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Abstract: The stochastic inventory models analyzed in this study involve two models
that are continuous review and periodic review. Instead of having a stockout cost term
in the objective function, a service level constraint is added to each model. For both
these models with a mixture of backorders and lost sales, we first assume that the lead
time (L )/protection interval (T + L) demand follows a normal distribution, and then
relax this assumption by only assuming that the mean and variance are known. For
each case, we develop a procedure to find the optimal solution, and then an illustrative
numerical example is given.
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1. INTRODUCTION

In most of the early literature dealing with inventory problems, in both
deterministic and probabilistic models, lead time is viewed as a prescribed constant or a
stochastic variable, which therefore is not subject to control (see, e.g., Naddor [8] and
Silver and Peterson [11]). In 1983, Monden [5] studied the Toyota production system,
and pointed out that shortening lead time is a crux of elevating productivity. The
successful Japanese experiences using Just-In-Time (JIT) production show that the
advantages and benefits associated with efforts to control the lead time can be clearly
perceived.

* This research was support by the National Science Council of Taiwan under Grant NSC-89-
2213-E-032-013. The authors are also thankful to the anonymous referees for their constructive
suggestions to improve the paper.
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Recently, several continuous review inventory models have been developed to
consider lead time as a decision variable. Liao and Shyu [4] first presented a continuous
review inventory model in which the order quantity was predetermined and lead time
was a unique decision variable. Later, Ben-Daya and Raouf [1] extended Liao and
Shyu's [4] model by considering both lead time and order quantity as decision variables.
Ouyang et al. [9] allowed both the lead time and order quantity as decision variables
and considered a stockout case. Ouyang and Wu [10] utilized the minimax decision
criterion to solve the distribution free model. However, in the models previously
mentioned [1, 9, 10], reorder point was not taken into account, and they merely focused
on the relationship between lead time and order quantity. In other words, they
neglected the possible impact of the reorder point on the economic ordering strategy.
Such a phenomenon is usually not perfect in a real inventory situation. In a recent
research article, Moon and Choi [7] revised Ouyang et al.'s [9] model by considering the
reorder point to be another decision variable. We note that the stockout cost in their
paper is an exact value. However, in many practices, it is difficult to determine an exact
value for the stockout cost, hence, we here replace the stockout cost term in the
objective function by a service level constraint.

The objective of this paper is to extend Ouyang and Wu's [10] continuous
review models to accommodate a more realistic situation. That is, our goal is to
establish a (Q,r,L) inventory model with a service level constraint. From the
numerical example provided, we can show that our new model is better than that of
Ouyang and Wu [10]. On the other hand, we also propose a new (T,R,L) inventory
model for periodic review. For both of these models, we first assume that the lead
time/protection interval demand follows a normal distribution, and then try to find the
optimal ordering policy. We next relax this assumption and merely assume that the
first and second moments of the probability distribution of lead time/protection
interval demand are known and finite, and then solve this inventory model by using
the minimax distribution free approach. An illustrative numerical example is provided
in each case.

2. NOTATIONS AND ASSUMPTIONS

To develop the mathematical models, we utilize the following notations and
assumptions in our presentation.

Notations:

D = expected demand per year
A = ordering cost per order
h = holding cost per unit per year

02 = variance of the demand per unit time

a = proportion of demand that is not met from stock. Hence, 1-a is the
service level, a takes a suitable value
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B = the fraction of the demand during the stockout period that will be
backordered, 0< <1

Q = order quantity, a decision variable in the continuous review case

r = reorder point, a decision variable in the continuous review case

R = target inventory level, a decision variable in the periodic review case

T = length of a review period, a decision variable in the periodic review case
L = length of lead time, a decision variable

X = the lead time/protection interval demand which has a probability density
function (p.d.f.) fy

E()]= mathematical expectation

x* = maximum value of x and 0, i.e., x* = max{x,0}.

Assumptions:

1.

The lead time L consists of n mutually independent components. The i-th
component has a minimum duration a; , a normal duration b; , and a crashing cost
per unit time c¢;. Further, for convenience, we rearrange c¢; such that
€y <Cy <---<cCp . Then, it is clear that the reduction of lead time should be first on

component 1 because it has the minimum unit crashing cost, and then on
component 2, and so on.

n

If we let Lo =% b; and L; be the length of lead time with components 1,2,.... i
=1

crashed to their minimum duration, then L; can be expressed as

1
bj=> (bj-aj), i=12,..n; and the lead time crashing cost C(L) per
7

M >

Li:

J

i-1
cycle for LO[L;, L;—q] isgiven by C(L)=c¢;(Lj-q —L)+ >cjbj-aj).
=1

The demand per unit time has a probability distribution with mean D and

standard deviation o, then the distribution of the demand during the length of
time t is t-fold, that is, the demand X follows p.d.f. fy(x) with mean Dt and

standard deviation a\/f.

3. CONTINUOUS REVIEW MODEL

In this section, we assume that inventory is continuously reviewed. An order

quantity of size Q is ordered whenever the inventory level drops to the reorder point

r. The reorder point r is given by r = DL+ka\/f , Where k is a safety factor. The
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expected demand shortage at the end of the cycle is given by E(X-r)*=

:J':°(x—r)fx(x)dx, and thus the expected number of backorders per cycle is

BE(X -1)*, and the expected number of lost sales per cycle is (1-B)E(X —r)*, where
0<pB<1.

We further suppose that the length of lead time does not exceed an inventory
cycle time so that there is never more than a single order outstanding in any cycle. The
expected net inventory level just before the order arrives is r-DL+(1-B)E(X-1r)",
and the expected net inventory level at the beginning of the cycle is
Q+r-DL+(1-B)E(X -r)* (it can be verified that this quantity is greater than the
reorder point r). Thus, the expected annual holding cost is approximately

h[%+r—DL+(1—B)E(X -n'].

On the other hand, in many practices, the stockout cost often includes
intangible components such as loss of goodwill and potential delay to the other parts of
the inventory system, and hence it is difficult to determine an exact value for the
stockout cost. Therefore, in this study, we replace the stockout cost by a constraint on
the service level. That is, our objective is to minimize the expected total annual
inventory cost which is the sum of ordering cost, holding cost, and lead time crashing
cost, subject to a constraint on service level. Symbolically, the mathematical model of
this problem can be formulated as

min EAC(Q, 1, L) = %A+hé‘§+r— DL +(1- B)E(X —r)+§+%C(L)

subject to

E<X__0+Sa_ (1)

3.1. Normal distribution case

In this subsection, we assume the lead time demand X follows a normal

distribution with mean DL and standard deviation a\/f . Given that r =DL + ko\/f ,
we can also consider the safety factor k as a decision variable instead of r. Thus, the

expected shortage quantity E(X -r)* at the end of the cycle can be expressed as a
function of k; that is,

E(X-n" =[ :°(x—r)fx (dx={ lfaﬁ(z -Kf,(2)dz =0VLG(K) >0, 2)

where f,(z) is the p.d.f. of the standard normal random variable Z and G(k)=

:J'E(z—k)fz(z) dz. Therefore, model (1) can be rewritten as
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min EAC (Q,k, L) = w +h_29 +h[koWL +(1- B)oVLGK)]
subject to
oJLG(K) <aQ, ®3)

where the subscript N in EAC denotes the normal distribution case.

The inequality constraint in model (3) can be converted into equality by
adding a nonnegative slack variable, S?. Thus, the Lagrangean function is given by

EACN (Q.k L,A,S) = EACy (Q k, L) +A[oVLG(K) +S? —aQ]

_ D [A+C(U)]

Q +% +hoLik+(1-B)G(K)] +Al0VLG(K) +S? ~aQ], @

where A is a Lagrange multiplier.

For any given (Q,kA,S), EACN(Q,kL,A,S) is a concave function in
LO[L;, L], because

1

2
J EACN (Q, Kk, L,A,S) - Z01_—3/2(30()[',](1_B) +A] <0.

m_z

—lhkOL_s/z _
4

Hence, for fixed (Q,k A,S), the minimum expected total annual cost will occur at the
end points of the interval [L;, L;_1]. On the other hand, we can further prove that, for
any given LO[L;,L;—1], by the Kuhn-Tucker necessary conditions for minimization
problem, we can obtain the slack variable S? =0 (hence, the inequality constraint in
model (3) will become an equality). Therefore, for fixed LO[L;,L;—;], the minimum
value of Eq. (4) (in which the variable S=0) will occur at the point (Q,k,A) which
satisfies

_I9EACVQk LAY _ DIA+CLI h_

0 ) @ 2 ?

_OEACN(Qk LAY _ o “Ap ®E

0= .G _ho\/té OACE G ©®
and

0=2EAGNQKLA) _ eig-a0, )

JA
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where P,(K) =P (Zz=K), and Z is the standard normal random variable.

Solving (5), (6), and (7) for Q, A, and G(K), respectively, leads to

_@D[A+C(L) 12
Q= 0 h-2xa ’ ®
P, ©
and
G(k) = =2 (10)
o
Substituting (9) into (8) yields
Duz
Q= 2D[A+C(L)]/h H (11)

0

: :

El A
P,(k) B

where a<1/4.

We cannot obtain the explicit general solutions for Q and k by solving Eqgs.

(10) and (11) because the evaluation of each of the expressions requires knowledge of
the value of the other. Therefore, we can establish the following iterative algorithm to
find the optimal (Q , k, L).

Algorithm 1

Step 1. For each L;, i=0,1,2,..., n, perform (i) to (v).
(i) Start with k; =0 and get P,(k;;)=05.
(if) Substituting P,(k;;) into (11) evaluate Qj .
(iii) Using Q;; determine G(k;,) from (10).

(iv) Check G(k) from Silver and Peterson [11, pp.779-786] or Brown [2, pp.
95-103] to find k;,, and then P,(k;,) .

(V) Repeat (ii) to (iv) until no change occurs in the values of Q; and k;.

Step 2. For each (Q;,kj,L;), compute the corresponding expected total annual cost
EACN (Qi. ki, L), i=012,...,n
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Step 3. Find  min  EACyN(Q;.k,Lj). If EAGYQ K ,L')= min EAG(Q.k.L),
i=0,1,2,....,n i=0,1,2,...n

then (Q*,k*,L*) is the optimal solution. And hence, the optimal reorder point is
r*:DL*+k*a\/E.

Example 1. In order to illustrate the above solution procedure, let us consider an
inventory system with the data used in Ouyang and Wu [10]: D=600 units/year, A=
$ 200 per order, h =$ 20/unit/year, o =7units/week, the service level 1-a = 0.985, i.e.,
the proportion of demand that is not met from stock is a =0.015. The lead time has
three components with data as shown in Table 1.

Table 1: Lead time data

Lead time Normal Minimum Unit crashing
component duration duration cost

i b; (days) a; (days) c; ($/day)

1 20 6 0.4

2 20 6 1.2

3 16 9 5.0

We assume that the lead time demand follows a normal distribution and
consider the cases when = 0, 0.5, 0.8 and 1. Applying the Algorithm 1 procedure

yields the results as shown in Table 2. From this table, the optimal inventory policy can
be found by comparing EACy (Q;,r;, L;), for i =0,1,2,3, and thus we summarize these

in Table 3.

Table 2: Solution procedure of Algorithm 1 (L; in week)

e Tew B=0 =05 =08 B=1
T N T Eac@on | 6 [ o [EAG@RL)| 1 o [EAG@RL) | [ o [EAGQ.EL
0 8 0 107|119| $2,613.54 [107|120| $2,595.67 [107|120| $2,584.87 |107(121| $2,577.65
1 6 5.6 81 |119| $2,564.23 81 (120| $2,546.31 81 (121| $2,535.51 |81(121| $2,528.25
2 4 22.4 55 (122 $2,560.93 54 1123 | $2,542.57 54 |124| $2,531.49 |54 (124| $2,524.05
3 3 57.4 41 |130| $2,679.55 41 |131| $2,660.00 41 |131| $2,648.21 |[41|132| $2,640.29

Table 3: Summary of the optimal procedure solution for Algorithm 1 (L; in week)

B Q" r"L) EACL@Q".rL)
00 (122,55, 4)  $2,560.93
05 (123,54, 4) 2,542.57
08 (124,54, 4) 2,531.49

1.0 (124,54, 4) 2,524.05
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Observing Table 2, shows that benefit can be achieved by crashing. For
example, under =1 comparing the difference between the cases of L =8 weeks (no

crashing case) and L =4 weeks (the minimum cost case), benefit = $ 2,577.65—
2,524.05 = $ 53.60.

Remark 1: In Ouyang and Wu's [10] model, which considered a fixed reorder point r
(i.e., they let P(X >r)=0.2). With the normal distribution demand case and g =1,

they obtained the optimal (Q, L) =(116,4) and the minimum expected total annual cost
EAC\ (116,4) =$ 2,546.94 . In our model, for the same case B =1, the optimal
(Q'.r,L) = (124 ,54,4) and EAC, (124,54,4) = $2,524.05. Thus, we find that our
model savings EACy(Q,L)-EACN(Q,r",L") = EAC (116 ,4) - EAC y (124,54 ,4)
=$ 2546.94-2524.05 = $ 22.89, which can be viewed as the reward due to controlling
the reorder point as a decision variable.

Remark 2: As in Example 1, we further perform a sensitivity analysis by considering

the change of values of h, D, A and o which range from +50% to -50%. For the case
B =1, computed results are shown in Table 4.

Table 4: Effect of parameters on the total cost and order strategy

Change of the Order policy Expected total Change of percentage
parameter (%) (Q*’ rr |_*) annual cost of total cost
EACN (Q',r", L)
h=30 (+50%) (102, 56, 4) $3,196.70 +26.65%
=25 (+25%) (112, 55, 4) 2,871.77 +13.78%
=20 (0 %) (124, 54, 4) 2,524.05 0%
=15 (-25%) (138, 80, 6) 2,134.04 -15.45%
=10 (-50%) (168, 78, 6) 1,691.44 -32.99%
D=900 (+50%) (146, 79, 6) $2,989.86 +18.46%
=750 (+25%) (134, 80, 6) 2,769.96 + 9.74%
=600 (0 %) (124, 54, 4) 2,524.05 0%
=450 (-25%) (108, 56, 4) 2,236.69 -11.38%
=300 (-50%) (90, 57, 4) 1,899.52 -24.74%
A=300 (+50%) (148, 53, 4) $2,965.58 +17.49%
=250 (+25%) (136, 54, 4) 2,754.51 +9.13%
=200 (0 %) (124, 54, 4) 2,524.05 0%
=150 (-25%) (106, 82, 6) 2,264.19 -10.00%
=100 (-50%) (89, 84, 6) 1,956.96 -22.47%
0=10.5 (+50%) (127, 64, 4) $2,721.78 + 7.83%
=8.75(+25%) (126, 59, 4) 2,620.06 + 3.80%
=7.00 (0 %) (124, 54, 4) 2,524.05 0%
=5.25 (-25%) (119, 75, 6) 2,411.06 - 4.48%
=3.50 (-50%) (117, 70, 6) 2,306.30 - 8.63%
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From Table 4, we can easily observe that the holding cost is the most
important parameter of cost savings.

3.2. Distribution free case

In many practical situations, the distributional information of lead time
demand is often quite limited. Hence, in this subsection, we relax the assumption about
the normal distribution of the lead time demand by only assuming that the probability
distribution of the lead time demand X has given finite first two moments (and hence,
mean and variance are also known and finite); i.e., the p.d.f. fy of X belongs to the

class F. of p.d.f.'s with finite mean DL and variance o?L.

Since the form of the probability distribution of lead time demand X is
unknown, we cannot find the exact value of E(X -r)*. Hence, we use the minimax

distribution free procedure to solve our problem. The minimax distribution free
approach for this problem is to find the most unfavorable p.d.f.fy in F for each

(Q,r, L) and then minimize over (Q, r, L); that is, our problem is to solve

min max EAC(Q,r,L)
Qr.L fyOF

subject to

E<X__0+Sa . (]_2)

For this purpose, we need the following proposition which was asserted by
Gallego and Moon [3].
Proposition.

For any fy OF,

E(X-1)* S%Da/azLﬂr—DL)z —(r—DL)E. (13)

Moreover, the upper bound (13) is tight.

Because we have r=DL+ ka\/f , and demand X for any probability
distribution of the lead time, the above inequality always holds. Then, using model (1)
and inequality (13) and considering the safety factor k as a decision variable instead of
r, model (12) is reduced to

min EAG, (Q.k L) = —D[Agc('-)] +h_2Q " ha\/faa %(1 -BW1+K? - k)ﬁ
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subject to
o\/fDB,M +k? - k@s 2aQ, (14)

where the subscript U in EAC denotes the distribution free case.

Therefore, the Lagrangian function of model (14) can be formulated as

EAC, (Q.k, L,A,S) =EAC (Q,k, L)+A§7\/E(\/1+k2 -Kk)+S?2 —ZO{QE

_DI[A+C(L)]  nQ 1, 2 _ O
=5 +T+h0\/f§<+5(1 B)(W1+k k)H

+/\§7\/E(\/1+k2 ~K)+S2 —ZGQE, (15)

where A is a Lagrange multiplier and S? is a nonnegative slack variable.

By analogous arguments in the previous normal distribution demand case, it
can be verified that for fixed (Q,k,A,S), EACy (Q,k L,A,S) is a concave function of

LO[L;, Lj—1]. Thus, for fixed (Q,k,A,S), the minimum value of EACy (Q,k L,A,S)
will occur at the end points of the interval [L;,L;;]. Furthermore, for fixed
L O[L;,Lj— ], by the Kuhn-Tucker necessary conditions for minimization problem, we
can get the slack variable s?=0. Therefore, for fixed LO[L;,Lj—], the minimum

value of equation (15) (in which the variable S =0) will occur at the point (Q,k,A)

0 EAG,(Q .k, L,A) -0 0 EAG,(Q,k, L,A) -0 and 0 EAG,(Q .k, L,A) -0
2Q ' ok oA '
simultaneously. The resulting solutions are

which satisfies

_m@D[A+C(L)]T?
_D—

Q 0 h-4ia [J

: (16)
o 2 |
A= hDi_l

1-p)g, 17)
H1+k2 -k 2 H

and

1+K2 —k=29Q (18)

oL

Combining Egs. (16), (17), and (18), the order quantity
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_ E4aD [A+C(U]+ho?LE

Q 5§ 20h(-2a8) {

, (19)

where a <1/2.
Consequently, we can establish the following algorithm to find the optimal (Q , k, L ).

Algorithm 2

Step 1. For each L;, i=0,1,2,...,n, we use Eq. (19) to evaluate Q;, and then use Eq.
(18) to determine k; .

Step 2. For each (Q,k;L;), compute the corresponding expected total annual cost
EAG(Qi kL), 1=01.2,...n.

Step 3. Find min EAG,(Q.k,L). If EAC,(Q-k.L)= min EAG,(Q.k.L),
i=0,1,2,....n i=0,1,2,....n

then (Q« k-« Lx) is the optimal solution. And hence, the optimal reorder point is
re =DL*+k*o\/E.

Example 2. Using the same data in Example 1, we assume that the distribution of the
lead time demand is free except that its first and second moments are given. Applying
Algorithm 2, the summarized optimal values are presented in Table 5.

Table 5: Summary of the optimal procedure solution for Algorithm 2 (L; in week)

B (Q«, 1+, Ls) EAC (Q, I+, Lx)

0.0 (141,65 4)  $2,818.77

05 (142,65, 4) 2,798.23
0.8 (143,65, 4) 2,786.12
1.0 (143,65, 4) 2,777.55

The expected total annual cost EAG(Q-,r L) is obtained by substituting

(Q+, 1+, L+) into model (3); and thus, EACy (Q«, I, Lx) - EACy (Q*,r*, L*) is the largest
amount that we would be willing to pay for the knowledge of the probability
distribution of demand. This quantity can be regarded as the expected value of
additional information (EVAI), ie., EVAI=EACy(Q K L)-EACN(Q",r",L).
Moreover, it can be observed from Table 6 that the amount of EVAI increases as 3
increases.
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Table 6: Calculation of EVAI for the continuous review model

B EACyN(Q-rLs) EACN@Q'.r",L")  EVAI

0.0 $2,784.59 $2,560.93 $ 223.66
0.5 2,781.12 2,542.57 238.55
0.8 2,779.26 2,531.49 247.77
1.0 2,777.55 2,524.05 253.50

Remark 3. Analogous to the argument in Remark 1, we discuss the case that the
distribution of the lead time demand is free and 8 =1. Ouyang and Wu [10] obtained

the  optimal (Q,L)=(116,4) and the expected total annual cost
EAC (116,4) =$ 2,839.06 . In our model, the optimal (Q,r,Lx) =(143,654) and
EAC (143,65,4)=$ 2,777.55. Thus, observe that our model savings EAG,(QL)-
EAG, (Qk, Lx) = EAC , (116 ,4) - EAC\, (143,65,4) =$ 2,839.06-2,777.55 =$ 61.51,
which is the reward due to controlling the reorder point.

Remark 4: From Table 3 and Table 5, it is interesting to observe that, regardless of
the normal distribution or distribution free model in the continuous review case,
increasing the backorder rate ( results in a decrease in the minimum expected total

annual cost, but it results in an increase in the order quantity. On the other hand,
there is a robustness property for the optimal reorder point and lead time as 3 varies.

4. PERIODIC REVIEW MODEL

In this section, we consider a periodic review inventory model. We first assume
that the inventory level is reviewed every T units of time, a sufficient ordering
guantity is ordered up to the target inventory level R, and the ordering quantity is
arrived after L units of time, where L <T so that at most one order is outstanding in
any cycle. Again, we suppose that the protection interval is T+L, demand X has a

p.d.f. fy(x) with mean D(T + L) and standard deviation o+ T +L , and the target

inventory level R is given by R=D(T+L) +50vT+L , where J is a safety factor.
Therefore, the expected demand shortage at the end of the cycle is given by

E(X—R)+=J';°(X—R)fx(x)dx, and the expected number of lost sales per cycle is
L-BE(X-R)".

For this new model, we attempt to utilize some results in Montgomery et al.
[6], and get the mathematical expression of this problem as follows:

min EAC(T,R,L) = é +h§2—DL—% +(1—B)E(X—R)+E+$
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subject to

E(X—_R)+50_ (20)
D(T+L)

4.1. Normal distribution case

In this subsection we assume that the protection interval demand for the
(T,R,L) periodic review model follows a normal p.d.f. fx (x) with mean D(T +L) and

standard deviation o+T+L . By applying R=D(T+L)+d0+T+L and further
allowing the safety factor d as a decision variable instead of R, the expected shortage

quantity E(X —R)* at the end of the cycle can be expressed as a function of J as
E(X-R)* =] = (x=R)fx (x) dx =J’;o T+L(z-0)f,(2)dz =0T +LG(5) >0,
where f,(z) and G(0) are defined in Section 3.1. Hence, model (23) is reduced to

min EACy (T, 3, L) = A+TC(L) +h @)Twm/n —% +(L-BNT+ LG(@E

subject to
oVT +LG(d) <aD(T +L). (21)
The Lagrangian function is thus given by

A+C(L) , hDT

EACN(T,0,L,A,8) = T+ hovT+L[d+(1-B)G(I)]

+A[oVT +LG(8) +S? —aD(T +L)], (22)
where A is a Lagrange multiplier and S? is a nonnegative slack variable.

Similar to the arguments in Section 3, we obtain the slack variable s?=0.
And, for fixed (T,5,A), EAC\(T,d,L,A) has a minimum value at the points of

[L;, Lj—1] - On the other hand, for fixed LO[L;, Lj—;], the minimum value of (22) will
occur at the point (T,5,A) which satisfies JEACy(T,J, L,A)/d T=0,
0 EAC\(T, 9, L,/\)/a 0=0,and d EAC\(T,9, L,}\)/d A =0. Thus, we obtain the following

equations:
PR e+ L2 =222 4 Lo - )+, (29
O T 2 0 2 2
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h

e (L-B)P, (1. (24)
and
G(d) = %\/T L, (25)

where P, (d)

is defined as in Section 3.1.

Substituting (24) into (23) yields

OA+C(L) D aD

G(5)

E
0 hT2 2 P,(9)

Ralit [1—(1—[3)PZ(5)]E(T+ L2 =£E¢F+ (26)
0 20

mmlm

P, (3)

Since it is not easy to solve Eqgs. (25) and (26) for T and ¢J, an iterative
algorithm can be employed to find the optimal (T,d,L).

Algorithm 3

Step 1. For each L;, i=0,1,2,..., n, perform (i) to (v).

(M

(i)

(iii)
(iv)

W)

Step 2. For

Start with J;; =0, and then get P,(J;;)=0.5 and G (6;;) =0.3989 by
checking the table from Silver and Peterson [11] or Brown [2].

Substitute &;;, G (6;1), and P,(d;) into (26), and use a numerical search
method to obtain T; .

Using T;; , determine G(J;,) from (25).

Check G(d;,) from Silver and Peterson [11] or Brown [2] to find J;,, and
then P,(5;,) .

Repeat (ii) to (iv) until no change occurs in the values of T; and §; .

each (T;,9;, L), compute the corresponding expected total annual cost

EACN(Ti,di, LI) , i :0,1,2,..., n,.

Step 3. Find min EAG(T.8.L). If EAG(T .3, L)= min EAG(T.4.L), then
i=0,12,....,n i=0,12,....,n

(T*,6*,L*) is the optimal solution. And hence, the target inventory level is

R=D(T +L)+d T +L .

Example 3. Consider the same data as in Example 1. Using Algorithm 3, the optimal
values for this example are shown in Table 7.
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Table 7: Summary of the optimal procedure solution for Algorithm 3 (T;, L; in week)

B (TR L)  EACN(T',R'L)
0.0  (9.34,217,8) $2,719.77
05  (9.41,218,8) 2,690.34
0.8  (9.46, 218, 8) 2,666.85
1.0  (9.48,218,8) 2,654.93

By comparing the results in Table 3 and Table 7, it is obvious that the
continuous review model is less expensive than the periodic review, and the amount of
cost difference decreases as 3 increases.

4.2. Distribution free case

In this subsection, since the form of the probability distribution of protection
interval demand X is unknown, we cannot determine the exact value of E(X-R)*.

Therefore, using the same proposition as presented in the continuous review case, we
can obtain the least upper bound of the expected demand shortage at the end of the
cycle as follows:

For any fy OF, let F denote the class of p.d.f. fy's with finite mean

D(T + L) and variance 02(T+ L), then

E(X-R)" < % @/oz (T+L)+[R-D(T +L)]? -[R-D(T + L)]@. (27)

The upper bound (27) is tight.

Based upon the results of (27) and R=D(T +L)+d 0+ T +L , the safety factor
d can be viewed as a decision variable instead of R, and thus model (20) is reduced to

MINEAG,(T,5,L) = A%C(L) +% +hoT + L§+%(1—B)DB/1+52 —5%
subject to

oJT+L(V1+62 -8)<2aD(T +L). (28)

The Lagrangian function of this model is given by

EACy (T,5,L,A,S) = A+TC(L) +g +hoVT + L§+%(1—[3)(\/1+52 —5)%

AT TLAL+6% -6) +57 ~20D(T + L), (29)
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where A is a Lagrange multiplier and S? is a nonnegative slack variable.

As mentioned in the above cases, it can be shown that the slack variable
s?=0. And, for fixed (T,d,A), EAC,(T,d,L,A) has a minimum value at the end
points of [L;,L;—q]. Further, for fixed LO[L;,Lj—], the minimum value of
EAC, (T,d,L,A) will occur at the point (T,0,4) which satisfies
JEAC(T,d,L,4)/0 T=0, JEAG,(T,5,L,A)/d 6=0, and JEAC,(T,,L,A)/d A=0.
Simplifying these equations leads to

PA*CL) _ND o rapHr+L)2 =N, 9 (1462 —s)iha-p)+22],  (30)
0 T2 2 ] 2 4
O 2 O
1+0 1
A=hl——->(-pL, (31)
Hi+s2-5 2 f
and
1462 -5=29C 77 . (32)
g

Substituting (31) and (32) into (30), we get the review period as

_ |2[A+C(L)]
T _\/ hD{L-2aB) "’ (33)

where a <1/2. The deriving process is similar to (22), and hence we omit it.

A similar algorithm procedure as proposed in Section 3.2 can be performed to
obtain the optimal solutions.

Example 4. Using the same data in Example 1 and applying a similar procedure as in
Algorithm 2 yields the optimal values given in Table 8.

Table 8: Summary of the optimal procedure solution (T;, L; in week)

B (Te, Re, L) EACy (T, Rs, L)
0.0  (9.72,263,8) $ 3,555.91
0.5  (9.80, 263, 8) 3,522.67
0.8  (9.85, 264, 8) 3,506.20
1.0 (9.88, 264, 8) 3,495.08

From Table 9, we can see that the amount of EVAI increases as 3 increases.
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Table 9 : Calculation of EVAI for the periodic review model

B EACy (T+,R«,Ls) EACN(T,R',L)  EVAI

0.0 $ 3,496.78 $2,719.77 $777.01
0.5 3,492.95 2,690.34 802.61
0.8 3,494.29 2,666.85 827.44
1.0 3,495.08 2,654.93 840.15

Remark 5: Analogous to the argument in Remark 4 (continuous review case), from
Table 7 and Table 8, it is obvious that, for the periodic review case, increasing the
backorder rate 8 results in a decrease in the minimum expected total annual cost, but
it results in an increase in the optimal review period. And the optimal target inventory
level and lead time as 8 varies is robust.

5. CONCLUSION

In this study, we presented a mixture inventory model with backorders and
lost sales, where the stockout cost term in the objective function is replaced by a service
level constraint. First, we extended Ouyang and Wu's [10] continuous review model by
simultaneously optimizing order quantity, reorder point, and lead time. Next, we
developed a periodic review inventory model in which review period, target inventory
level, and lead time are treated as decision variables. For these two models, we assumed
that the lead time/protection interval demand follows a normal distribution, and found
the optimal solution. Then, we relaxed this assumption and applied the minimax
decision criterion to solve the distribution free case.

In future research on this problem, it would be of interest to consider an
inventory model involving the problem of net present value. Another possible extension
of this work may be conducted by considering the backorder rate B as a decision

variable.
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