.0090 | 13 3 | 0.046| 0.0431{0.2381| 92.955 1.15
0.0095| 13 3 | 0.047]0.0431]0.2381| 82.815 | 1.16
0.0100] 13 3 | 0.048|0.0431]0.2381| 92.677 1.15
0.0150| o 2 | 0.048 ] 0.0629] 0.3027| 91.655 0.93
0.0200] 5 | 1 | 0.042]|0.0902|0.4060| 90.867 0.66
0.0250| 5 1 | 0.045] 0.0902| 0.4060| 90 290 0.66
0.0300| 5 1 | 0.048| 0.0902| 0.4060| 89.747 0.66
0.0350| 6 1 | 0.083]|0.1219]|0.3084| 89.244 0.72 '
0.0400 2 0 0.047] 0.1813 | 0.4493| 88.510 0.49
0.0450] 1 0o | 0.025|0.0952] 0.6703| 88 704 0.44
0.0500| 1 o | 0.025|0.0952|0.6703| 88.506 0.44
0.0550| 1 0 | 0.026|0.0952|0.6703| 88 311 0.44
0.0600| 1 0 | o.026|0.0952|0.6703| 88 120 | 0.44
0.0650 | 1 0 | 0.027|0.0952|0.6703| 87 931 0.44
[ 0.0700| 1 0 | 0.027|0.0952] 0.6703| 87.746 0.44
0.0750| 1 0 | 0.028]|0.0952|0.6703| 87 564 0.44
0.0800| 1 0 | 0.028|0.0952]|0.6703| 87 385 | 0.43
0.0850 1 l 0 0.029| 0.0952 | ©. 0.
0. 1 0 | 0.029|0.0052] 0 0.
0. 1| o 0.029/0.0852]0 0.
0. 1 0 | 0.030]0.0952] 0 0.
0. 1 0 | 0.031]0.0052]|0 o
0. 1 0 | 0.0330.0952 0 0
0. 1 0 | 0.034]0.0952] 0 0.
0. 1 0 | 0.036]|0.0952| 0 0.
0. 1 0 | 0.037 o.osszln 0.

* All calculations were executed on a personal computer ENSONTECH (PC-3886).
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(C) uo = 1.00, 6 =100 and 2 < d < 1].

The execution times are between (.88 and 8.63 seconds. Asin (A) and (B), the
execution times of the great many numerical examples are still within 2.00 seconds.

(D) up = 4.00, b =100 and 2 < d < 11.

The execution times are between 2.41 and 8.57 seconds. The execution times
of the great many numerical examples are within 4.00 seconds.

(E) ug = 16.00, b=100and 2 < d < 11.
The execution times are between 15.55 and 19.61 seconds.

To sum up, the results and the execution times of all numerical examples show
that our search procedure is very accurate and efficient. Equation (21) in Collani
(1989) indicates that the optimal sampling plan is more or less independent of the
quantity b or the sampling interval z, but only on a, d and ug. This means that the
range of model parameters (in all the examples b = 100) is large enough to ensure
that the search procedure performs well under a wide range of possible model
parameters. Therefore, we conclude that our search procedure is not only quite
accurate and efficient, but also simpler to solve than Collani’s search procedure

(1989).
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C Program Listing For The ¢ Chart Design.

EXTERNAL DPOIDF,UMACH
INTEGER NO,nStop,kStop,NOUT, K1, nBound
IMPLICIT DOUBLE PRECISION (A-H,K-2)

b=100.0
u=0.10
ccecececcocceccocccee
nBound=10
kBound=10
cecccoccococecccececce
CALL UMACH(2,NOUT)
OPEN ( 2,FILE=’c-np.DAT’,STATUS='0OLD’)
OPEN (4,FILE=/nk10.PRN’)
500 READ (2,15,END=5) a,d
15 FORMAT (F6.4,1X,F6.4)
WRITE(4,30)
30 FORMAT (///10X,’THIS IS OPTIMAL SOLUTIONS OF THE ¢ CHART’//)
CALL GETTIM (IH1,IM1,IS1,IHS1)
WRITE (4,98)IH1,IM1,IS1,IHS1
98 FORMAT (5X,/THE START TIME IS /,I2,/:/,1I2,7:',I2,':7,12//)
write(4,40)

40 format(1lx,' r.,2x,'n’ ,4x,’'k’ ,4%x,'x’ ,5%x,’alpha’,3x, ‘Beta’ ,8x,'P
* /)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c c
& Find The Optimal Solution. c
o c

CCCCCCCCCCCCCCCCCCcCCCcCcccCccCccecccccccccccce

MINS=-100000.00
nStop=0
DO 100 n1 = 1.,1000.
S1==-100000.00
kStop=0
ul=d*u
elelelolelnlotalol ol olalalelslal el el ol el il ol alal clalafal alalo elol ol ol o ol ol ol o ol nlod ol sinl ol alel ol sl ol ol ol ol ol nl o o
k2=float(int(nl*u))
kd=float (int (nl*u+6*dsqgrt(nli*u)))
CCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCcecee
DO 200 k1l = K2,k4,1.0
CALL UMACH (2, NOUT)

thetaO=nl#*u
thetal=nl*ul

beta=DPOIDF (k1l,thetal)

p=1-beta

IF(P .LT. 0.01)GOTO 200

ARFA=].-DPOIDF (k1, thetao)

Rl= (l+beta)=*(0.5*(b+arfa/2.)* (l-beta)-a*nlx
w (1+beta) /4.)

R2= -(l-beta*beta)*(a*nl+arfa)

Rl= =(l=-beta)*(l=-beta)*(a*nl+arfa)

X = (=R2+DSQRT(R2%*R2-4*R1*R1))/(2*R1)

IF(x .LE. 0.0 .or. x .gt. 100)GOTO 300
b0 = dexp(x)
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S = ((b*(b0O-1.)-arfa)*(1l~beta)/(bO-beta)-a*nl) /x

IF ( S .gt. S1) THEN

ARFA1=ARFA

S1=§

N2=N1

k21=k1

X2=X

P2=P

kStop=0
ELSE

kStop=kStop+1
ENDIF

IF (kStop .GT. kBound) GOTO 300
200 CONTINUE
300 IF (S1 .gt. MINS) THEN
ARFA2=ARFA1l
MINS=S1
N=N2
X3I=x2
k=k21
P3=p2
nStop=0
ELSE
nStop=nStop+1
ENDIF
IF (nStop .GT. nBound) GOTO 400
100 CONTINUE

400 Beta3 = 1-P3
WRITE (4,50) N,k,x3,arfa2,Beta3,MINS

50 FORMAT(4X,3X,f4.0,1X,f4.0,F6.3,2X,F6.4,2%x,F6.4,F11.5//)
CALL GETTIM (IH2,IM2,IS2,IHS2)
WRITE (4,99)IH2,IM2,IS2,IHS2

99 FORMAT (5X,’/THE END TIME IS /,I2,’:',I2,7:7,12,7:%,12/)
GOTO 500

5 CLOSE (2, STATUS=- KEEP’)
CLOSE (4, STATUS=’"KEEP' )
STOP
END



