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Abstract:Abstract:Abstract:Abstract: For a given s-t planar directed network with lower and upper arc capacities
we find those k arcs the removal of which minimizes the flow value of the maximum
flow. Such arcs are called the k most vital arcs of the network. Analogously we find the
k most vital nodes. Further more, we find the k bicriterial lexicographical most vital
elements, the removal of which minimizes the maximum flow value first, and on the
other hand, is the "cheapest" variant. Such problems arise if one wants to know in
advance what the consequences will be if some of the network elements terminate their
function or have to be switched off.

Keywords:Keywords:Keywords:Keywords: k most vital arcs/nodes, planarity of directed networks, multicriterial optimization on
networks.

1. INTRODUCTION AND PROBLEM FORMULATION

We consider a finite, connected, directed and planar graph ),( AVG =  with a
node set ),,( nVVV !1= , arc set ),,( mAAA !1=  and a facet set ),,( rFFF !1= . We

assume the only source node 1Vs =  and sink node nVt =  to belong to the edge of one

of the facets and let it be the unbounded one. Such networks are called s-t planar
networks. To each arc pA  we assign two integer arc weights pa  and pb  called lower

and upper arc capacities of the flow. The classical max-flow problem is formulated as
follows: find an integer vector x, such that
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Here we denote by +
iCC  the set of all arcs leaving iV  and by −

iCC  the set of

those arcs entering it. The set of all arcs starting from iV  or ending in it is called a

cocycle defined by iV . We denote it by iCC . Obviously, −+ ∪= iii CCCCCC , i.e.

iCC contains forward and backward arcs, those from +
iCC  and −

iCC , respectively.

More general: for a given VV ⊂′ , we denote by )(VCC ′  the set of all arcs leaving or
entering V ′  and we call it a cocycle defined by V ′ . It also contains forward arcs

)(VCC ′+  and backward arcs )(VCC ′− . If in addition V ′  contains the source node s
and not the sink node t, we call )(VCC ′  a cut in G. We denote the set of all cuts in

),( AVG =  by ),( AVCS . For a given )(VCC ′  we denote by

∑∑ ′∈−′∈=′ −+ )}(/{)}(/{:))(( VCCAaVCCAbVCCcap pppp (4)

the so-called capacity of )(VCC ′ . The well-known result is the max-flow min-cut
theorem:

)},()(/))((min{)}(),/()({max AVCSVCCVCCcapxv
x

∈′′=32 . (5)

Now let k be a positive integer with mk <<0 . The problem )( kMVA  for
finding the k most vital arcs in the network is:

}}||,),\,()(/))(({min{min kAAAAAVCSVCCVCCcap kkk

VAk
=⊂∈′′

′
.

Analogously, the problem )( kMVN  for finding the k most vital nodes in G is:

}}||,),,\()(/))(({min{min * kNVNANVCSVCCVCCcap kkk

VN k
=⊂∈′′

′
,

for nk <<0  and *A - the set of remaining arcs.

Note that conditions (2) and (3) can be contradictable if some lower capacities
in (3) are not zero, i.e. it is possible that no flow does exist in the network. In this case
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we assume by definition that the maximum flow value is zero. Hence, the removal of
some network elements can reduce the maximum flow value to zero either if there
exists a feasible flow in the network or if there is no feasible one.

We further we shall investigate )( kMVA  since )( kMVN  can be reduced to the
previous one - see Section 5. Such a problem has been estimated in [10] for undirected
planar networks with zero lower capacities. It has been solved in [1] for undirected
networks by two criteria - arc capacities and reliabilities. In [9] it has been solved in
directed non-planar graphs. We have solved it in [4, 5] in directed networks if the lower
capacities are zero and the upper bounds in (3) depend on a parameter. In [2, 3] we
have found the most vital nodes if all capacities do or do not depend on a parameter.
The problem seems to be NP-complete if the graph is non-planar. The algorithms in [9,
4, 5] are exponential. We shall deal with the case of the planarity of a directed network
with non-zero lower capacities in (3).

2. SOLUTION METHOD AND ALGORITHM

Without loss of generality we assume that there is a single inverse arc
),(),( stVVA nm == 1  with Mba mm == ,0 - a large number. Obviously, there are two

possibilities for mA  to place it in the plane. We denote by CS the set of all simple cycles

in G containing mA  as a foreward arc and by CCS the set of all simple cocycles which

separate s and t and contain mA  as a backeward arc. Obviously, ),( AVCSCCS =
holds.

Now we define the dual graph ),()( DD AVGD =  as in [5]. An algorithm with a
time complexity )(mO  for finding it is described in [6]. We have proved some properties
of the duality and have presented a PASCAL computer code for finding the dual graph.
There are one-to-one correspondences between the sets of pairs from ),( AVG =  and

),()( DD AVGD =  as follows:

V  and DF ,

A  and DA ,

F  and DV ,

CS  and DCCS ,

CCS  and DCS .

Here we denote analogously by DF , DCS  and DCCS  the sets of all facets, all

simple cycles containing D
mA , and all simple cocycles containing D

mA  in the dual graph,
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respectively. D
mA  is the inverse arc in )(GD , which corresponds to mA  from G. The

direction of the arcs DA  are defined in such a way that if CC and DC  are the
corresponding cocycle from G and cycle from )(GD , the foreward arcs from CC

correspond to the foreward arcs from DC . Now we denote by DD Vs 1=  the vertex of

)(GD  which corresponds to the unbounded facet 1F  of G and by D
r

D Vt =  the vertex

of )(GD  which corresponds to the neighbour facet rF  from G, so that ),( DDD
m stA = .

To each arc D
pA  we assign the same two arc weights pa  and pb  and )(GD  becomes a

DD ts −  directed planar network.

If DC  is a DD ts −  chain in )(GD  (particularly a cycle from DCS ) we define
its length as

∑∑ −+ ∈−∈= }/{}/{:)( DD
pp

DD
pp

D CAaCAbCl (6)

Note that if DC  is a cycle from DCS  it is so oriented that D
mA  is a backward arc.

Theorem 1.Theorem 1.Theorem 1.Theorem 1. Let maxv  be the flow value of the maximum flow in G and let minl  be the

length of the (simple) shortest path from Ds  to Dt  in )(GD  (particularly a cycle from
DCS ). Then

maxmax lv =

holds.

Proof:Proof:Proof:Proof: It follows from the one-to-one set correspondence and from (4) and (6):

)()( DClCCcap =  if CCSCC ∈  and DD CSC ∈  are the corresponding cocycle and cycle
from G and )(GD , respectively. (5) implies that

minmax }/)(min{}/)(min{ lCClCCCCcapv DD === ❑

Corollary.Corollary.Corollary.Corollary. )( kMVA  is equivalent to the following problem: which are those k arcs in
the dual graph such that if we reduce both their weigths to zero it causes the

minimization of the length of the shortest path from Ds  to Dt , i.e. )( kMVDA :

}}||,/)({min{min kDAADAAbaCl kDkD
ppp

D

CDA Dk
=⊂∈== for    0 .

We present below a PASCAL-like algorithm for solving )( kMVDA  and hence

for solving )( kMVA . It finds in )(GD  the shortest path between Ds  and Dt  if the
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weights of the k arcs are reduced to zero. It uses the DFS strategy for searching in a
dual graph which has m arcs and r nodes since G contains m arcs and r facets.

2.1. The Algorithm MVAPDN (Most Vital Arcs in a Planar Directed Network)2.1. The Algorithm MVAPDN (Most Vital Arcs in a Planar Directed Network)2.1. The Algorithm MVAPDN (Most Vital Arcs in a Planar Directed Network)2.1. The Algorithm MVAPDN (Most Vital Arcs in a Planar Directed Network)

(* Input:(* Input:(* Input:(* Input:

s - t planar directed network ),( AVG =  with two arc weights pa  and pb , mp ,,!1= ,

k- integer, mk <<0  ;

Output:Output:Output:Output:

Arc set List and Cycle, containing no more than k arcs of the dual graph (and hence of
G) the removal of which either minimizes the maximum flow value or makes (2) and (3)
contradictable.

Notations:Notations:Notations:Notations:

)(),(),(),( KCKFKSKL jjjj - labels of rjV D
j ,,, !1=  if K arcs have to be removed,

kK ,,, !10= , where:

)(KL j - the minimum length from Ds  to D
jV  if K arcs can be removed;

)(KS j - the number of the last vertex before D
jV  in the shortest chain from Ds

to D
jV , such that if 0>= iKS j )(  then the last arc is Dji ),(  and if 0<i  then the

last arc is Dij ),( ;

)(KF j - a logical variable which is true if the last arc in the chain D
j

D Vs −  has to

be removed and false otherwise;
)(KC j - an integer variable which is -1, if there is a negative cycle in )(GD ,

containing D
jV  and 1 otherwise; it is initialized first as zero;

M - a large number in the whole algorithm.

*)*)*)*)

Form the dual graph )(GD  using the algorithm DUAL from [6];

00 /=/= :;: CycleList ;

(*Main loop*)(*Main loop*)(*Main loop*)(*Main loop*)

for kK  to 0=:  do

begin 1=:i ;

if 1=j  then
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begin 1false0 1111 −==== :)(;:)(;:)(;:)( KCKFMKSKL  end;

for rj   to  2=:  do

begin 0false0 ==== :)(;:)(;:)(;:)( KCKFKSMKL jjjj  end;

while Mi ≠  do

begin

find an arc ),( jiA D
p =  (*Case 1*) or

),( ijA D
p =  (*Case 2*) such that

if (Case 1) then

begin

(*1*) if pij bKLKL +> )()(  then

begin pij bKLKL += )(:)( ; iKS j =:)(  end;

(*2*) if 0>K  and )()( 1−> KLKL ij  then

begin

)(:)( 1−= KLKL ij ; iKS j =:)( ; true=:)(KF j

end

end;

if (Case 2) then

begin

(*3*) if pij aKLKL −> )()(  then

begin pij aKLKL −= )(:)( ; iKS j −=:)(  end;

(*4*) if 0>K  and )()( 1−> KLKL ij  then

begin

)(:)( 1−= KLKL ij ; iKS j −=:)( ; true=:)(KF j

end

end;

if ((Case 1) or (Case 2)) then

begin ji =: ;

(*5*) if 0<)(KCi  then

(*A negative cycle has been found in (*A negative cycle has been found in (*A negative cycle has been found in (*A negative cycle has been found in )(GD  with arcs in  with arcs in  with arcs in  with arcs in CycleCycleCycleCycle; ; ; ; ListListListList contains contains contains contains
all all all all KKKK arcs the length of which have to be reduced to zero *) arcs the length of which have to be reduced to zero *) arcs the length of which have to be reduced to zero *) arcs the length of which have to be reduced to zero *)

begin istart =: ;

repeat
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)(: KSj i= ;

if 0>j  then

begin

)},{(: ijCycleCycle ∪= ;

if )(KFi  then )},{(: ijListList ∪=

end

else (* 0<j *)

begin

)},{(: jiCycleCycle −∪= ;

if )(KFi  then )},{(: jiListList −∪=

end;

if 0>K  then 1−= KK : ;

||: ji =

until starti = ; STOP.

end

else (* 0≥)(KCi *) 1−=:)(KCi

end

else (*neither Case 1 nor Case 2*)

begin 1=:)(KCi ; |)(| KSi  end

end (*of while*)

end; (*of main loop*)

(* Forming the arc set (* Forming the arc set (* Forming the arc set (* Forming the arc set ListListListList from the dual graph with reduced lengths*) from the dual graph with reduced lengths*) from the dual graph with reduced lengths*) from the dual graph with reduced lengths*)

rj =: ;

repeat

if )(kF j  and 0>k  then

if 0>)(kS j  then )}),({(: jkSListList j∪=

else ))}(,{(: kSjListList j−∪= ;

|)(|: kSs j= ;

if )(kF j  and sjkk =−= :;: 1

until Mj = .
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3. TWO ILLUSTRATIVE EXAMPLES

We shall give here in some illustrative examples in order to make the
algorithm much clearer. In the original graph G all verticies are drawn with circle lines
and the arcs - with continuous lines. In the dual graph they are given by rectangles and
broken-lines, respectively.

Example 1.Example 1.Example 1.Example 1. We shall now demonstrate how to find the two most vital arcs. Both
graphs are given in Fig. 1 with the arc weights pp ba /  as lower and upper bounds of

the capacities of G and arc lengths of )(GD .
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Figure 1.Figure 1.Figure 1.Figure 1.

First step First step First step First step )( 0=K .... Initialization: 001 =:)(L , ML j =:)(0 , 62 ,,: !=j ; ,:)( MS =01

00 =:)(jS , 61 ,,: !=j ; falseF j =:)(0 , 61 ,,: !=j ; 101 −=:)(C , 00 =:)(jC , 62 ,,: !=j ;

0/=:List ; 0/=:Cycle .

We shall start with 1=:i  and find a dual arc (1, 2) such that 500 12 +> )()( LL

(Case 1). Now we modify 101050 222 −=== :)(,:)(,:)( CSL  and 2=:i  and continue using

the DFS strategy.
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Starting now from DV2  we find the arc (2, 4) (again Case 1) and put

102080 444 −=== :)(,:)(,:)( CSL  and 4=:i .

For the next dual arc (4, 6) we put 1040100 666 −=== :)(,:)(,:)( CSL , 6=:i .

Now we find the backward dual arc (5, 6) (Case 2) and modify
1001000 5665 =−=−= aLL )(:)( , 605 −=:)(S , 105 −=:)(C  and 5=:i .

The next dual arc (3, 5) is also a backward one (again Case 2). We put
1050100 333 −=−== :)(,:)(,:)( CSL  and 3=:i .

The only arcs adjacent to DV3  are (3, 2) and (1, 3) but neither Case 1 nor Case

2 is fulfilled. We go back to DV5 , i.e. 5=:i , 103 =:)(C  and investigate the arc (5, 4).

Again neither Case 1 nor Case 2 is fulfilled; back to DDD VVV 124 ,,  and 104 =:)(C ,

1010 12 == :)(,:)( CC .

For 1=:i  we find as the next dual arc (1, 3) (Case 1) and modify
10103300 3313 −===+= :)(,:)(,)(:)( CSLL . Then: ,:,:)(,:)(,:)( 5103070 555 =−=== iCSL

back to DV3  and 110310 35 ==== :,:)(,:,:)( iCiC .

Since no changes are possible - there are three directions: (1, 2), (1, 3) and
(6,1), we put MSi == )(: 01  and the while loop has been completed for 0=K . As a

result we have one shortest chain in )(GD  from DV1  to DV6  with nodes and arcs: DV6 ,

(4, 6), DV4 , (2, 4), DV2 , (1, 2), DV1 , since 102040 246 === )(,)(,)( SSS . This chain

corresponds to a minimum cut in G such as (1, 2), (1, 3), (1, 4) with a minimum
capacity of 10 units, which is 1006 =)(L .

Second step Second step Second step Second step )( 1=K .... Initialization: the same, 1=:i .

The DFS strategy investigates sequentially the dual nodes D
iV  for =i 1, 2, 4,

6, 5, 3, 5, 6, 4, 5, 3, 5, 4, 2, 1, 3, 1. The labels are modified as follows: 512 =:)(L  and

112 =:)(S  according to (*1*); 012 =:)(L , 112 =:)(S  and trueF =:)(12  according to (*2*);

51114 64 =−== :)(,:)(,: LCi  and 416 =:)(S  according to (*1*); 6=:i  and 116 −=:)(S .

Now we have Case 2 for the dual arc (6, 5): 515 =:)(L  and 615 −=:)(S

according to (*3*); 5=:i  and 115 −=:)(C .

The next arc (3, 5) is also a backward one: 3011 53 =−= )(:)( LL , 513 −=:)(S .

Since neither jumping to DV2  nor to DV1  is profitable we have to go back to DV5 , etc.
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After ten jumps this step finishes with the result: ,:)(,:)( 0101 21 == LL

51313101 6543 ==== :)(,:)(,:)(,:)( LLLL , 2111111 4321 ==== :)(,:)(,:)(,:)( SSSMS ,

4141 65 == :)(,:)( SS , falseFFFF ==== :)()()()( 1111 6431 , trueFF == :)()( 11 52 ,

11 =:)(jC  for 61 ,,!=j .

In this step we have found one most vital arc - it is (1, 3) and it corresponds to

(1, 2) in the dual graph, since the shortest reduced chain in )(GD  is: DV6 , (4, 6), DV4 ,

(2, 4), DV2 , (1, 2), DV1  and the only vertex with trueF j =)(1  is DV2 . If we remove (1,

2) from G the maximum flow value in the reduced network will be 516 =)(L  units.

Third step Third step Third step Third step )( 2=K .... The DFS strategy investigates D
iV  for =i 1, 2, 4, 6, 5, 3, 5, 6, 4, 2,

3, 5, 3, 2, 1. The final result is: 02 =)(jL  for 51 ,,!=j , 226 =)(L , MS =)(21 ,

122 =)(S , 223 −=)(S , 224 =)(S , 325 =)(S , 426 =)(S , falseF j =)(2  for 631 ,,=j ,

trueF j =)(2  for 542 ,,=j , all )(2jC  are 1. The interpretation is the following: if one

drops two arcs from G the maximum flow value will be reduced to 226 =)(L  units; the

shortest chain in the reduced graph )(GD  is DV6 , (4, 6), DV4 , (2, 4), DV2 , (1, 2), DV1

which corresponds in G to the cut set { (1, 2), (1, 3), (1, 4)} ; the arcs in DG  whose
length have to be reduced to zero are (2, 4) and (1, 2) since trueFF == )()( 22 24 . They

correspond in G to (1, 3) and (1, 4) which are the two most vital arcs in G.

Example 2.Example 2.Example 2.Example 2. Sometimes if we remove some arcs from G it is possible to make the
constraints (2) and (3) contradictable. This is the case in this example for the graph in
Fig. 2 if we remove one arc.
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Figure 2.Figure 2.Figure 2.Figure 2.
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The First stepFirst stepFirst stepFirst step )( 0=K  finishes with the result: 001 =)(L , 302 =)(L ,

303 =)(L , 604 =)(L , MS =)(01 , 102 =)(S , 203 −=)(S  and 204 =)(S . )(0jF  and

)(0jC  are not interesting in this example.

First stepFirst stepFirst stepFirst step )( 1=K . After initialization we put 1=i . The DFS investigates the dual
nodes with numbers 1, 2, 4, 3, 4, 2, 3, 1 and stops the execution of the algorithm since

111 −=)(C . The final state of the labels is: 111 −=)(L , 011 32 == )()( LL , 314 =)(L ,

311 −=)(S , 112 =)(S , 213 −=)(S , 214 =)(S , trueF =)(12 , falseFFF === )()()( 111 431 ,

1111 321 −=== )()()( CCC , 114 =)(C .

Since we have reached DV1  again and 011 <)(C , a negative cycle has been

found in )(GD  after reducing some arc lengths to zero. Its arcs are in the area Cycle
and the reduced arc from )(GD  is in List. We put 1== istart :  and it follows the
execution of the repeat cycle. Finally it becomes =Cycle ((1, 3), (3, 2), (1, 2)) and List =
{ (1, 2)} , i.e. if we drop (1, 3) in G (or reduce the length of (1, 2) in )(GD  to zero) the
length of the cycle in )(GD  will be negative. The equivalent in G is that the cocycle

3CC  does not fulfil the conditions of Hoffman's circulation theorem. It implies a

contradictability of (2) and (3).

4. JUSTIFICATION OF THE ALGORITHM

Theorem 2.Theorem 2.Theorem 2.Theorem 2. The algorithm MVAPDN finds the k most vital arcs in a planar directed
network correctly with time complexity )(knmO .

Proof:Proof:Proof:Proof: We form list for the dual graph with the algorithm from [6]. It takes )(mO
operations in the worst case ([6], Theorem 2). Then we start investigating the shortest

chains from Ds  to D
rV  according to the Corrolary. Induction on K follows.

At each iteration of the main loop we use the DFS strategy for searching in
graphs which needs )(mO  operations. At the first iteration )( 0=K  we find the

shortest )( DD ts −  chain with )(nmO  operations since some lengths are negative (see
[8], p. 95). At each next iteration )( 1for  ≥K  we check in addition the conditions (*2*)
or (*4*) in order to find possibly better combinations: let )( 1−KL j  be the shortest

distance from Ds  to D
jV  if we reduce to zero the lengths of 1−K  arcs; conditions

(*2*) and (*4*) mean that it would be better to reduce to zero the length of the last arc

of the chain found from Ds  to D
jV  (i.e. to remove the corresponding arc from G). It

takes again )(nmO  operations to perform the main loop from the beginning to (*5*)
after K iterations and )(KL j  are the desired distances, rj ,,!1= . The total

complexity becomes )(knmO  for kK ,,, !10= . Obviously, the begin-end block after
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(*5*) and repeat loop will be executed only once with time complexity )(nO  and it does
not change the total complexity. ❑

If we develop a computer code for this algorithm we have to memorize
nk )( 13 +  integers and nk )( 1+  logical variables for the node labels. It is possible to

reduce this if we memorize the information from two neighbouring iterations of the
main loop (for 1=K  and for K only). If for some k in the last repeat loop the logical
variable )(kF j  is true we have to start the main loop again from 0=K  to the current

k and to look for the shortest chain from Ds  to D
jV . This modification of the

algorithm needs obviously )( nmkO 2  operations in the worst case and to memorize n5
integers and n logical variables. This version of the algorithm follows below.

4.1. The modified algorithm MVAPDN4.1. The modified algorithm MVAPDN4.1. The modified algorithm MVAPDN4.1. The modified algorithm MVAPDN

1. Initialization - the same as of MVAPDN;

2. Perform the main loop of MVAPDN with a given k and memorize )(KL j ,

)(KS j , )(KF j , )(KC j , )( 1−KL j  and )( 1−KS j  at each iteration after

the first one for the current K in order to check (*2*) and (*4*); put
rj =: ;

3. Perform the last repeat loop and stop it if Mj =  or k has been reduced to
1−k ; put sr = ; if Mj ≠  then go to 2. Else STOP.

The previous comments prove the following theorem.

Theorem 3.Theorem 3.Theorem 3.Theorem 3. The Modified algorithm MVAPDN finds the k most vital arcs in a planar

directed network correctly with time complexity )( nmkO 2  and needs to memorize )(nO
variables.

5. MOST VITAL NODES

The problem can be formulated analogously: which are those k nodes in the
network the removal of which minimizes the maximum flow value of the network?

The problem can be reduced to the previous one if we use the well-known
network transformation: to each vertex iV  from G we assign a new one iV ′  and a new

arc ),( ii ′  from G ′  with arc weights (lower and upper bounds) M/0 . The arc ),( ji
from G corresponds to ),( ji′  from G ′ . The node iV  from G corresponds to the arc

),( ii ′  from G ′ . Now to removing the node iV  from G is equivalent to removing the arc

),( ii ′  from G ′  since it is the only outgoing arc from iV  and the only ingoing one to iV ′ .
Hence, finding the k most vital nodes in G is equivalent to finding the k most vital arcs
in G ′ . Although G ′  has n2  nodes and nm+  arcs the complexity of the algorithms is

the same - )(knmO  and )( nmkO 2 , respectively.
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6. MULTICRITERIAL MOST VITAL ELEMENTS

This is the case if we have to remove k arcs or/and nodes, but if we drop pA  or

pV  we have to "pay" pd  units. This leads to a bicriterial optimum path problem in the

dual network in the lexicographical sense. We denote by

∑ =⊂∈= }||,/{:)( kDAADAAdDAd kDkD
pp

k

and the corresponding problem is to find some solution kDA  of )( kMVDA  which is the

"cheapest" one, i.e. which minimizes )( kDAd .

In order to solve this version of the problem we can combine the algorithms
from the previous sections and the procedure from [7] (see [7], p. 83-85). For this

purpose we denote by )(KD j  the value of the "cheapest" path from Ds  to D
jV  if K of

their corresponding arcs have to be removed. The only changes in the algorithm are:

Initialization: MKDKD j == :)(,:)( 01  for all rj ,,!2=  and kK ,,, !10= ;

the begin-end block containing (*1*) and (*2*) is:

  begin

(*1'*) if ))(,)(())(),(( KDbKLKDKL ipijj +"  then

begin pij bKLKL += )(:)( ; )(:)( KDKD ij = ; iKS j =:)(  end;

(*2'*) if 0>K  and ))(),(())(),(( piijj dKDKLKDKL +−− 11"  then

begin )(:)( 1−= KLKL ij ; pij dKDKD +−= )(:)( 1 ; iKS j =:)( ; true=:)(KF j end

end;

Analogously the begin-end block containing (*3*) and (*4*) should be:

begin

(*3'*) if ))(,)(())(),(( KDaKLKDKL ipijj −"  then

begin pij aKLKL −= )(:)( ; )(:)( KDKD ij = ; iKS j −=:)(  end;

(*4'*) if 0>K  and ))(),(())(),(( piijj dKDKLKDKL +−− 11"  then

begin )(:)( 1−= KLKL ij ; pij dKDKD +−= )(:)( 1 ;

iKS j −=:)( ; true=:)(KF j end

end.

Here we use the sign "  for the relation "lexicographically greater".
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Analogously we can adapt the procedure for the case of more then two criteria
even if they are from another type (see [7] and [1]).

7. CONCLUSIONS

In this paper we give two justificated algorithms for finding the k most vital
arcs/nodes of s-t planar directed network if it is directed one and there are non-zero
lower bounds of the arc capacities. For the purpose we use the concept for duality of
directed planar graphs from [5] and [6]. In case there are more then one criteria we use
the concept from [7] for multicriteria path optimization. In the dual graph we use a
modification of the searching strategy DFS which deals with positive and negative arc
lengths.

Our very last computer experiment shows that the main loop of the algorithm
MVAPDN runs very fast. For 10 randomly generated networks with 100 nodes and
10000 (one thousand) arcs it takes less then one second.
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