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Abstract. With the geographical/gecmetrical optimization problem as an exam-
ple, it is shown that “fast autornatic differentiation”, a graph-theory based compu-
tational technique, will resolve a number of difficulties of different kinds which we
confront in the solution of large complicated continuous optimization problems.
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1. INTRODUCTION

Combinatorial approaches and tools are useful not only for discrete optimiza-
tion problems but also for continuous optimization problems, as has been evidenced
in many instances. For example, combinatorial properties of linear programming
theory have long been recognized; use of combinatorial approaches with fixed-point
theorems, simplicial decomposition, homotopy etc. in numerical solutions of con-
tinuous optimization problems and nonlinear equations are well known; and combi-
natorial methods are essential for preliminary structural analysis of specially struc-
tured large-scale continuous systems (2], [13].

In this paper, we deal with another aspect of the rdle of combinatorial con-
cepts and methods in an originally continuous optimization problem called the
geographical/geometrical optimization problem [4]. Since the problem is geomet-
rical, it is natural that topological concepts should play an important role, so that
the importance of the newly developing field of computational technology called
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“fast automatic differentiation” [1], 3], [5], [6], [2], [10] will be particularly em-
phasized in the following. (Fast automatic differentiation is nothing but a graphical
technique for manipulating computational processes.)

2. GEOMETRICAL/GEOGRAPHICAL OPTIMIZATION

2.1. FORMULATION

We will consider the following problem of optimum location of facilities. (For a
family of related problems called geometrical /geographical optimization problems,
see [4].) The unit square S in the 2-dimensional Euclidean plane is densely inhab-
ited with the distribution function ¢(z) of inhabitants (2 = (z,y) € S). There are
a given number N of facilities, all of the same kind, in S. Each inhabitant uses the
nearest facility regularly, say 5 times a month, but some cost 1s incurred at each
time of use and we assume that the cost is a known function f(1*) of 1l distance
t between the place where an inhabitant lives and that where the nearest [acility 1s
located.

The problem i1s how to determine the locations of those N facilities 1n the
optimum way, optimum in the sense that the total cost incurred be minimum

The mathematical expression of the problem is quite simple. 1t is an un-
constrained minimization problem in 2N variables {(z;, %) | i = 1.... N}
(2; = (z;,y:)): the location of the i-th facility; X = (=;,....2zx): the loca-
tion vector with 2N components) with the objective function expressed in the form
of the integral:

F(X) = F(zy, ..., 25) = /Sf(min |z ~ zi|[)e(z) d 2, 2.1)

where the minimum in the integrand function is taken over the N points z; for
each . The expression is merely theoretical, because the minimum must be taken
at infinitely many points z.

2.2 REFORMULATION OF THE PROBLEM IN TERMS OF THE VORONOI DIAGRAM

In order to compute the objective function F', it is natural to conside: the
partition of the unit square S into the territories V; of the facilities defined by

Vi={zeS|llz-=ll <|le-=|.i #4, i=1,... N, (2.2)

where, obviously,

VinV; =9, i#] (2.3)
N
Vi=S  (V indicates the closure of V;), (2.4)
i=1
and we set
W,'J' = Int(V; N V})l (‘25)

Uik =VinV; 07, (2.6)
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The territory of ®; is called the Voronoi region V;; the common boundary of two
adjacent Vi and Vj is called the Voronoi edge W;;; and if three territories V;, V; and
Vi meet at a point, the point is called the Voronoi point U;;;. This partition into the
territories of ®;’s or the corresponding two-dimensional combinatorial-topological
complex is called the Voronoi diagram. Then, it is obvious that the integral (2.1)
can be rewritten in a more practical form:

N
FX) =P, zm) =Y [ fle-=dlp(@) d=. (27

1=1

Here, 1t should be noted that the variables z; = (z;,%), i = 1,..., N, appear on
the right-hand side of (2.7) not only as the arguments of the integrand function
f(-) but the domains of integration V; also depend on z;’s.

3. A. BRUTE-FORCE SOLUTION

It seems that no practically useful analytical solution is available to the prob-
lem except in the cases where N has a special value and ¢ has a special form.
Furthermore, the uniqueness of solution obviously does not hold in general, so that
F is not a convex function, nor is it continuously differentiable in general. There-
fore, we may give up looking for any theoretically elegant approach to the problem
but may be contented with a brute-force iterative numerical method to get a local
minimum of F.

First, we note that the gradient of F' looks like
8F ,
oz} /V(-r? =~ (=i - zlM)p(e) dz (A =1,2) (3.1)

and the Hessian like
Hi +Gy\, ifj=1i

2 a
65’-‘;3‘ =< G}, if V; and V; are adjacent (i # j), (3.2)
o 0 if V; and V; are not adjacent (i # j),
Hie= [ [Bres (lmi - 2l) + 2af - 2°)(z} - )/ (i - 2l () dz,
Gh=KL G.=- ), K,

j:V; adjacent to V,

i 2§ — z%)(2} — 2 9
k= [ BT gy - fYee) d

=i — z;]|

1)
where z} = z; and z? = y; and f'-". -d & and fWu‘ -d ® are, respectively, the surface
integral over the Voronoi region V; and the line integral along the Voronoi edge W;;.
In order to numerically compute the integrals we must use numerical quadrature
formulas. (We chose the 7-point formula of the Gaussian type for the numerical
quadrature on a triangle based on which the integral on a polygonal Voronoi re-

gion V; is approximated by dividing the polygon into triangles, and for a numerical
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quadrature formula on a straight-line segment we chose the 4-point Gaussian for-
mula.) The approximate values computed by those numerical quadrature formulas
will be denoted with tilde in the following.

Now, the optimization algorithm follows.

0° Imitialization: — Set, rather arbitrarily, the initial values {:E‘” |4 & 15 o s B}
for #;’s and v := 0,

1° Construct the Voronoi diagram {V*, Wi(;'), UI-(;’Q} for points z.*"’s.

2° Compute the approximate value F of the function F of (2.7), the approximate

values VF of its gradient VF of (3.1) and those VWV F of the Hessian (3.2) by
means of the numerical quadrature formulas.

3° Modify «!*) using the formula:
2 = 2 4 o, i=1,... N, (3.3)

where (d(I"), ‘o s ,d(;)) is the Newton vector determined by ¥ F and VVF, and
a(¥) the parameter to be determined by line search. We may resort to the
Marquardt method to stabilize the iterative process.

4° If the modification zE”H) — :cE"J 18 small enough, or if VF is small enough, or

if the improvement F(z(*)) — F(2(*+1)) on the value of the objective function
is small enough, then stop. Otherwise, increase v by 1 and go to 1°.

This kind of brute-force iteration really works to some extent. Here, we shall
show two examples in [7] and [17].

du/dx ydp/dx du/dx

| I de I TWM

_1/2 1/2 =172 1/2 -1/2 1/2
1° 2" 3°

Fig. 1. Population distribution used in the experiments
(one-dimensional section) [7]
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(a) l \ (b)

(c) (d)

Fig. 2. (a) Initial distribution
b} Near Optimum distribution for the population density of type 1°
¢) Near Optimum distribution for the population density of type 2°
dgl Near Optimum distribution for the population density of type 3°

)

Fiz. 2 is the first example of simplest facility location problem in (7], with 128
facilities. Starting from the random initial distribution of facilities (Fig. 2(a)), we
got to a nearly regular hexagonal distribution (Fig. 2(b)) by means of the brute-
force iteration for the uniform distribution of inhabitants 1? in Fig. 1. We got to

near optimum distribuitions Fig. 2 (c) and (d), respectively, for the distributions of
2° and 3° in Fig. 1.
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Fig. 3. Columnar structure of basalt [15]
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The other example is shown in Fig. 3 and Fig. 4. Fig. 3 indicates an observed
horizontal section of columnar structure of basalt [15]. There is a controversy
among crystallographers on the underlying physical process of the growth of this
kind of structure, particularly about whether this section diagram is a Voronol di-
agram or not. An observed diagram cannot be exactly a Voronoi diagram due to
various noises and observation errors so that our problem must be how well the
observed diagram can be approximated by a Voronoi diagram. The problem is for-
mulated in a manner similar to the problem of facility location but with a different
from of objective function integral which represents the total area of discrepancy
between the observed diagram and an approximate Voronoi diagram. Fig. 4 shows
the result for Fig. 3. Thick lines indicate the observed grain boundaries, and thin
lines the best approximation by a Voronoi diagram. Whether the approximation is
good or bad will be evaluated by crystallographers.

4. COMPUTATIONAL DIFFICULTIES
AND THEORETICAL INCONSISTENCY

Apparently, the iterative algorithm 0°—4° has a number of difficulties. Specii-
ically:

(1) It is not an easy task to reconstruct a Voronoi diagram at each step of iteration
(—1°).

(i1) The Newton direction (V?F)-i -ﬁ', as well as the steepest-descent direction
VF, coincides neither with the corresponding direction for the original ana-
Iytical problem “min F” nor with that for the approximate problem “min F”
(—2°,3°).

(1i1)) When to stop the iteration is rather arbitrary ( « 4°).

(iv) Deriving the analytical expressions for VF, VVF from that for F is not an
easy task.

The first difficulty (i) has already been overcome practically. In fact, there is
an incremental algorithm for constructing the Voronoi diagram which runs in O(N)
time in the average case for many nearly uniformly distributed points z;’s (0.2 ms
per point on a standard non-parallel main-frame computer) [14], so that the sub-
stantial progress has been made with respect to computational time. On the other
hand, according to experience, 1t i1s known that naively implemented algorithms,
especially those of the divide-and-conquer type, are weak against rounding errors,
I.e., they are often hung up for large problems due to rounding errors. However,
this numerical difficulty has also been practically overcome by modifying the in-
cremental method in [14] laying more stress on the topological condition that “the
Voronoi diagram be a planar graph of vertex degree three” than on the values of
the coordinates of a Voronoi point obtained by numerical computation [16]. This
modification does not deteriorate very much the computational speed of the algo-
rithm. In this way, graphical concepts and techniques did substantial contribution
to the resolution of difficulty (1).
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differentiation
e — e

F — VF — VVF

approximation by J' e 1 J'

numerical quadrature

Fig. 5. Desirable scheme

The second difficulty (ii) comes from the fact that the scheme of Fig. 5 1s not
commutative. In fact, ordinary approximation will be represented by the scheme
of Fig. 6. In this respect, there is another possibility. If we had a means for exactly
calculating the gradient VF and the Hessian VVF of the approximate objective

differentiation ,
F_— VF o VVF
approximation by \vAvl 2
numerical quadrature I
VF VVF
y i i
& F— VF — VV

Fig. 6. Actual scheme

function F', we could go through all the process of optimization consistently within
the approximate world. But, the program of computing F itself is so long and
complex containing construction of Voronoi diagrams and numerical quadratures.
Furthermore, we are usually interested in problems with tens or hundreds of facil-
ities, 1.e., with twice as many variables, so that it would practically be impossible
to write down the programs for computing all the exact partial derivatives of F.
Even numerical differentiation would not be practically feasible because, besides
its poor numerical accuracy, it would need to call the program for computing F so
many times at each iteration.

The third difficulty (iii) concerning the stopping criterion for the iteration is
shared by many iterative methods in numerical analysis. Nobody could confidently
judge the relevant quantities to be small enough. In fact, there is no objective
reference level of “smallness” in most cases. Numerically, however, a noise level of
rounding error to be incurred in the computation of the value of the approximate
function F or that of its gradient VF, would be, at least conceptually, a good
reference level, 1.e., we will generally agree upon that the best we can do numerically
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is to suppress the computed value of a relevant quantity (which is required to be
made equal to zero) below the noise level of rounding error. Thus, we are led to
the question how to get a good estimate of the upper bound of the rounding error
incurred in the computed value of the quantity in consideration.

The fourth difficulty (iv) may remind us of the possibility of resorting to symbol
manipulation software, but it actually is too tough to allow us to do so.

5. FAST AUTOMATIC DIFFERENTIATION

The difficulty (ii) of noncommutativity of differentiation and approximation
and that (iii) of rounding error estimation in the geometrical/geographical opti-
mization (which are common in many other optimization-related problems) are
practically resolved by the help of the recently developing method of Fast Auto-
matic Differentiation [1], [3], [5], [6], [8], [9], [10], [11], [12]. Using that method,
we can automatically convert the original program for computing a function of
many variables, however long and complex it may be, into another program for
computing simultaneously the function, all the components of its gradient vector
and a sharp upper bound on the rounding error in the computed value of the func-
tion, in time at most proportional to the time for computing the function alone by
the original program. Here, the constant of proportionality is independent of the
number of variables and of the complexity of the original program. It is 4, 5 or
6 in terms of operation counts, but, with rather primitive implementation, several
tens in terms of computational time due to various overheads. Furthermore, we can
compute each row of the Hessian matrix and a sharp upper bound on the rounding
error 1n the computed value of each component of the gradient vector in a similar
manner. The difficulty (iv) is, thus, got rid of automatically.

Here again, graphical representation of the computational process of the func-
tion plays an essential role for the design of the algorithm of the program conversion
and for the analysis of its complexity. In brief, we may construct the “computa-
tional graph” representing the history of computation, or “computational process”,
of the function value while we compute it. A node of the computational graph
represents an input variable, a constant used in the computation, the function or
an intermediate variable, and arcs represent which intermediate variable has been
computed from which intermediate variables (or input variables or constants) by
a basic operation (corresponding to their terminal node), and to each arc is as-
sociated the value of the elementary partial derivative of the corresponding basic
operation with respect to the corresponding argument.

A computational graph is acyclic by definition. By traversing the computa-
tional graph from the function node down to the input nodes only once, we can
find all the first-order partial derivatives of the function with respect to all the
intermediate variables v; and to all the input variables z;. This way of traversing
is similar to that in which we compute the shortest distance on an acyclic graph.
0f/0zi’s are the components of the gradient Vf. §f/8v;’s are the amplification
factor of the rounding error év; generated at the computation of the intermediate
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variable v; to the function value, so that we have an upper bound |Af|4 on the
rounding error A f in the computed value of the function f as follows.

_ of ‘ of | of ' _
|Af] = By, §v; 5; Bu; - |6vi| < (EJ:E |u,|) e=|Afla, (5.1)
where we assume
|6v;] < |v;| - € (5.2)

with the relative precision ¢ of the floating-point representation of real numbers.

Since the way of computing the gradient so far explained is itself represented
in the form of a program, we can apply the same principle to it to get the Hessian
as well as the rounding error estimates for the gradient.

6. NUMERICAL EXAMPLE

This is a small numerical example of a typical location problem. We used

Sparc Station 14+(Sun4-65) with 12Mbyte memory on SUN-OS 4.0.3¢c and “f77"
FORTRAN compiler with option “-O”. (All operations are performed with “double
precision”.)

The problem and the computational method are as follows.

(1) f(t*)=1°.
(2) ¢(x) = exp(-9|jz||*).
(3) The number of facilities N = 30.

(4) Initial location X(% is a sample from the uniform distribution over the unit
square (Fig. 7).

Fig. 7. Initial location

(5) The Newton-Raphson method with Marquardt’s modification was used.

In Fig. 8 are shown the sequences of numerical results:

o - . |(vﬁ),.|
1) F, |[VF||, and ||[VF||y = max E

rithm” using ¥, VF and VVF (VF and VVF as well as |A(V F);|4 computed
by means of fast automatic differentiation);

computed by the “consistent algo-
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(11) F and ||':\.;?":‘7ﬂ’||2 computed by the “inconsistent algorithm” using F., VF and
UV F as described in Section 3.

Note that the two sequences {X{LP), X(l}, X(Cz),. .. } generated by the consistent

algorithm and {X{;"), X{Il), X?), ... } generated by the inconsistent algorithm which
are both seemingly convergent, are considerably different from each other although

they start from one and the same initial vector X9 - XSO).

IVEF|2, [VF|l2
IVF||y F-F*

(c]
-Cﬁﬂlill - F‘ 1 ‘.m illm Aﬂlﬂil - F'

F
1 —+— 10 14_........ .................................. i v _..?.:,.:.-.:.:_:.:: .......... sk
(B I ..".
| ’ IVE2
e r-l—‘ T — - L/
10 20 30

iteration number

Fig. 8. Numerical results (F* = 5.980165886 x 10~¢)

The following may be remarkable points to observe in Fig. 8.

With the consistent system (F,VF’,VVI?') we can stop the iteration at [A]
in Fig. 8 because ||[VF||y < 1 holds there, i.e., VF becomes small enough in
comparison with the noise of rounding errors. Moreover, at [B] in Fig. 8, we can see

also that F' and ||‘v.7’}'f'||2 are minimized simultaneously. Thus, we can be confident
that we have got a local minimum (Fig. 9).
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Fig. 9. Near optimum location obtained by the consistent algorithm

On the other hand, with the inconsistent system, at [C] in Fig. 8, we had to
stop the iteration because we could not find descent direction although the value
of the function could be decreased. (The resulting location is seemingly almost the
same as that by the consistent system.) Indeed, the estimate of the rounding error
of F at [C] was almost equal to 10~!¥ so that the difference of the value of F at
[B] and that at [C] was large enough to separate those values numerically. At [D]

s

in Fig. 8, although ||V F||, was not small enough, the vector (VVF +4I)~! . VF

(with v =~ 10-2) and VF were almost orthogonal to the steepest descent direction
VF. Therefore, F failed to decrease any more. Alternatively, we might insist to
decrease ||V F||, further, but, even if we did it, F. would not be made smaller any
longer, which would be meaningless from the point of view of optimization.

Although, of course, the solution computed by the consistent system gives
only one of the local minima, we think that it is meaningful to establish a method
without theoretical inconsistency. Indeed, we can stop the iteration at [A] and [B]
(the 24th iteration) by the consistent algorithm on a sound theoretical basis using
the rounding errors incurred in the computed values of VF', but we could not stop
the iteration at [C] by the inconsistent algorithm.

7. CONCLUSION

We would like to emphasize here again that the two techniques, the topology-
oriented algorithm for constructing Voronoi diagrams and Fast Automatic Differ-
entiation, are essential for overcoming the computational difficulties and resolving
the inconsistency which appears in the optimization algorithms.
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