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Abstract. The well-known majority theorem for Fermat-Weber location problems
states that when all distances are measured by a fixed pseudometric, then any
destination with weight at least half of the total weight of all destinations is an
optimal site. In this paper we study the implications of such majority when both
attracting (positive weight) and repelling (negative weight) destinations are present.

When no constraints are present, and when majority holds at an attracting
destination, the classical majority theorem is still valid, while when there is a re-
pelling strict majority in an unbounded space, the objective is unbounded below.

We then consider the constrained case where the location is restricted to lie
within a given compact region. When majority is at an attracting destination then
an optimal solution exists which is “first-reachable” from this destination, a general-
ization of visibility to general pseudometric spaces. When majority is at a repelling
destination an optimal solution exists which is “last reachable” from this destination.
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1. INTRODUCTION

The classical Fermat-Weber location problem asks for determining the point at
which the (positively) weighted sum of distances to a finite set of destination points
is minimal. It has extensively been studied in many settings and is considered as
one of the principal cornerstones of location theory. The most general result in this
respect is the majority theorem of Witzgall (1964), stating that when a destination
holds a majority, in the sense of having a weight of at least half of the sumtotal
weight of all destinations, then its location is an optimal site. This result is valid
whenever the distance measure used i1s a pseudometric, which makes it equally
applicable to a wide variety of situations, e.g. euclidean spaces, the sphere with
great circle distance, undirected networks with shortest path distance, etc.

In almost all work on the Fermat-Weber problem it is assumed that all weights
are positive. In practice this means that nearness to the sought central point is
advantageous to all destinations, i.e. they are all attracting. In many real world
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situations this is an oversimplification of the problem. Indeed with the gl‘f:ming
attention to environmental effects many types of facilities must also be considered
as potentially dangerous and nearness to it as a disadvantage, mainly to populous

areas.

One simple way to build this factor into the location model is to consider
destinations of two types, attracting and repelling ones, defined by positive and
negative weights respectively. The thus obtained extended Fermat-Weber problem
has been studied (to our knowledge exclusively) by Tellier and Polanski (1989) in

the Euclidean plane.

In this paper, the authors observe without proof that the majority theorem
remains valid in this extended case, provided majority is at an attracting destina-
tion. In case majority occurs at a repelling destination, “the optimal solution 1s at
infinity” .

We first show that Tellier and Polanski’s observations hold in any pseudometric
space. Then we consider what may be said in the constrained case, where the sought
location is restricted to some compact region. We obtain two localization theorems,
one for an attracting majority point and one in case of a repelling majority. Both
make use of the notion of “reachability” which may be viewed as an extension of
“visibility” (introduced by Witzgall (1964) in affine spaces) to general pseudometric

spaces.

2. PROBLEM STATEMENT

Let (X,d) be a pseudometric space, i.e. d is a map X x X — R with following
properties for any z,y,z € X:

(1) d(z,y) >0 (nonnegativity)
(2) d(z,z) =0 (identity)
(3) d(z,y) = d(y, r) (symmetry)

(4) d(z,z) < d(z,y) + d(y, 2) (triangle inequality)

When additionally d is definite, 1.e.
(5) d(z,y) = 0 implies z = y,

then d 18 a metric.

Any pseudometric space has a natural topology defined by the basis consisting
of open d-balls B°(z,r) = {y € X | d(z,y) < r}, wherez € X and r > 0. When dis
a metric we obtain a Hausdorfl topology. The pseudometric d is always continuous
with respect to this topology.

Let A and R be two finite subsets of X. To each point a € A (resp. r € R)
a positive weight w, (resp. w,) is associated. The points of A are the atiracting
destinalions and those of R the repelling ones.

We define the Fermat-Weber problem with attraction and repulsion (FWAR)
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as
MIN f(2)
where f(z) = 2 w,d(z,a) — Z wed(z,r).
aCA réR

Since d is continuous, d( -, a) and d( -, r) also are, showing that f is continuous.

Note that for any two close points z,y € X, i.e. with d(z,y) = 0, we always
have d(z,2) = d(y,z) for any z € X, as an easy consequence of symmetry and
triangle inequality. It follows that in such a case f(z) = f(y), and that whenever
z 1s optimal y also will be.

In most practical location problems distances may be considered to be deter-
mined by way of shortest paths (geodesics): in networks this is the standard way,
in euclidean spaces shortest paths are given by straight line segments, in rectilinear
spaces (Manhattan distance) shortest paths use the two main directions only, on
the sphere shortest paths are great circle arcs no greater than 180°, etc.

In all these “geodesic” spaces there exists the notion of “lying between” : z lies
between y and z iff there exists a shortest path from y to z which passes through z.
In terms of the underlying pseudometric we may formalize this notion as follows.

The point z € X is said to lie between the points y, z € X iff
d(y,z) =d(y,z) + d(z, z).

Note that z always lie between z and z, and that this is also the case for any point
z’ at distance 0 from z.

LEMMA 1: Let 2z € X lie belween the poinis b€ A and y € X, then
f0-1@2 (- X - Y )d)
a€ A\ {b} reR
Similarly, when z € X lies between s € R and y € X, then

10~ 1@ < (Svat X we-w,)da)

a€A re R\ {2}

PrROOF: By the triangle inequality we have
d(a,y) - d(a,z) > —d(z,y)  for any a € A

and
d(r,y) —d(r,z) <d(z,y) foranyr € R.

Hence

f(y) = f(z) =) wa(d(a,y) - d(a,z)) = Y _ we(d(r,y) — d(r, z))

acA réER
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> S wa(~d(y,z) - Y wed(z,y) + wa(d(b,y) — d(b, 2))

ac A\ {4} reR
— (wb"' Z Wy —Zwr)d(zay)'
ag A\ (b} reR

The second result follows from the first by sign inversion, thereby interchanging
attraction and repulsion.®’

3. MAJORITY AND ITS IMPLICATIONS

A destination d € AUR, either attracting or repelling, is said to hold a majority

iff
wy > 0.9 E W,
cEAUR
or equivalently
wq 2 Z We
¢€ AUR\{d}

This majority is said to be strict whenever the defining inequality is a strict one.

THEOREM 2. If some aflracting destination b € A holds a majority, then b 1s an
optimal solution. If b’s majorily is strict then the oplimal solutions are exacily
those points at distance 0 to b. In a meiric space b is the unique optimal solution
tn this latter case.

If there is a strict majority at some repulsion point 8 € R, and distance up
to s 15 unbounded, then there is no optimal selution, in the sense that f may be
decreased as far as one uishes.

PrOOF. Let b € A hold a majority. Since b lies between b and any point y € X, we
may apply the first part of Lemma 1, taking z = b. It then follows that f(y) > f(b)
for any y € X, hence that b 1s an optimal solution.

[f the majority of b is strict, then by the same reasoning we have that f(y) >
f(b) for any y € X such that d(y,b) > 0. Since for any point z close to b we have
f(z) = f(b), it follows that these points are exactly the optimal solutions. In a
metric space b is the only point close to b, so b will be the only optimal solution.

Suppose now that a strict majority occurs at s € R. The second part of

Lemma 1 applies with z = s, yielding

f0)< 1@+ (D vat 3

W, — w,) d(s,y)
a€ A r€R\{s}

The factor of d(s, y) being strictly negative, we may reduce f(y) below ;ny level by

mcreasing d(s,y) sufficiently. Thus if distance to s is unbounded on X . there will

not exist any optimal solution and the “optimal value will be —~co” . m
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4. THE CONSTRAINED CASE

Let us now move to the constrained Fermat-Weber problem with attraction
and repulsion. Let S denote the feasible region. In order to guarantee existence of
optimal solutions we will assume S to be compact. The problem is then formulated
as

(CFWAR) MIN f(z)
rES

where f(z) is defined in the same way as in section 2.

In affine spaces, where lines and convexity are defined, we know that con-
strained optimal solutions to convex objectives may be found by restricting search
to the feasible points which are visible from some unconstrained optimum. What
we will show here is first that visibility may be generalized to general pseudomet-
ric spaces, and secondly that in the particular case of constrained Fermat-Weber
problems in which a majority destination exists a similar property may be derived.
This may come somewhat as a surprise, since the presence of repelling destinations
destroys convexity of the objective.

A point z € S is said to be first reachable from y € X iff whenever z € S lies
between y and z, this implies that d(z,z) = 0.

Note that when d is actually a metric then z € S is first reachable from y iff
no other point from S lies between y and z. In other words, z is the only point of
S along any shortest path from y to z. This last property gives a rationale for the
term “first reachable”.

Similarly, we will say that z € S is last reachable from y € X iff whenever
z € S is such that z lies between y and z, then d(y,z) = 0.

Again, if d is a metric, this is equivalent to stating that z does not lie between
y and any other point of S, 1.e. there is no shortest path from y to any point of 5
which passes through z, explaining the term “last reachable”.

First reachable points may be considered as an extension to general pseudo-
metric spaces of visible points (see Witzgall (1964)) in affine spaces. Indeed a point
z of S is visible from y iff the line segment joining y to z has no points in common
with S, except for z. Since this line segment is in fact the set of points between y
and z in the context of the euclidean metric (or any other strict metric) we may
similarly define the d-segment d[y, z] as the set of all points lying between points y
and z in the pseudometric space (X, d). In networks d[y, z] will be the union of all
shortest paths from y to z, while in the Manhattan plane it will be the rectangle
with points y and z as opposite corners. Point z € S will then be first reachable
from y iff the intersection of dfy, z] with S is reduced to z in metric spaces, and, in
more general pseudometric spaces, reduced to d[z, z], which is the set of all points
close to z, i.e. at distance 0 from z.

Let us similarly introduce the notation d(y[z) as the set of points z € X such
that z lies between y and z. This is a generalization of the halfray starting at 2

and away from y. Point z € S is then last reachable from y iff the intersection of
d(y[z) with S reduces to d[z, z].
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LEMMA 3. If S is compact, then for any z € S the d-segment dy, z] conlains a
point first reachable from y, and the set d(y[z) contains a point last reachable from

Y.

ProoF. We will only prove the first statement, since the second one is proved n

analogous way.

The segment d[y, z] is closed. Indeed it is the inverse image of the closed
singleton {d(y, z)} of R by the continuous function d(y, -)+d(-,z). Hence if z € S,
the (nonvoid) intersection of d[y,z] with the compact set S is also compact. It
follows that there exists a point z minimizing the continuous function d(y, -) on
this intersection. We proceed to show that this z is indeed first-reachable from y.

Suppose t € S lies between y and z, then

d(y,z) = d(y,1) + d(t, z)
> d(y,z)+d(t,z) by construction-of z
> d(y,z)

it follows that d(¢,z) = 0 as required. =
Using these notions we may formulate the main theorem of the paper:

THEOREM 4. Suppose the atlraclting destination b holds a majority, then there
always ezrists an optimal solution to CFWAR which is first reachable from b. Ifb’s
majority is sirici, then any oplimal solutton is first reachable from b.

Stmilarly if there 1s a majority at some repelling destinatlion s, then there
always ezists an oplimal solution which is last reachable from s. If s’s majority is
strict then all the optimal solutions are last reachable from s.

PROOF. Suppose that b € A holds a majority. Let then y be an optimal solution
to CFWAR, then for any point z between b and y we have, by Lemma 1 that
f(y)—f(z) 2 0, hence f(y) > f(z). Since d[b, y] contains a first reachable point by
Lemma 3, which then lies between b and y, this is at least as good as y, and thus
can serve as an optimal solution.

When the majority of b is strict, for any y € S which is not first reachable

from b, there exists an z € S between b and y with d(z,y) > 0. By the lemma we
then have f(y) > f(z), showing that y is not optimal.

The second part of the theorem is proved in similar way. m
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