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Abstract:Abstract:Abstract:Abstract:    The stochastic inventory models analyzed in this study involve two models
that are continuous review and periodic review. Instead of having a stockout cost term
in the objective function, a service level constraint is added to each model. For both
these models with a mixture of backorders and lost sales, we first assume that the lead
time ( L )/protection interval ( LT + ) demand follows a normal distribution, and then
relax this assumption by only assuming that the mean and variance are known. For
each case, we develop a procedure to find the optimal solution, and then an illustrative
numerical example is given.
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1. INTRODUCTION

In most of the early literature dealing with inventory problems, in both
deterministic and probabilistic models, lead time is viewed as a prescribed constant or a
stochastic variable, which therefore is not subject to control (see, e.g., Naddor [8] and
Silver and Peterson [11]). In 1983, Monden [5] studied the Toyota production system,
and pointed out that shortening lead time is a crux of elevating productivity. The
successful Japanese experiences using Just-In-Time (JIT) production show that the
advantages and benefits associated with efforts to control the lead time can be clearly
perceived.
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Recently, several continuous review inventory models have been developed to
consider lead time as a decision variable. Liao and Shyu [4] first presented a continuous
review inventory model in which the order quantity was predetermined and lead time
was a unique decision variable. Later, Ben-Daya and Raouf [1] extended Liao and
Shyu's [4] model by considering both lead time and order quantity as decision variables.
Ouyang et al. [9] allowed both the lead time and order quantity as decision variables
and considered a stockout case. Ouyang and Wu [10] utilized the minimax decision
criterion to solve the distribution free model. However, in the models previously
mentioned [1, 9, 10], reorder point was not taken into account, and they merely focused
on the relationship between lead time and order quantity. In other words, they
neglected the possible impact of the reorder point on the economic ordering strategy.
Such a phenomenon is usually not perfect in a real inventory situation. In a recent
research article, Moon and Choi [7] revised Ouyang et al.'s [9] model by considering the
reorder point to be another decision variable. We note that the stockout cost in their
paper is an exact value. However, in many practices, it is difficult to determine an exact
value for the stockout cost, hence, we here replace the stockout cost term in the
objective function by a service level constraint.

The objective of this paper is to extend Ouyang and Wu's [10] continuous
review models to accommodate a more realistic situation. That is, our goal is to
establish a ),,( LrQ  inventory model with a service level constraint. From the
numerical example provided, we can show that our new model is better than that of
Ouyang and Wu [10]. On the other hand, we also propose a new ),,( LRT  inventory

model for periodic review. For both of these models, we first assume that the lead
time/protection interval demand follows a normal distribution, and then try to find the
optimal ordering policy. We next relax this assumption and merely assume that the
first and second moments of the probability distribution of lead time/protection
interval demand are known and finite, and then solve this inventory model by using
the minimax distribution free approach. An illustrative numerical example is provided
in each case.

2. NOTATIONS AND ASSUMPTIONS

To develop the mathematical models, we utilize the following notations and
assumptions in our presentation.

Notations:

D  =  =  =  = expected demand per year

A  = ordering cost per order

h  = holding cost per unit per year

2σ  = variance of the demand per unit time

α  = proportion of demand that is not met from stock. Hence, α−1  is the
service level, α  takes a suitable value
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β  = the fraction of the demand during the stockout period that will be
backordered, 10 ≤≤ β

Q  = order quantity, a decision variable in the continuous review case

r  = reorder point, a decision variable in the continuous review case

R  = target inventory level, a decision variable in the periodic review case

T  = length of a review period, a decision variable in the periodic review case

L  = length of lead time, a decision variable

X  = the lead time/protection interval demand which has a probability density
function (p.d.f.) Xf

)(⋅E = mathematical expectation

+x  = maximum value of x  and  0, i.e., },max{ 0xx =+ .

Assumptions:

1. The lead time L  consists of n  mutually independent components. The i -th
component has a minimum duration ia , a normal duration ib , and a crashing cost

per unit time ic . Further, for convenience, we rearrange ic  such that

nccc ≤≤≤ !21 . Then, it is clear that the reduction of lead time should be first on

component 1 because it has the minimum unit crashing cost, and then on
component 2, and so on.

2. If we let ∑
=

=
n

j
jbL

1
0  and iL  be the length of lead time with components 1,2,..., i

crashed to their minimum duration, then iL  can be expressed as

∑∑
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−−=
i

j
jj

n

j
ji abbL

11
)( , i =1,2,..., n ; and the lead time crashing cost )(LC  per

cycle for ],[ 1−∈ ii LLL  is given by ∑
−

=
− −+−=

1

1
1

i

j
jjjii abcLLcLC )()()( .

3. The demand per unit time has a probability distribution with mean D  and
standard deviation σ , then the distribution of the demand during the length of
time t  is t -fold, that is, the demand X  follows p.d.f. )(xfX  with mean Dt  and

standard deviation tσ .

3. CONTINUOUS REVIEW MODEL

In this section, we assume that inventory is continuously reviewed. An order
quantity of size Q  is ordered whenever the inventory level drops to the reorder point

r . The reorder point r  is given by LkDLr σ+= , where k  is a safety factor. The
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expected demand shortage at the end of the cycle is given by =− +)( rXE

dxxfrx
r X∫
∞ −=  )()( , and thus the expected number of backorders per cycle is

+− )( rXEβ , and the expected number of lost sales per cycle is +−− )()( rXEβ1 , where
10 ≤≤ β .

We further suppose that the length of lead time does not exceed an inventory
cycle time so that there is never more than a single order outstanding in any cycle. The

expected net inventory level just before the order arrives is +−−+− )()( rXEDLr β1 ,
and the expected net inventory level at the beginning of the cycle is

+−−+−+ )()( rXEDLrQ β1  (it can be verified that this quantity is greater than the
reorder point r ). Thus, the expected annual holding cost is approximately

])()([ +−−+−+ rXEDLr
Q

h β1
2

.

On the other hand, in many practices, the stockout cost often includes
intangible components such as loss of goodwill and potential delay to the other parts of
the inventory system, and hence it is difficult to determine an exact value for the
stockout cost. Therefore, in this study, we replace the stockout cost by a constraint on
the service level. That is, our objective is to minimize the expected total annual
inventory cost which is the sum of ordering cost, holding cost, and lead time crashing
cost, subject to a constraint on service level. Symbolically, the mathematical model of
this problem can be formulated as

=),,(min LrQEAC 



 −−+−++ +)()( rXEDLr
Q

hA
Q
D β1

2
)(LC

Q
D+

subject to

α≤− +

Q
rXE )(

.  (1)

3.1.3.1.3.1.3.1. Normal distribution caseNormal distribution caseNormal distribution caseNormal distribution case

In this subsection, we assume the lead time demand X  follows a normal

distribution with mean DL  and standard deviation Lσ . Given that LkDLr σ+= ,
we can also consider the safety factor k as a decision variable instead of r . Thus, the

expected shortage quantity +− )( rXE  at the end of the cycle can be expressed as a
function of k ; that is,

+− )( rXE dxxfrx
r X  ∫
∞ −= )()( dzzfkzL

k z  ∫
∞ −= )()(σ  0>= )(kGLσ ,  (2)

where )(zfz  is the p.d.f. of the standard normal random variable Z  and =)(kG

∫
∞ −=
k z dzzfkz )()( . Therefore, model (1) can be rewritten as
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=),,(min LkQEACN Q

LCAD )]([ +
2

hQ+ )]()([ kGLLkh σβσ −++ 1

subject to

QkGL ασ ≤)( , (3)

where the subscript N  in EAC  denotes the normal distribution case.

The inequality constraint in model (3) can be converted into equality by

adding a nonnegative slack variable, 2S . Thus, the Lagrangean function is given by

),,,,( SLkQEACN λ ])([),,( QSkGLLkQEACN ασλ −++= 2

Q

LCAD )]([ +
=

2
hQ+ )]()([ kGkLh βσ −++ 1 ])([ QSkGL ασλ −++ 2 ,  (4)

where λ  is a Lagrange multiplier.

For any given ),,,( SkQ λ , ),,,,( SLkQEACN λ  is a concave function in

],[ 1−∈ ii LLL , because

01
4
1

4
1 2323

2

2
<+−−−= −− ])()[(),,,,( // λβσσ
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λ∂

hkGLLhk
L

SLkQEACN .

Hence, for fixed ),,,( SkQ λ , the minimum expected total annual cost will occur at the
end points of the interval ],[ 1−ii LL . On the other hand, we can further prove that, for

any given ],[ 1−∈ ii LLL , by the Kuhn-Tucker necessary conditions for minimization

problem, we can obtain the slack variable 02 =S  (hence, the inequality constraint in
model (3) will become an equality). Therefore, for fixed ],[ 1−∈ ii LLL , the minimum

value of Eq. (4) (in which the variable 0=S ) will occur at the point ),,( λkQ  which
satisfies

λα
∂

λ∂
−+

+
−==

2
0

2

h

Q

LCAD

Q
LkQEACN )]([),,,(

, (5)

k
LkQEAC N

∂
λ∂ ),,,(

=0 



 −−−= )()()( kP

h
kPLh zz

λβσ 11 , (6)

and

λ∂
λ∂ ),,,( LkQEACN=0 QkGL ασ −= )( , (7)
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where )()( kZPkPz ≥≡ , and Z is the standard normal random variable.

 Solving (5), (6), and (7) for Q , λ , and )(kG , respectively, leads to

21
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and
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Substituting (9) into (8) yields
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where 41 /<α .

We cannot obtain the explicit general solutions for Q     and    k  by solving Eqs.
(10) and (11) because the evaluation of each of the expressions requires knowledge of
the value of the other. Therefore, we can establish the following iterative algorithm to
find the optimal ( Q , k , L ).

Algorithm 1Algorithm 1Algorithm 1Algorithm 1

Step 1. For each iL , i =0,1,2,..., n , perform (i) to (v).

(i) Start with 01 =ik  and get 501 .)( =iz kP .

(ii) Substituting )( 1iz kP  into (11) evaluate 1iQ .

(iii) Using 1iQ  determine )( 2ikG  from (10).

(iv) Check )( 2ikG  from Silver and Peterson [11, pp.779-786] or Brown [2, pp.

95-103] to find 2ik , and then )( 2iz kP .

(v) Repeat (ii) to (iv) until no change occurs in the values of iQ  and ik .

Step 2. For each ),,( iii LkQ , compute the corresponding expected total annual cost

),,( iiiN LkQEAC , ni ,...,,, 210= .
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Step 3. Find ),,(min
,....,,,

iiiN
ni

LkQEAC
210=

. If ),,( *** LkQEACN = ),,(min
,....,,,

iiiN
ni

LkQEAC
210=

,

then ),,( *** LkQ  is the optimal solution. And hence, the optimal reorder point is

**** LkDLr σ+= .

Example 1.Example 1.Example 1.Example 1. In order to illustrate the above solution procedure, let us consider an
inventory system with the data used in Ouyang and Wu [10]: D=600 units/year, A=
$  200 per order, h =$ 20/unit/year, σ =7units/week, the service level α−1 = 0.985, i.e.,
the proportion of demand that is not met from stock is α =0.015. The lead time has
three components with data as shown in Table 1.

Table 1:Table 1:Table 1:Table 1: Lead time data

Lead  time
component

     i

 Normal
duration

ib (days)

Minimum
duration

ia (days)

  Unit crashing
cost

 ic ($/day)

     1

     2

     3

   20

   20

   16

    6

    6

    9

0.4

1.2

5.0

We assume that the lead time demand follows a normal distribution and
consider the cases when β = 0, 0.5, 0.8 and 1. Applying the Algorithm    1 procedure
yields the results as shown in Table 2. From this table, the optimal inventory policy can
be found by comparing ),,( iiiN LrQEAC , for i =0,1,2,3, and thus we summarize these

in Table 3.

Table 2:Table 2:Table 2:Table 2: Solution procedure of Algorithm 1 ( iL  in week )

β = 0 50.=β 80.=β 1=β
i iL )( iLC

ri Qi ),,( iiiN LrQEAC ri Qi ),,( iiiN LrQEAC ri Qi ),,( iiiN LrQEAC ri Qi ),,( iiiN LrQEAC

0 8 0 107 119 $ 2,613.54 107 120 $ 2,595.67 107 120 $ 2,584.87 107 121 $ 2,577.65
1 6 5.6 81 119 $ 2,564.23 81 120 $ 2,546.31 81 121 $ 2,535.51 81 121 $ 2,528.25
2 4 22.4 55 122 $ 2,560.93 54 123 $ 2,542.57 54 124 $ 2,531.49 54 124 $ 2,524.05
3 3 57.4 41 130 $ 2,679.55 41 131 $ 2,660.00 41 131 $ 2,648.21 41 132 $ 2,640.29

Table 3:Table 3:Table 3:Table 3: Summary of the optimal procedure solution for Algorithm 1 ( iL  in week)

     β          ),,( *** LrQ      ),,( *** LrQEACN

 0.0       (122, 55, 4)         $ 2,560.93

 0.5       (123, 54, 4)            2,542.57

 0.8       (124, 54, 4)            2,531.49

      1.0       (124, 54, 4)            2,524.05
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Observing Table 2, shows that benefit can be achieved by crashing. For
example, under 1=β  comparing the difference between the cases of 8=L  weeks (no
crashing case) and 4=L  weeks (the minimum cost case), benefit = $ 2,577.65−
2,524.05 = $ 53.60.

Remark 1:Remark 1:Remark 1:Remark 1: In Ouyang and Wu's [10] model, which considered a fixed reorder point r
(i.e., they let 20.)( => rXP ). With the normal distribution demand case and 1=β ,
they obtained the optimal ),(),( 4116=LQ  and the minimum expected total annual cost

9454624116 .,$),( =NEAC . In our model, for the same case 1=β , the optimal

),,( *** LrQ ),,( 454124=  and =),,( 454124NEAC 055242 .,$ . Thus, we find that our

model savings ),( LQEACN − ),,( *** LrQEACN −= ),( 4116NEAC ),,( 454124NEAC

4.055226.94542 ,, −= $  = $ 22.89, which can be viewed as the reward due to controlling

the reorder point as a decision variable.

Remark 2:Remark 2:Remark 2:Remark 2: As in Example 1, we further perform a sensitivity analysis by considering
the change of values of h , D , A  and σ  which range from +50% to -50%. For the case

1=β , computed results are shown in Table 4.

Table 4:Table 4:Table 4:Table 4: Effect of parameters on the total cost and order strategy

Change of the
parameter (%)

Order policy

 ),,( *** LrQ

Expected total
annual cost

),,( *** LrQEACN

Change of percentage
of total cost

 h=30 (+50%)
   =25 (+25%)
   =20  (0 %)
   =15 (-25%)
   =10 (-50%)

(102, 56, 4)
(112, 55, 4)
(124, 54, 4)
(138, 80, 6)
(168, 78, 6)

$ 3,196.70
  2,871.77
  2,524.05
  2,134.04
  1,691.44

    +26.65%
    +13.78%
         0%
    −15.45%
    −32.99%

D=900 (+50%)
   =750 (+25%)
   =600  (0 %)
   =450 (-25%)
   =300 (-50%)

(146, 79, 6)
(134, 80, 6)
(124, 54, 4)
(108, 56, 4)
( 90, 57, 4)

$ 2,989.86
  2,769.96
  2,524.05
  2,236.69
  1,899.52

    +18.46%
    + 9.74%
        0%
    −11.38%
    −24.74%

A=300 (+50%)
   =250 (+25%)
   =200  (0 %)
   =150 (-25%)
   =100 (-50%)

(148, 53, 4)
(136, 54, 4)
(124, 54, 4)
(106, 82, 6)
( 89, 84, 6)

$ 2,965.58
  2,754.51
  2,524.05
  2,264.19
  1,956.96

    +17.49%
    + 9.13%
        0%
    −10.00%
    −22.47%

σ =10.5 (+50%)
   =8.75(+25%)
   =7.00 (0 %)
   =5.25 (-25%)
   =3.50 (-50%)

(127, 64, 4)
(126, 59, 4)
(124, 54, 4)
(119, 75, 6)
(117, 70, 6)

$ 2,721.78
  2,620.06
  2,524.05
  2,411.06
  2,306.30

    + 7.83%
    + 3.80%
        0%
    − 4.48%
    − 8.63%
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From Table 4, we can easily observe that the holding cost is the most
important parameter of cost savings.

3.2. Distribution free case3.2. Distribution free case3.2. Distribution free case3.2. Distribution free case

In many practical situations, the distributional information of lead time
demand is often quite limited. Hence, in this subsection, we relax the assumption about
the normal distribution of the lead time demand by only assuming that the probability
distribution of the lead time demand X has given finite first two moments (and hence,
mean and variance are also known and finite); i.e., the p.d.f. Xf  of X  belongs to the

class F. of p.d.f.'s with finite mean DL  and variance L2σ .

Since the form of the probability distribution of lead time demand X  is

unknown, we cannot find the exact value of +− )( rXE . Hence, we use the minimax
distribution free procedure to solve our problem. The minimax distribution free
approach for this problem is to find the most unfavorable p.d.f. Xf  in F for each

( Q , r , L ) and then minimize over ( Q , r , L ); that is, our problem is to solve

)(maxmin Q,r,LEAC
XQ,r,L F ∈f

subject to

α≤− +

Q
rXE )(

. (12)

For this purpose, we need the following proposition which was asserted by
Gallego and Moon [3].

Proposition.Proposition.Proposition.Proposition.

For any ∈Xf F,

 



 −−−+≤− + )()()( DLrDLrLrXE 22

2
1 σ . (13)

Moreover, the upper bound (13) is tight.

Because we have LkDLr σ+= , and demand X  for any probability
distribution of the lead time, the above inequality always holds. Then, using model (1)
and inequality (13) and considering the safety factor k as a decision variable instead of
r , model (12) is reduced to

=),,(min LkQEACU Q
LCAD )]([ +

2
hQ+ 



 −+−++ ))(( kkkLh 211

2
1 βσ
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subject to

QkkL ασ 21 2 ≤




 −+ , (14)

where the subscript U  in EAC  denotes the distribution free case.

Therefore, the Lagrangian function of model (14) can be formulated as

),,,,( SLkQEACU λ 



 −+−++= QSkkLLkQEACU ασλ 21 22 )(),,(

=
Q

LCAD )]([ +
2

hQ+ 



 −+−++ ))(( kkkLh 211

2
1 βσ





 −+−++ QSkkL ασλ 21 22 )( , (15)

where λ  is a Lagrange multiplier and 2S  is a nonnegative slack variable.

By analogous arguments in the previous normal distribution demand case, it
can be verified that for fixed ),,,( SkQ λ , ),,,,( SLkQEACU λ  is a concave function of

],[ 1−∈ ii LLL . Thus, for fixed ),,,( SkQ λ , the minimum value of ),,,,( SLkQEACU λ
will occur at the end points of the interval ],[ 1−ii LL . Furthermore, for fixed

],[ 1−∈ ii LLL , by the Kuhn-Tucker necessary conditions for minimization problem, we

can get the slack variable 02 =S . Therefore, for fixed ],[ 1−∈ ii LLL , the minimum

value of equation (15) (in which the variable 0=S ) will occur at the point ( Q , k , λ )

which satisfies 0=
Q

LkQEACU

∂
λ∂ ),,,(

, 0=
k

LkQEACU

∂
λ∂ ),,,(

 and 0=
λ∂

λ∂ ),,,( LkQEACU ,

simultaneously. The resulting solutions are

21

4
 2 /)]([









−
+=

λαh
LCAD

Q , (16)














−−

−+

+= )( βλ 1
2
1

1

1
2

2

kk

k
h , (17)

and

L

Q
kk

σ
α2

1 2 =−+ . (18)

Combining Eqs. (16), (17), and (18), the order quantity
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212

212
 4

/
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)]([




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







−
++=

αβα
σα

h
LhLCAD

Q , (19)

where 21 /<α .

Consequently, we can establish the following algorithm to find the optimal ( Q , k , L ).

Algorithm 2Algorithm 2Algorithm 2Algorithm 2

Step 1. For each iL , i =0,1,2,..., n , we use Eq. (19) to evaluate iQ , and then use Eq.

(18) to determine ik .

Step 2. For each ),,( iii LkQ , compute the corresponding expected total annual cost

),,( iiiU LkQEAC , i =0,1,2,..., n .

Step 3. Find ),,(min
,....,,, iiiU

ni
LkQEAC

210=
. If ),,( *** LkQEACU = ),,(min

,....,,, iiiU
ni

LkQEAC
210=

,

then ),,( *** LkQ  is the optimal solution. And hence, the optimal reorder point is

**** LkDLr σ+= .

Example 2.Example 2.Example 2.Example 2. Using the same data in Example 1, we assume that the distribution of the
lead time demand is free except that its first and second moments are given. Applying
Algorithm 2, the summarized optimal values are presented in Table 5.

Table 5:Table 5:Table 5:Table 5: Summary of the optimal procedure solution for Algorithm 2 ( iL  in week )

     β           ),,( *** LrQ       ),,( *** LrQEACU

 0.0        (141, 65, 4)         $ 2,818.77

 0.5        (142, 65, 4)            2,798.23

 0.8        (143, 65, 4)            2,786.12

   1.0        (143, 65, 4)            2,777.55

The expected total annual cost ),,( *** LrQEACN  is obtained by substituting

),,( *** LrQ  into model (3); and thus, ),,(),,( ***
*** LrQEACLrQEAC NN −  is the largest

amount that we would be willing to pay for the knowledge of the probability
distribution of demand. This quantity can be regarded as the expected value of

additional information (EVAI), i.e., EVAI ),,(),,( ***
*** LrQEACLrQEAC NN −= .

Moreover, it can be observed from Table 6 that the amount of EVAI increases as β
increases.
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Table 6:Table 6:Table 6:Table 6: Calculation of EVAI for the continuous review model

     β   ),,( *** LrQEACN    ),,( *** LrQEACN        EVAI

0.0      $ 2,784.59            $ 2,560.93                $ 223.66

0.5         2,781.12               2,542.57                   238.55

0.8         2,779.26               2,531.49                   247.77

  1.0         2,777.55               2,524.05                   253.50

Remark 3.Remark 3.Remark 3.Remark 3. Analogous to the argument in    Remark 1, we discuss the case that the
distribution of the lead time demand is free and 1=β . Ouyang and Wu [10] obtained

the optimal ),(),( 4116=LQ  and the expected total annual cost
)(116,4UEAC 068392 .,$= . In our model, the optimal ),,( *** LrQ ),,( 465143=  and

557772465143 .,$),,( =UEAC . Thus, observe that our model savings −),( LQEACU

),,( *** LrQEACU −= ),( 4116UEAC ),,( 465143UEAC 557772068392 .,.,$ −= =$ 61.51,

which is the reward due to controlling the reorder point.

Remark 4:Remark 4:Remark 4:Remark 4: From Table 3 and Table 5, it is interesting to observe that, regardless of
the normal distribution or distribution free model in the continuous review case,
increasing the backorder rate β  results in a decrease in the minimum expected total
annual cost, but it results in an increase in the order quantity. On the other hand,
there is a robustness property for the optimal reorder point and lead time as β  varies.

4. PERIODIC REVIEW MODEL

In this section, we consider a periodic review inventory model. We first assume
that the inventory level is reviewed every T  units of time, a sufficient ordering
quantity is ordered up to the target inventory level R , and the ordering quantity is
arrived after L  units of time, where TL <  so that at most one order is outstanding in
any cycle. Again, we suppose that the protection interval is LT + , demand X  has a

p.d.f. )(xfX  with mean )( LTD +  and standard deviation LT +σ , and the target

inventory level R  is given by )( LTDR += LT ++ σδ , where δ  is a safety factor.
Therefore, the expected demand shortage at the end of the cycle is given by

=− +)( RXE dxxfRx
R X  ∫
∞ − )()( , and the expected number of lost sales per cycle is

+−− )()( RXEβ1 .

For this new model, we attempt to utilize some results in Montgomery et al.
[6], and get the mathematical expression of this problem as follows:

=),,(min LRTEAC
T
A





 −−+−−+ +)()( RXE

TD
LDRh β1

2
 

  
T
LC )(+
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subject to

α≤
+

− +

)(
)(

LTD
RXE

. (20)

4.1.4.1.4.1.4.1. Normal distribution caseNormal distribution caseNormal distribution caseNormal distribution case

In this subsection we assume that the protection interval demand for the
),,( LRT  periodic review model follows a normal p.d.f. )(xfX  with mean )( LTD +  and

standard deviation LT +σ . By applying LTLTDR +++= σδ )(  and further
allowing the safety factor δ  as a decision variable instead of R , the expected shortage

quantity +− )( RXE  at the end of the cycle can be expressed as a function of δ  as

+− )( RXE dxxfRx
R X  ∫
∞ −= )()( ( ) dzzfzLT z∫

∞ −+= δ δσ  )( 0>+= )(δσ GLT ,

where )(zfz  and )(δG  are defined in Section 3.1. Hence, model (23) is reduced to

=),,(min LTEACN δ
T

LCA )(+




 +−+−+++ )()( δσβσδ GLT

TD
LTTh 1

2
 

  D

subject to

)()( LTDGLT +≤+ αδσ . (21)

The Lagrangian function is thus given by

=),,,,( SLTEACN λδ
T

LCA )(+
2
 ThD+ + )]()([ δβδσ GLTh −++ 1

)]()([ LTDSGLT +−+++ αδσλ 2 , (22)

where λ  is a Lagrange multiplier and 2S  is a nonnegative slack variable.

Similar to the arguments in Section 3, we obtain the slack variable 02 =S .
And, for fixed ),,( λδT , ),,,( λδ LTEACN  has a minimum value at the points of

],[ 1−ii LL . On the other hand, for fixed ],[ 1−∈ ii LLL , the minimum value of (22) will

occur at the point ),,( λδT  which satisfies 0=TLTEACN ∂λδ∂ ),,,( ,

0=δ∂λδ∂ ),,,( LTEACN , and 0=λ∂λδ∂ ),,,( LTEACN . Thus, we obtain the following

equations:

( ) ])()[()( / λβδσσδλα +−+=+







+−

+
1

222
21

2
hG

h
LTD

hD

T

LCA
, (23)
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( ) )]([
)(

δβ
δ

λ z
z

P
P

h −−= 11 , (24)

and

LT
D

G +=
σ

αδ )( , (25)

where )(δzP  is defined as in Section 3.1.

Substituting (24) into (23) yields

[ ] ( ) 







+=+









−−+−+
)(
)()()(

)(
)( /

δ
δδσδβ

δ
α

z
z

z P
G

LTP
P

DD

hT

LCA
2

11
2

21
2

. (26)

Since it is not easy to solve Eqs. (25) and (26) for T  and δ , an iterative
algorithm can be employed to find the optimal ),,( LT δ .

Algorithm 3Algorithm 3Algorithm 3Algorithm 3

Step 1. For each iL , i =0,1,2,..., n , perform (i) to (v).

(i) Start with 01 =iδ , and then get )( 1izP δ =0.5 and )( 1iG δ =0.3989 by

checking the table from Silver and Peterson [11] or Brown [2].

(ii) Substitute 1iδ , )( 1iG δ , and )( 1izP δ  into (26), and use a numerical search

method to obtain 1iT .

(iii) Using 1iT , determine )( 2iG δ  from (25).

(iv) Check )( 2iG δ  from Silver and Peterson [11] or Brown [2] to find 2iδ , and

then )( 2izP δ .

(v) Repeat (ii) to (iv) until no change occurs in the values of iT  and iδ .

Step 2. For each ),,( iii LT δ , compute the corresponding expected total annual cost

),,( iiiN LTEAC δ , i =0,1,2,..., n ,.

Step 3. Find ),,(min iiiN
,....,n,,i

LTEAC δ
210=

. If ),,( *** LTEACN δ = ),,(min iiiN
,....,n,,i

LTEAC δ
210=

, then

),,( *** LT δ  is the optimal solution. And hence, the target inventory level is

****** )( LTLTDR +++= σδ .

Example 3.Example 3.Example 3.Example 3. Consider the same data as in Example 1. Using Algorithm    3, the optimal
values for this example are shown in Table 7.
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Table 7:Table 7:Table 7:Table 7: Summary of the optimal procedure solution for Algorithm 3 ( iT , iL  in week)

     β            ),,( *** LRT       ),,( *** LRTEACN

 0.0       (9.34, 217, 8)            $ 2,719.77

 0.5       (9.41, 218, 8)               2,690.34

 0.8       (9.46, 218, 8)               2,666.85

   1.0       (9.48, 218, 8)                2,654.93

By comparing the results in Table 3 and Table 7, it is obvious that the
continuous review model is less expensive than the periodic review, and the amount of
cost difference decreases as β  increases.

4.2. Distribution free case4.2. Distribution free case4.2. Distribution free case4.2. Distribution free case

In this subsection, since the form of the probability distribution of protection

interval demand X  is unknown, we cannot determine the exact value of +− )( RXE .
Therefore, using the same proposition as presented in the continuous review case, we
can obtain the least upper bound of the expected demand shortage at the end of the
cycle as follows:

For any ∈Xf F, let F denote the class of p.d.f. Xf 's with finite mean

)( LTD +  and variance )( LT +2σ , then







 +−−+−++≤− + )]([)]([)()( LTDRLTDRLTRXE 22

2
1 σ . (27)

The upper bound (27) is tight.

Based upon the results of (27) and LTLTDR +++= σδ )( , the safety factor
δ  can be viewed as a decision variable instead of R , and thus model (20) is reduced to

=),,(min LTEACU δ
T

LCA )(+
2

hDT+ 










 −+−+++ δδβδσ 211

2
1 )(LTh

subject to

)()( LTDLT +≤−++ αδδσ 21 2 . (28)

The Lagrangian function of this model is given by

=),,,,( SLTEACU λδ
T

LCA )(+
2

hDT+ 



 −+−+++ ))(( δδβδσ 211

2
1

LTh





 +−+−+++ )()( LTDSLT αδδσλ 21 22 , (29)
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where λ  is a Lagrange multiplier and 2S  is a nonnegative slack variable.

As mentioned in the above cases, it can be shown that the slack variable

02 =S . And, for fixed ),,( λδT , ),,,( λδ LTEACU  has a minimum value at the end

points of ],[ 1−ii LL . Further, for fixed ],[ 1−∈ ii LLL , the minimum value of

),,,( λδ LTEACU  will occur at the point ),,( λδT  which satisfies

0=TLTEACU ∂λδ∂ ),,,( , 0=δ∂λδ∂ ),,,( LTEACU , and 0=λ∂λδ∂ ),,,( LTEACU .

Simplifying these equations leads to

( ) ])()[()( / λβδδσσδλα 211
42

2
2

221
2

+−−++=+







+−

+
h

h
LTD

hD

T

LCA
, (30)














−−

−+

+= )( β
δδ

δλ 1
2
1

1

1
2

2
h , (31)

and

LT
D +=−+

σ
αδδ 2

1 2 . (32)

Substituting (31) and (32) into (30), we get the review period as

( )αβ21
 2

−
+=

hD
LCA

T
)]([

, (33)

where 21 /<α . The deriving process is similar to (22), and hence we omit it.

A similar algorithm procedure as proposed in Section 3.2 can be performed to
obtain the optimal solutions.

Example 4.Example 4.Example 4.Example 4. Using the same data in Example 1 and applying a similar procedure as in
Algorithm    2    yields the optimal values given in Table 8.

Table 8:Table 8:Table 8:Table 8: Summary of the optimal procedure solution ( iT , iL  in week )

     β             ),,( *** LRT            ),,( *** LRTEACU

 0.0        (9.72, 263, 8)               $ 3,555.91

 0.5        (9.80, 263, 8)                  3,522.67

 0.8        (9.85, 264, 8)                  3,506.20

   1.0        (9.88, 264, 8)                   3,495.08

From Table 9, we can see that the amount of EVAI increases as β  increases.
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Table Table Table Table 9 :9 :9 :9 : Calculation of EVAI for the periodic review model

β        ),,( *** LRTEACN    ),,( *** LRTEACN       EVAI

0.0          $ 3,496.78               $ 2,719.77                 $ 777.01

0.5             3,492.95                  2,690.34                    802.61

0.8             3,494.29                  2,666.85                    827.44

  1.0             3,495.08                  2,654.93                    840.15

Remark 5:Remark 5:Remark 5:Remark 5: Analogous to the argument in    Remark 4    (continuous review case), from
Table 7 and Table 8, it is obvious that, for the periodic review case, increasing the
backorder rate β  results in a decrease in the minimum expected total annual cost, but

it results in an increase in the optimal review period. And the optimal target inventory
level and lead time as β  varies is robust.

5. CONCLUSION

In this study, we presented a mixture inventory model with backorders and
lost sales, where the stockout cost term in the objective function is replaced by a service
level constraint. First, we extended Ouyang and Wu's [10] continuous review model by
simultaneously optimizing order quantity, reorder point, and lead time. Next, we
developed a periodic review inventory model in which review period, target inventory
level, and lead time are treated as decision variables. For these two models, we assumed
that the lead time/protection interval demand follows a normal distribution, and found
the optimal solution. Then, we relaxed this assumption and applied the minimax
decision criterion to solve the distribution free case.

In future research on this problem, it would be of interest to consider an
inventory model involving the problem of net present value. Another possible extension
of this work may be conducted by considering the backorder rate β  as a decision
variable.
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