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Abstract. The paper gives sufficient conditions for the stability of the paramet-
ric semi-infinite problem with the quasiconvex objective and constraint functions.
The obtained result generalizes results concerning parametric linear semi-infinite
optimization [4)], as well as the stability results for convex case [1], [3], [5].
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1. INTRODUCTION

Consider the following parametric semi-infinite optimization problem

(Ps) : inf f(z,0)
subject to

gt(xle)SO, tGT
where:
(1) z € E;

(2) T is a compact topological space;

(3) parameter # belongs to a metric space ©;

(4) functions (z,0) — f(z,60) and (z,0,t) — g:(z,0,t) are continuous;

(5) for every # € © and t € T, functions z — f(z,0) and z — gi(z,0) are
quasiconvex on E".

Recall that a function f : E™ — R is quasiconvex iff for every z,y € E™ and

A €(0,1),
f(Az + (1= A)y) < max{f(z), f(y)},

and strictly quasiconvex iff for every z,y € E™,

f(z) < f(y) implies f(Az+(1-A)y) < f(y), VA€ (0,1).



136 D. Dugodija

For a fixed parameter # € ©, (Ps) is a quasiconvex semi-infinite problem.
Denote by

X(8) the set of feasible points,
S(0) the set of optimal solutions,

of the problem (P;). The aim of the paper is to show some sufficient condjtictns
under which the problem (Ps) is stable at a point 6y € O, i.e. the following is valid:

(i) S(8) is not empty for every parameter 8 in some neighbourhood N (o) of the
point By;

(ii) for every sequence (8,), 6. € N(6p) such that 8,, — 8, the sequence of arbi-
trary chosen optimal solutions (s(6,)) is bounded with accumulation points in

S(6a).

This notion of stability was introduced in Eremin-Astafiev [1].
REMARK. It could be easily proved that stability of (Ps) at o € © implies that the
function  ~— S(@) is upper semicontinuous at f; in the sense of Berge. Conversely,

upper semicontinuity of the function # — S(8) implies stability of (Ps) under
additional conditions such as

(1) S(8p) is a nonemply and bounded set and
(i1) S(@) is not emply, for every 6 in some neighbourhood of Oy (see [2, Th. 7.5)).

We need also the following definitions. We say that a sequence (C,), C, C E™
is convergent to a C C E™, denoted by C, — C, iff C = limsup Cp, = liminf C,,,

where

liminf C;, = {x € E™ | z = limz,, for some (z,), z, € C,, n € N},
limsup C, = {z € E™ | r is an accumul. point for some (z,), z, € Cn, n € N}.

For a given function 8 — C(0), 8 € ©, C(6) C E™ and C C E™, we say also
that C(f) — C as 8 — by, (6, € ©) iff C(6,) — C, for every sequence (8,), 6, € ©
such that 8,, — 8,.

2. CONDITIONS FOR STABILITY
The following theorem gives sufficient conditions for the stability of (Ps).

THEOREM 1. A quasiconvez paramelric semi-infinite problem (Pg) is stable at
by € ©, if the following conditions are satisfied

(1) S5(0g) is a nonempty bounded sel,
(i1) X(8) — X(6,) as 6 — 0.

ProoF. According to [3, Th. I.3.3], the function 6 +— S(8) is upper semicontinuous
at fg. Keeping in mind the results from the Remark, the conclusion follows if we
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show that S(@) # @, for every @ in a neighbourhood of #y. Suppose the contrary.
Then there exists a sequence (6,), such that 8, — 8y and S(0,) = &, n € N.
Let =y € 5(fp) and K(0,r) be a ball with the center 0 and the radius r such that
S(8) C K(0,r). Since X (6,) — X(8), there exists (z,), o, € X(0,) such that
&n — zo. Let us prove that, for every n € N, there exists a direction d,, # 0 such
that for every t > 0

Zn + td, € X(an) (1)

and
f(zn +1ds,0,) < f(2Zn,0n). (2)

Since S5(f0,) = D, we can find a sequence (y,), ym € X(0,) such that ||ym| — oo
and f(ym,f) — —00 as m — oo. Let d,, be an accumulation point of (ym /||lymll)-
Without loss of generality, assume that d, = limm—co(Ym/||ym||). Since X(8,) is
a convex set, for t > 0 and m > mg, we have

( nyiu) * T € X )

Putting m — oo yields (1). Quasiconvexity of f yields

f(( ”yfn") + tmtn ) S mx{f(n,00), £ (4 0a)} = (2,00

and m — oo implies (2). Choosing ¢,, > 0 such that y, = z, + t,d, € K(0,2r) \
K(0,r), we find a bounded sequence (y,), which has an accumulation point yqg

in X(0o) \ S(6o). From f(yn,0n) < f(zn,0n) we obtain f(yo,00) < f(zo,00),
contradicting yo € S(f9).

The condition (ii) in Theorem 1 is hard to check. Hence, the following result
is of Interest.:

THEOREM 2. Assume that the problem (Ps) from the iniroduction satisfies:

(i) the functions z — gi(z,00), t € T are strictly quasiconvez and

(i1) there ezists zo € E™ such that, for allt € T, g.(z0,00) < 0 (Slater’s condition).
Then X (8) — X(6p) as 6 — b,.

In the proof we use the following lemma which has the interest of its own.

LEMMA. Let T be a compactl set and let (z,t) — g¢(z) be a continuous funciion on
E™ x T which s strictly quasiconvez in z for everyt € T. [f the Slater’s condilion

dzo € E"ViET g:(Iu) <0
15 salisfied, then

int{z | g:(z) <0, t €T} ={z | g(z) <0, 1 €T}.
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PROOF. Let a € E™ be such that g,(a) < 0 for all ¢ € T. Assume a & int{z |
g:(z) < 0, t € T}. Then, there exist sequences (z,) and (t,) such that z, — a
and g;_ (z,) > 0, for n € N. Since T is compact, there is a subsequence (En; )i
tny — 20, Lo € T as k — oo. Using the continuity, from g, (zn,) > 0, if £ — o0,
we obtain g;,(a) > 0, which is a contradiction. On the other hand, let a € int{z |
gi(z) < 0,t € T}. Then, for each z in some neighbourhood K{a,r), we have
g:(z) < 0,t € T. Assume that for some t € T, g;(z) = 0 and let b € K(a,r) be such
that a is a convex combination of zq and 4. Since 0 = ¢g¢(a) < max{g.(zo), ge(b) }
< 0, it must be g,(b) = 0. Using the strict quasiconvexity of g;, we obtain a
contradiction g;(a) < g:(b) = 0. Hence, g;(a) < 0, which completes the proof.

PROOF OF THEOREM 2. Let 8, — 8;. We show first that zy is a Slater’s point
of the sets X(6,) for all sufficiently large n. Assume the contrary. Then, for
some subsequence (1,,), tn, € T we have g;, (20,0n,) > 0. Since T is compact,
there exists an accumulation point ¢ € T of ({,,). Using the continuity, we get
gi,(20,60) > 0, which is a contradiction. Hence, X(8,) # @ for all sufficiently
large n. Assume that z € limsup X(6,). Then, there exists (z,), z, € X(6,),
n € N, such that z is an accumulation point of (z,). Using the continuity, from
gi(zn,0,) <0,t €T, we find g4(z0,05) <0,t €T. Hence,

limsup X(0,,) C X(6o).
The proof will be completed if we show that
X(0o) C liminf X (6,).
Since, X(6p) = ¢l intX(6p), it is sufficient to show that
& # intX(0p) C liminf X(6,). (3)
According to the Lemma, we have |
intX (0p) = {z | 9:(2,600) < 0, €T} # O.

Let a € intX(f8p). As in the proof of the Lemma, we could show that a is a Slater’s

point of X(f,), for all n > ng. The sequence (z,), £n = a for n > ny, is convergent
to a and satisfies r, € X(6,). This yields (3). Hence, X(0) — X(6) as § — 6,.

Combining results of Theorems 1 and 2, we have an operative result concerning
stability of a quasiconvex semi-infinite problem. We show by examples that our
assumptions are essential.

EXAMPLE 1. Let M = R, 8y = 0 and
(Pp) : inf —-0z+y

subject to
0z —y<1, telol)
y 2 0.
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Slater’s condition is satisfied, X (o) is not bounded. The problem is unstable at
fo, since, for 8, = 1/n, the sequence s(6,) = (n?,0) is unbounded.

EXAMPLE 2. Let M = C[0,1] x C[0,1], 6 = (a(t),b(t)) € M, 8o = (t,1) € M and

(Pe) : inf —y
subject to
z + a(t)y < b(1), t €[0,1]
r+y<2
e.y>0

(Ps) is unstable at 8, since for 8,, = (an(t),bn(2))

t, if1/n<t<1;

aa(t) = bnlt) = { I/n, f0Lt<1/n

8, — 6, but the sequence s(6,) = (0,1) does not have accumulation points in
S(80) = {(0,2)}. Slater’s condition is not satisfied.

EXAMPLE 3. Let M = R, 63 = 0 and

(Ps) : inf —z
subject to
g(z)+6% <0
z >0,
where
r—1, z-1<0;
g(z) = § 0, 1<z<72,
r—2, z22.

Problem (P;) is not stable at 6, since for 8 — 0,s(f) = 1-6% — 1, but S(8y) = {2}.
The reason lies in the fact that g 1s not strictly quasiconvex, although all the other
conditions are satisfied.

3. CONCLUSION

Theorems 1 and 2 extend the results of Colgen and Schnatz ([4, p. 113-116,
216-218]) concerning parametric linear semi-infinite problem
(Py) : inf {c, z)
subject to
(a(t), z) 20(t), teT

where T is a compact set, M = C(T,E™) x C(T) x E™, 8 = (a(1),b(t),c) € M.
Theorems 1 and 2 extend also the result of Brosowski ([4, Th. 11, p. 213]), where
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the sublinearity of the objective function is supposed, as well as the well known
stability results for the convex case ([1], [3], [5]).
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