ON A GRAPH TRANSFORMATION THAT PRESERVES THE STABILITY NUMBER

Alain HERTZ
Department of Mathematics,
Swiss Federal Institute of Technology,
Lausanne, Switzerland

Abstract: We derive from Boolean methods a transformation which, when applicable, builds from a given graph a new graph with the same stability number and with the number of vertices decreased by one. We next describe classes of graphs for which such a transformation leads to a polynomial algorithm for computing the stability number.

Keywords: Boolean methods, stability number, polynomial algorithms.

1. INTRODUCTION

In the present paper all graphs will be assumed simple (no loops and no multiple edges are allowed). A set S of vertices in a graph $G = (V,E)$ is stable if no two vertices in S are linked by an edge. The maximum size of a stable set in graph G is denoted by $\alpha(G)$ and is called the stability number of G. For a weighted graph G, the maximum weight of a stable set in G is denoted $\alpha_W(G)$.

Given a positive integer k, finding whether an arbitrary graph contains a stable set with at least k vertices is NP-complete [6]. However, there are special classes of graphs for which $\alpha(G)$ can be computed in polynomial time [e.g. 1, 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20].

In some cases, Boolean methods can suggest graph theoretical procedures. Ebenegger, Hammer and de Werra [5] have described the relationship between the maximization of a pseudo-Boolean function and the determination of a stable set.

* The Boolean transformation studied in this paper as well as the definition of a magnet are due to Peter L. Hammer. I would like to thank him for having encouraged me to demonstrate the potentiality of such a transformation.
having maximum weight in a graph. This relation is summarized in Section 2. In the
same paper, Ebenegger et al. consider the computation of the stability number \(\alpha(G) \) of
a graph \(G = (V, E) \) (unweighted case) and describe the transformation of the

\[G' = \text{construction of another graph with } \alpha(G') = \alpha(G) - 1. \]

By repeatedly applying this construction, one may compute \(\alpha(G) \) (in at most \(\alpha(G) - 1 \)
steps). Unfortunately, the number of vertices is generally increasing when the transformation is applied. However, specialized versions of this construction have provided polynomial algorithms for some classes of graphs [7, 9, 10, 12]. Recently, a different Boolean transformation has been studied in [14].

In order to compute the stability number \(\alpha(G) \) of a graph \(G = (V, E) \), we study
in Section 3 a simplification of the corresponding pseudo-Boolean function; the
transformation, when applicable, amounts to constructing another graph \(G'' \)
with \(|V''| \leq |V| - 1 \) and \(\alpha(G'') = \alpha(G') \). It is based on the Boolean equality \(xy + x\overline{y} = x \).

In Section 4, we describe classes of graphs for which the stability number can
be computed in polynomial time by using the above transformation.

A graph \(G = (V, E) \) is bipartite if the vertex set \(V \) can be partitioned into two
sets \(V_1 \) and \(V_2 \) such that each edge of \(E \) has one endpoint in \(V_1 \) and the other in \(V_2 \); we shall denote such a graph by \(G = (V_1, V_2, E) \). A bipartite graph \(G = (V_1, V_2, E) \) is
complete if each vertex in \(V_1 \) is adjacent to all vertices of \(V_2 \).

A chordless cycle, or chain, on \(k \) vertices is denoted \(C_k \) or \(P_k \) for short.

For a vertex \(x \) in graph \(G \), we denote by \(N_G(x) \) the set of vertices which are
adjacent to \(x \) in \(G \). Graph \(G \) is called \(H \)-free if none of its induced subgraphs are
isomorphic to \(H \).

For two sets \(A \) and \(B \), \(A \setminus B \) denotes the set of elements which are in \(A \) but not
in \(B \). The weight of a set of vertices is the total weight of its elements.

The graph theoretical terms not defined here are borrowed from [2] while for
pseudo-Boolean definitions, the reader is referred to [11].

2. PSEUDO-BOOLEAN FUNCTIONS AND CONFLICT GRAPHS

It is known that a pseudo-Boolean function \(f \) can always be written in a
polynomial form, i.e.,

\[f(x_1, \ldots, x_n) = K + \sum_{i=1}^{p} w_i T_i \]

where \(T_i = \prod_{j \in A_i} x_j \prod_{k \in B_i} x_k \) with \(A_i, B_i \subseteq \{1, \ldots, n\} \) and \(A_i \cap B_i = \emptyset \).
If all \(w_i (1 \leq i \leq p) \) are strictly positive and \(K = 0 \), we say that \(f \) is a posiform. To a posiform \(f \) we associate a weighted conflict graph \(G = (V, E) \) defined as follows:

\[
V = \{1, \ldots, p\} \text{ and each vertex } i \text{ has a weight } w_i, \\
E = \{(i, j) \mid \exists k \in ((A_i \cap B_j) \cup (A_j \cap B_i))\}.
\]

Hence, two vertices \(i \) and \(j \) of \(G \) are linked by an edge if \(x_k \) appears in \(T_i \) (or \(T_j \)) while \(x_k \) appears in \(T_j \) (or \(T_i \)). It is clear from the definition of \(G \) that the maximum value of \(f \) is equal to the maximum weight \(\alpha(G) \) of a stable set in \(G \).

Conversely, for each graph \(G \) with positive weights \(w_u \) associated with each vertex \(u \) of \(G \), there exist posiforms \(f \) such that \(G \) is the conflict graph of \(f \) [5]. Indeed, consider an arbitrary covering of the edge set of \(G \) by complete bipartite partial subgraphs \(G_i((V_i, V_j), E_i) \) of \(G \), \(i = 1, \ldots, q \). Notice that \(G_1, \ldots, G_q \) are partial, but not necessarily induced subgraphs of \(G \). Then set:

\[
f = \sum_{u \in V} w_u T_u
\]

where \(f \) is with

Let \(u \) and \(v \) be two terms of the posiform \(f \) such that \(u \) appears in \(T_i \) and \(v \) appears in \(T_j \). Then \(u \) and \(v \) are adjacent in \(G \). Hence, \(u \) is adjacent to \(v \) in \(G \), showing that \(G \) is the conflict graph associated with \(f \).

3. MAGNETS IN GRAPHS

A magnet in a graph \(G \) is defined as a pair \((a, b)\) of adjacent vertices with the same weight and such that each vertex in \(G \) is adjacent to each vertex in \(G \). In other words, the two endpoints of an edge induce a magnet in a graph \(G \) if and only if this edge is not the middle edge of any path in \(G \).

Given a magnet \((a, b) \) in a graph \(G \), we consider a new graph, denoted \(T \), and obtained from \(G \) by replacing vertices \(a \) and \(b \) by a new vertex having the same weight as \(a \) and \(b \) and linked to every common neighbor of \(a \) and \(b \) in \(G \). This transformation is illustrated in Fig. 1.

The following theorem states that the maximum weight of a stable set in \(G \) is not modified by transformation \(T \).
Theorem 1. Let a be a magnet in a weighted graph G. Then $\alpha(G) \geq \alpha(T(G))$.

Proof: We shall give two proofs of this theorem, a Boolean and a graph theoretical one.

Boolean proof:
The edges incident to a or b can be covered by the two following complete bipartite partial subgraphs G_1 and G_2 of G:

$$\begin{align*}
G_1 &= \{(v, w) \in V \times V : v \text{ is adjacent to } a \text{ or } b \} \\
G_2 &= \{(v, w) \in V \times V : v \text{ is adjacent to no vertex of } \{a, b\} \}
\end{align*}$$

Consider now any covering of the edges in E by complete bipartite partial subgraphs G_1 and G_2. The graphs G_1 and G_2 cover all the edges of E and the associated posiform satisfies $\sum_{v \in V} T_v f(v) \leq \alpha(G_1) + \alpha(G_2)$. Hence, it follows that f has the same maximum value as the posiform $\sum_{v \in V} T_v g(v)$. This means that the conflict graph associated with g satisfies $\alpha(G) \leq \alpha(T(G))$.

Graph theoretical proof:
Denote S and consider any stable set S in G. If a or b belongs to S then S is stable in G and the weight of S is equal to the weight of S. Otherwise S is stable in $T(G)$. This proves that $\alpha(T(G)) \geq \alpha(G)$.
In order to show that G has stability number α, consider any stable set S in G and define $bN(a)$ and $aN(b)$ and $S \cap NC$:

- if a does not belong to S, then S is stable in G;
- if a belongs to S while $b \not\in AS$, then both $bN(a)$ and $C(S \cap NC)$ are empty.

Hence, S is stable in G and $\alpha(G) = \alpha(S)$.

In a graph G, we say that some vertex a dominates some vertex b if $aN(b) \subseteq G$. It is well known that if a graph G contains two adjacent vertices a and b such that a dominates b, then the graph obtained from G by removing vertex a has a stability number equal to $\alpha(G)$. This is in fact a corollary of Theorem 1. Indeed, in this case, all weights are equal to one (unweighted case) and G contains an induced subgraph of $S \cap NC$, which means that a and b are adjacent vertices of G that are not adjacent in S.

Let a and b be two adjacent vertices in a graph G. If a dominates b, we say that (a, b) is a d-magnet in G and the neighbors of a and b are exactly those of b in G. Therefore, (a, b) is the graph obtained from G by removing vertex a.

Property 1. Let (a, b) be a magnet in a graph G, let H be an induced subgraph of G, and assume G is H-free. Then (a, b) is a vertex in H, and there are at least two adjacent vertices c and d in H that are not adjacent to a.

Proof: Let W denote the vertex set of H. If a does not belong to W, then a induces an H in G, a contradiction. So assume that a belongs to W. Define aW and consider the subgraph H induced by aW. If a dominates b, or b dominates a in H, then H or H induces a graph isomorphic to H in G, a contradiction. Hence H contains an induced H, which means that c and d are adjacent vertices of a that are not adjacent to a.

Definition 1. A graph H is a demagnetization (or d-demagnetization) of a graph G if

- H does not contain any magnet (or d-magnet), and
- there exists a sequence of graphs such that for a magnet (or d-magnet) in G.

It follows from Theorem 1 that if H is a demagnetization of G then
\[\alpha(H) = \alpha(G). \]
From now on, we will only consider the unweighted case. In the next
section, we study classes of graphs G such that the stability number
\(\alpha \) can be computed in polynomial time by finding the maximum stable set in a demagnetization H of G.

4. TWO POLYNOMIALLY SOLVABLE CASES

Given a graph G, we distinguish among three kinds of vertices; and are the extreme vertices of are the interior ones, and all other vertices in G are said to be exterior to .

A vertex v in a graph G is called special if each induced in G contains v as extreme vertex, and each induced in contains v as interior vertex. In particular, if neither G, nor contains an induced , then each vertex in G is special. Section 4.1 considers -free graphs that contain a special vertex; we show that a demagnetization H of such graphs G can be obtained so that the edge set of H is empty (hence, equals the number of vertices in H).

A flag is a graph obtained from a by adding a vertex adjacent to exactly one vertex of the . A gem is the graph obtained from a by adding a vertex adjacent to all four vertices of the . A diamond is a complete graph on four vertices minus one edge. A is the graph obtained from a complete graph on six vertices by removing a perfect matching in it. All these graphs are represented in Fig. 2. Let G be a -free, flag-free, gem-free and -free graph, let H be any d-demagnetization of G, and let L be any demagnetization of H; we prove in Section 4.2 that each connected component of L is either an isolated vertex, or else a.

![Figure 2](image)

\text{flag (a,b,c,d,e) gem (a,b,c,d,e) diamond (a,b,c,d) $3K_2(a,b,c,d,e,f)$}
4.1. On C_8-free graphs that contain a special vertex

Lemma 1. Let a be a special vertex in a C_8-free graph G, and let b be a vertex adjacent to a that minimizes $d(a,b)$. Then (a,b) is a magnet in G.

Proof: Argue by contradiction: assume (a,b) is not a magnet in G. Then G contains an induced C_8. Since $d(a,b)$ is smaller than or equal to the diameter of G, there exists a vertex c adjacent to b but not to a and b in G. Vertex c cannot be adjacent to d, else G contains an induced C_8. Hence, a is not an extreme vertex of G, a contradiction. Such a magnet is called an s-magnet. We now prove that if is an s-magnet in a C_8-free graph G, then G is also C_8-free and contains a special vertex.

Lemma 2. Let a be an s-magnet in a C_8-free graph G. Then G is C_8-free.

Proof: Argue by contradiction: assume G contains an induced C_8. We know by Property 1 that a belongs to G; we may assume a is not an extreme vertex of G, a contradiction. It follows that a is not an interior vertex of G, a contradiction.

Lemma 3. Let a be an s-magnet in a C_8-free graph G. Then a is a special vertex in G.

Proof: Argue by contradiction: assume first a is not an extreme vertex of an induced C_8 in G. Then a must belong to G, else a is an exterior vertex of G. But a cannot be equal to a, else G contains an induced C_8 in G, a contradiction. It follows that either a is not an extreme vertex of an induced C_8 in G, or else a is not an interior vertex of an induced C_8 in G, a contradiction.

Assume now a is not an interior vertex of an induced C_8 in G. Then a must belong to G, else a is exterior to G; we may assume a. It follows that contains an induced C_8 or in which a is not an interior vertex, a contradiction.
A demagnetization of a graph is called an s-demagnetization if only special magnets are used when applying transformation T. The following theorem is a direct consequence of Lemma 2 and Lemma 3.

Theorem 2. Let G be a -free graph that contains a special vertex, and let H be an s-demagnetization of G. Then H has an empty edge set.

Notice that if a special vertex in a graph G is isolated, then both G and are -free (since, otherwise, a would be an exterior vertex of any in G or). The following algorithm can therefore be used for computing the stability number of a -free graph that contains a special vertex.

<table>
<thead>
<tr>
<th>Input.</th>
<th>A -free graph G that contains a special vertex.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output.</td>
<td>The stability number of G.</td>
</tr>
</tbody>
</table>

1. Determine a special vertex a in G. Set H := .
2. While the edge set of H is not empty do
 - If a is an isolated vertex, then set a equal to any nonisolated vertex in H.
 - Determine a vertex b adjacent to a that minimizes |
 - Set .
3. Set equal to the number of vertices in H.

Finding a special vertex (if any) in a graph can be performed in time. Determining a vertex b adjacent to a that minimizes takes time. Given a magnet in H, the construction of takes time. Since the main loop is performed times, it follows that the above algorithm runs in time.

A graph G is called Meyniel [18] if each odd cycle in G with at least five vertices contains at least two chords. It is easy to observe that a graph G is -free, -free and -free if and only if both G and are Meyniel. Notice that each vertex in such a graph is special; hence, the first step of the above algorithm can be simplified. It therefore follows that if both G and are Meyniel, then the stability number of G can be computed in time by means of the above algorithm.

4.2. On -free, flag-free, gem-free and -free graphs

Lemma 4. Let G be a -free, flag-free, gem-free and -free graph that contains no d-magnet. Then G is diamond-free.
Proof: Argue by contradiction: assume G contains an induced diamond Δ. Since b does not dominate a, there is a vertex e in G adjacent to a but not to b. Vertex e cannot be adjacent to exactly one vertex among c and d else induces a gem in G.

We first show that e cannot be adjacent to both c and d. If this is the case, then there exists a vertex f adjacent to e but not to a in G (else e dominates a). Now f is adjacent to b else G contains an induced flag F, gem G or gem G. Also, f is neither adjacent to c, nor to d, else G contains an induced gem G, gem G or gem G. Since a does not dominate c, there exists a vertex g adjacent to c but not to a. Vertex g is not adjacent to b, else G contains an induced gem G, gem G or gem G. It follows that G contains an induced gem G, flag F, flag F or flag F, a contradiction.

So e is adjacent neither to a, nor to b. Up to this point, we have proved that any vertex that is adjacent to exactly one vertex among a and b is adjacent neither to c, nor to d. Now, since a does not dominate e, there exists a vertex f adjacent to e but not to a. Vertex f cannot be adjacent to c or d else f would not be adjacent to b (by the above observation) and G would contain an induced flag F, flag F or flag F. Since a does not dominate c, there exists a vertex g adjacent to c but not to a, and this implies that g is not adjacent to b (by the above observation). So, g is adjacent to e and f else G contains an induced G, flag F or flag F. Finally, G contains an induced flag F or flag F, a contradiction.

Corollary 1. Let G be a d-free, flag-free, gem-free and d-free graph. Let H be a d-demagnetization of G. Then G is d-free, flag-free and diamond-free.

Proof: H is an induced subgraph of G. Hence, this corollary directly follows from Lemma 4 and from the fact that a diamond is an induced subgraph of a gem and of a d-free graph.

Lemma 5. Let A be a magnet in a d-free, flag-free and diamond-free graph G. Then A is also d-free, flag-free and diamond-free.

Proof: The fact that A is diamond-free follows from Property 1. Notice also that if two vertices c and d are adjacent to A in G, then c is adjacent to d, else G contains an induced diamond Δ. It now remains to prove that H is d-free and flag-free. We argue by contradiction and assume first that H contains an induced G. According to Property 1 and the above observation,
only be equal to x or u. We may assume x. Now, neither a, nor b is adjacent to z in G, else G contains an induced diamond or diamond. So G contains an induced flag or flag, a contradiction.

So, we assume now H contains an induced flag. Again, according to Property 1 and to the above observation, can only be equal to x. Now, neither a nor b can be adjacent to z or u, else it induces a diamond in G. It follows that G contains an induced flag or flag, a contradiction.

Lemma 6. Let G be a P_5-free, flag-free and diamond-free connected graph containing an induced P_5. Then G is.

Proof: Argue by contradiction: let be an induced subgraph of and suppose . Since G is connected, we may assume that there is a vertex a in adjacent to z. Vertex a cannot be adjacent to both and G contains an induced diamond. We may assume that a is not adjacent to z. Now a is adjacent to else G contains an induced or flag. Hence, G contains an induced diamond or flag, a contradiction.

Theorem 3. Let G be a P_5-free, flag-free, gem-free and K_2-free graph, let H be a demagnetization of G and let L be a demagnetization of H. Then each connected component of L is either

(i) an isolated vertex, or
(ii) P_5

Proof: We know from Corollary 1 that H is P_5-free, flag-free and diamond-free. Hence, it follows from Lemma 5 that L is also P_5-free, flag-free and diamond-free.

Consider any connected component of L. We may assume that has a nonempty edge set, else is an isolated vertex and nothing has to be proved. So let a and b be two adjacent vertices in L. Since is not a magnet in there is an induced in . Now, since is not a magnet in, there is an induced in (vertex e is possibly equal to b). It follows that f is not adjacent to b in , else it contains an induced flag, flag, or diamond. Also, f is adjacent to d in, else it contains an induced . It follows that contains an induced , which means that , by Lemma 6.
It follows from the above theorem that the stability number of \(P \)-free, flag-free, gem-free and \(K \)-free graphs can be computed in polynomial time by means of the following algorithm.

Input. A \(P \)-free, flag-free, gem-free and \(K \)-free graph.

Output. The stability number \(\alpha(G) \) of \(G \).

1. Set \(H \):
 While \(H \) contains a \(d \)-magnet do
 Choose any \(d \)-magnet \((a,b) \) in \(H \) and set \((a,b) \) in \(H \).

2. Set \(L \):
 While \(L \) contains a magnet do
 Choose any magnet \((a,b) \) in \(L \) and set \((a,b) \) in \(L \).

3. Let \(n \) and \(c \) be the number of vertices and the number of induced \(5 \)-cliques in \(L \), respectively. Set \(\alpha(G) \) equal to \(cn \).

Finding a magnet or a \(d \)-magnet (if any) in a graph can be performed in \(O(|V(G)|) \) time. Since at most \(|V(G)| \) magnets are determined in Steps 1 and 2, the above algorithm runs in \(O(|V(G)|^2) \) time.

Let \(G \) be an arbitrary graph, and let \(L \) be the graph resulting from the application on \(G \) of Steps 1 and 2 of the above algorithm. If each connected component of \(L \) is either an isolated vertex, or a \(5 \)-clique, then Step 3 can be applied on \(L \) in order to compute the stability number of \(G \). According to Theorem 3, such a situation necessarily occurs if \(G \) is \(P \)-free, flag-free, gem-free and \(K \)-free. It can, however, also occur for other kinds of graphs. For example, if \(G \) is a flag, then \(L \) contains exactly three isolated vertices, which means that the stability number of a flag is three. There is therefore no need to design a recognition algorithm for \(P \)-free, flag-free, gem-free and \(K \)-free graphs. It is more interesting to apply Steps 1 and 2 of the above algorithm to any given graph \(G \), and to check whether the reduced graph \(L \) has the desired structure.

5. CONCLUDING REMARKS

One of the aims of this paper was to prove that Boolean methods can suggest graph theoretical procedures. We have studied a simplification on posiforms which, when applicable, amounts to reducing the size of the corresponding conflict graph while preserving its stability number. We have described in section 4 classes of graphs \(G \) for which such a transformation leads to a polynomial algorithm for the computation of \(\alpha(G) \).
Let CC be a class of graphs for which the stability number can be determined in polynomial time. Future research in the use of transformation T would be to characterize those graphs G that admit a demagnetization H with $CC \in H$. We could for example choose CC as being the class of claw-free graphs \cite{19, 20}. Notice that given any magnet in a claw-free graph G, the graph is also claw-free, by Property 1.

REFERENCES

\begin{itemize}
 \item \cite{4} De Simone, C., and Sassano, A., "Stability number of bull ae and chair-free graphs", Discrete Applied Mathematics, 41(1993) 121-129.
 \item \cite{7} Golumbic, M.C., and Hammer, P.L., "Stability in circular arc graphs", RUTCOR Research Report 12-86, Rutgers University, 1986.
 \item \cite{12} Hertz, A., "Quelques utilisations de la struction", Discrete Mathematics, 59 (1986) 79-89.
 \item \cite{14} Hertz, A., "On the use of Boolean methods for the computation of the stability number", Discrete Applied Mathematics, 76 (1997) 183-203.
 \item \cite{15} Hertz, A., and De Werra, D., "On the stability number of AH-free graphs", Journal of Graph Theory, 17/1 (1993) 53-63.
 \item \cite{18} Meyniel, H., "On the perfect graph conjecture", Discrete Mathematics, 16 (1976) 339-342.
 \item \cite{20} Sbihi, N., "Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans Ooile", Discrete Mathematics, 29 (1980) 53-76.
\end{itemize}