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1. INTRODUCTION

In the present paper all graphs will be assumed simple (no loops and no
multiple edges are allowed). A set S of vertices in a graph ),( EVG = is stable if no two
vertices in S are linked by an edge. The maximum size of a stable set in graph G is
denoted by )(Gα  and is called the stability number of G. For a weighted graph G, the

maximum weight of a stable set in G is denoted )(GWα .

Given a positive integer k, finding whether an arbitrary graph contains a
stable set with at least k vertices is NP-complete [6]. However, there are special classes
of graphs for which )(Gα can be computed in polynomial time [e.g. 1, 3, 4, 7, 8, 9, 10,
12, 13, 14, 15, 16, 17, 19, 20].

In some cases, Boolean methods can suggest graph theoretical procedures.
Ebenegger, Hammer and de Werra [5] have described the relationship between the
maximization of a pseudo-Boolean function and the determination of a stable set

                                                          
* The Boolean transformation studied in this paper as well as the definition of a magnet are due to
Peter L. Hammer. I would like to thank him for having encouraged me to demonstrate the
potentiality of such a transformation.
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having maximum weight in a graph. This relation is summarized in Section 2. In the
same paper, Ebenegger et al. consider the computation of the stability number )(Gα  of
a graph ),( EVG =  (unweighted case) and describe the transformation of the
corresponding pseudo-Boolean function which amounts to constructing another graph
G ′  with 1−=′ )()( GG αα . By repeatedly applying this construction, one may compute

)(Gα  (in at most ||)( VG ≤α  steps). Unfortunately, the number of vertices is generally

increasing when the transformation is applied. However, specialized versions of this
construction have provided polynomial algorithms for some classes of graphs [7, 9, 10,
12]. Recently, a different Boolean transformation has been studied in [14].

In order to compute the stability number )(Gα of a graph ),( EVG = , we study
in Section 3 a simplification of the corresponding pseudo-Boolean function; the
transformation, when applicable, amounts to constructing another graph ),( EVG ′′=′
with 1−=′ |||| VV  and )()( GG αα =′ . It is based on the Boolean equality xyxxy =+ .

In Section 4, we describe classes of graphs for which the stability number can
be computed in polynomial time by using the above transformation.

A graph ),( EVG = is bipartite if the vertex set V can be partitioned into two

sets 1V  and 2V  such that each edge of E has one endpoint in 1V  and the other in 2V ;

we shall denote such a graph by )),,(( EVVG 21= . A bipartite graph )),,(( EVVG 21=  is

complete if each vertex in 1V  is adjacent to all vertices of 2V .

A chordless cycle, or chain, on k vertices is denoted ),,( kk vvC !1 , or

),,( kk vvP !1  (or kC  and kP  for short).

For a vertex x in graph G, we denote by )(xNG  the set of vertices which are

adjacent to x in G. Graph G is called H-free if none of its induced subgraphs are
isomorphic to H.

For two sets A and B, BA \  denotes the set of elements which are in A but not
in B. The weight of a set of vertices is the total weight of its elements.

The graph theoretical terms not defined here are borrowed from [2] while for
pseudo-Boolean definitions, the reader is referred to [11].

2. PSEUDO-BOOLEAN FUNCTIONS AND CONFLICT GRAPHS

It is known that a pseudo-Boolean function f can always be written in a
polynomial form, i.e.,

∑
=

+=
p

i
iin TwKxxf

1
1 ),,( !

where ∏∏
∈∈

=
ii Bk

k
Aj

ji xxT with },,{, nBA ii !1⊆  and 0/=∩ ii BA .
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If all )( piwi ≤≤1  are strictly positive and 0=K , we say that f is a posiform.

To a posiform f we associate a weighted conflict graph ),( EVG =  defined as follows:

},,{ pV !1=  and each vertex i has a weight iw ,

))}()((|],{[ ijji BABAkjiE ∩∪∩∈∃= .

Hence, two vertices i and j of G are linked by an edge if kx  appears in iT  (or

jT ) while kx  appears in jT  (or iT ). It is clear from the definition of G that the

maximum value of f is equal to the maximum weight )(Gwα  of a stable set in G.

Conversely, for each graph G with positive weights uw  associated with each

vertex u of G, there exist posiforms f such that G is the conflict graph of f [5]. Indeed,
consider an arbitrary covering of the edge set of G by complete bipartite partial
subgraphs )),,(( iiii EVVG

21
 of G , qi ,,!1= . Notice that qGG ,,!1  are partial, but

not necessarily induced subgraphs of G. Then set:

∑
∈

=
Vu

uuTwf

where 

∈∈ uuBkkAj juxxT

with 

}|{1iuVuiA∈

, 

}|{2iuVuiB∈

.

Let 

uT

 and 

vT

 be two terms of the posiform f such that 

ix

 appears in 

uT

and 

ix

 appears in 

vT

. Then 

1iVu∈

 and 

2iVv∈

. Hence, u is adjacent to v in 

iG

,

showing that G is the conflict graph associated with f.

3. MAGNETS IN GRAPHS

A magnet in a graph 

),( EVG

 is defined as a pair (a, b) of adjacent vertices
with the same weight and such that each vertex in 

)(\)( bNaNGG

 is adjacent to each

vertex in 

)(\)( aNbNGG

. In other words, the two endpoints of an edge induce a

magnet in a graph G if and only if this edge is not the middle edge of any 

4P

 in G.

Given a magnet (a, b) in a graph G, we consider a new graph, denoted

)),(,( baGT

, and obtained from G by replacing vertices a and b by a new vertex 

ab

having the same weight as a and b, and linked to every common neighbor of a and b in
G. This transformation is illustrated in Fig. 1.

The following theorem states that the maximum weight of a stable set in G is
not modified by transformation 

T

.
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Figure 1.Figure 1.Figure 1.Figure 1.

Theorem 1.Theorem 1.Theorem 1.Theorem 1. Let 

),( ba

 be a magnet in a weighted graph 

),( EVG

. Then

) ) ),(,(()( baGGwwT
αα

.

Proof: Proof: Proof: Proof: We shall give two proofs of this theorem, a Boolean and a graph theoretical one.

Boolean proof:Boolean proof:Boolean proof:Boolean proof:
The edges incident to a or b can be covered by the two following complete bipartite
partial subgraphs 

1G

 and 

2G

 of G:

)),,((111121EVVG

 with 

)(\)( aNbNVGG11

 and 

)(\)( bNaNVGG21

,

)),,((222221EVVG

 with 

},{baV12

 and 

)()( bNaNVGG∩22

.

Consider now any covering of the edges in 

)(\ 21EEE∪

 by complete bipartite

partial subgraphs 

qGG,,!3

. The graphs 

qGG,,!1

 cover all the edges of E and the

associated posiform 

∑∈ VvvvTwf

 satisfies 

21xxTa

 and 

21xxTb

. Hence,

2211xxxxTTba++ )(

. It follows that f has the same maximum value as the

posiform 

∑∈ +},{\baVvavvxwTwg2

. This means that the conflict graph 

),( EVG

associated with g satisfies 

)()( GGwwαα

 and 

1|||| VV

.

But 

G

 is obtained from G by removing vertices a and b, and by adding a new
vertex of weight 

aw

 linked to every vertex v such that 

2x

 appears in 

vT

. Since 

2x

appears in 

vT

 if and only if 

)()(bNaNVvGG∩∈22

, it follows that 

)),(,( baGGT

.

Graph theoretical proof:Graph theoretical proof:Graph theoretical proof:Graph theoretical proof:
Denote 

)),(,( baGGT

 and consider any stable set S in G. If a or b belongs to S then

}{}),{\( abbaS∪

 is stable in 

G

 and the weight 

)( Sw

 of S is equal to the weight 

)(Sw

of 

S

. Otherwise S is stable in 

G

. This proves that 

)()( GGww≤ αα

.
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In order to show that 

)()( GGww≥ αα

, consider any stable set 

S

 in 

G

 and

define 

)(\)( bNaNAGG

, 

)(\)( aNbNBGG

 and 

)()( bNaNCGG∩

:

− if 

ab

 does not belong to 

S

 then 

S

 is stable in G;

− if 

ab

 belongs to 

S

 while 

)( 0/∩AS

 then 

}{}){\( aabSS∪

 is stable in G and

)()( SwSw

.

− if 

ab

 belongs to 

S

 while 

)( 0/≠∩AS

, then both 

BS∩

 and 

CS∩

 are empty.

Hence, 

}{}){\( babSS∪

 is stable in G and 

)()( SwSw

.                ❑

In a graph G, we say that some vertex a dominates some vertex b if

}){)(()( aaNbNGG∪⊆

. It is well known that if a graph G contains two adjacent

vertices a and b such that a dominates b, then the graph obtained from G by removing
vertex a has a stability number equal to 

)(Gα

. This is in fact a corollary of Theorem 1.

Indeed, in this case, all weights are equal to one (unweighted case) and

}{)(\)( aaNbNGG

. Hence, (a, b) is a magnet in G and the neighbors of 

ab

 in

)),(,( baGT

 are exactly those of b in G. Therefore, 

)),(,( baGT

 is the graph obtained

from G by removing vertex a.

Let a and b be two adjacent vertices in a graph G. If a dominates b, we say that

),( ba

 is a d-magnet in G. Notice that if (a, b) is a d-magnet in a graph G, then

)),(,( baGT

 is always an induced subgraph of G. This is not necessarily the case for all
magnets in G. However, we can state the following property.

Property 1. Property 1. Property 1. Property 1. Let (a, b) be a magnet in a graph G, let H be an induced subgraph of

)),(,( baGT

, and assume G is H-free.

Then 

ab

 is a vertex in H, and there are at least two adjacent vertices c and d in H that

are not adjacent to 

ab

.

Proof: Proof: Proof: Proof: Let 

HV

 denote the vertex set of H. If 

ab

 does not belong to 

HV

, then 

HV

induces an H in G, a contradiction. So assume that 

ab

 belongs to 

HV

. Define

},{}){\( baabVWHH∪

 and consider the subgraph 

G

 of G induced by 

HW

. If a

dominates b, or b dominates a in 

G

, then 

}{\aWH

 or 

}{\bWH

 induces a graph

isomorphic to H in G, a contradiction. Hence 

G

 contains an induced 

),,,( dcbaC4

,

which means that c and d are adjacent vertices of 

HV

 that are not adjacent to 

ab

. ❑

Definition 1. Definition 1. Definition 1. Definition 1. A graph H is a demagnetization (or d-demagnetization) of a graph G if

− H does not contain any magnet (or d-magnet), and
− there exists a sequence 

HGGGq,,!1

 of graphs such that 

)),(,( iiii baGGT+1

for a magnet (or d-magnet) 

),( ii ba

 in 

),,( 11qiGi!

.
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It follows from Theorem 1 that if H is a demagnetization of G then

)()( HGwwαα

. From now on, we will only consider the unweighted case. In the next

section, we study classes of graphs G such that the stability number 

)(Gα

 can be
computed in polynomial time by finding the maximum stable set in a demagnetization
H of G.

4. TWO POLYNOMIALLY SOLVABLE CASES

Given a 

),,( kkvvP!1

 in a graph G, we distinguish among three kinds of

vertices; 

1v

 and 

kv

 are the extreme vertices of 

12kkvvP,,,!

 are the interior ones,

and all other vertices in G are said to be exterior to 

kP

.

A vertex v in a graph G is called special if each induced 

5P

 in G contains v as

extreme vertex, and each induced 

5P

 in 

G

 contains v as interior vertex. In particular,

if neither G, nor 

G

contains an induced 

5P

, then each vertex in G is special. Section

4.1 considers 

5C

-free graphs that contain a special vertex; we show that a

demagnetization H of such graphs G can be obtained so that the edge set of H is empty
(hence, 

)(Gα

 equals the number of vertices in H).

A flag is a graph obtained from a 

4C

 by adding a vertex adjacent to exactly

one vertex of the 

4C

. A gem is the graph obtained from a 

4P

 by adding a vertex

adjacent to all four vertices of the 

4P

. A diamond is a complete graph on four vertices

minus one edge. A 

23K

 is the graph obtained from a complete graph on six vertices by

removing a perfect matching in it. All these graphs are represented in Fig. 2. Let G be a

5P

-free, flag-free, gem-free and 

23K

-free graph, let H be any d-demagnetization of G,

and let L be any demagnetization of H; we prove in Section 4.2 that each connected
component of L is either an isolated vertex, or else a 

5C

.

Figure 2.Figure 2.Figure 2.Figure 2.
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4.1. On 4.1. On 4.1. On 4.1. On CCCC5555-free graphs that contain a special vertex-free graphs that contain a special vertex-free graphs that contain a special vertex-free graphs that contain a special vertex

Lemma 1. Lemma 1. Lemma 1. Lemma 1. Let a be a special vertex in a 

5C

-free graph G, and let b be a vertex adjacent

to a that minimizes 

|)()(| bNaNGG∪

. Then (a, b) is a magnet in G.

Proof: Proof: Proof: Proof: Argue by contradiction: assume 

),( ba

 is not a magnet in G. Then G contains an
induced 

),,,( dbacP4

. Since 

|)()(| bNaNGG∪

is smaller than or equal to

|)()(| cNaNGG∪

, there exists a vertex e adjacent to c but not to a and b in G. Vertex e

cannot be adjacent to d, else G contains an induced 

),,,,( dbaceC5

. Hence, a is not an

extreme vertex of 

),,,,( dbaceP5

 in G, a contradiction. ❑

Such a magnet is called an s-magnet. We now prove that if 

),( ba

 is an s-

magnet in a 

5C

-free graph G, then 

)),(,( baGT

 is also 

5C

-free and contains 

ab

 as a

special vertex.

Lemma 2. Lemma 2. Lemma 2. Lemma 2. Let 

),( ba

 be an s-magnet in a 

5C

-free graph G. Then 

)),(,( baGT

 is

5C

-free.

Proof: Proof: Proof: Proof: Argue by contradiction: assume 

)),(,( baGT

 contains an induced 

),,( 515vvC!

.

We know by Property 1 that 

ab

 belongs to 

},,{51vv!

; we may assume 

1vab

. Now a

must be adjacent to exactly one vertex among 

3v

 and 

4v

, else G contains an induced

),,,,( 54325vvvvaC

 or 

),,,,( 54325vvvvbC

; we may assume a is adjacent to 

3v

. It

follows that a is not an interior vertex of 

),,,,( 35245vvvvaP

 in 

G

, a contradiction.
                 ❑

LemmaLemmaLemmaLemma 3. 3. 3. 3. Let 

),( ba

 be an s-magnet in a 

5C

-free graph G. Then 

ab

 is a special vertex

in 

)),(,( baGT

.

Proof: Proof: Proof: Proof: Argue by contradiction: assume first 

ab

 is not an extreme vertex of an induced

),,( 515vvP!

 in 

)),(,( baGHT

. Then 

ab

 must belong to 

},,{432vvv

, else a is an

exterior vertex of 

),,( 515vvP!

 in G. But 

ab

 cannot be equal to 

3v

, else G contains an

induced 

),,,,( 54215vvavvP

 or 

),,,,( 54215vvbvvP

 in which a is not an extreme vertex;

we may assume 

2vab

. It follows that either a is not an extreme vertex of an induced

),,,,( 54315vvvavP

 or 

),,,,( 54315vvvbvP

 in G, or else a is not an interior vertex of an

induced 

),,,,( bvvvaP5145

 or 

),,,,( bvvvaP4155

 in 

G

, a contradiction.

Assume now 

ab

 is not an interior vertex of an induced 

),,( 515vvP!

 in 

H

.

Then 

ab

 must belong to 

},{51vv

, else a is exterior to 

),,( 515vvP!

 in 

G

; we may

assume 

1vab

. It follows that 

G

 contains an induced 

),,,,( 54325vvvvaP

 or

),,,,( 54325vvvvbP

 in which a is not an interior vertex, a contradiction. ❑



8 A. Hertz / On a Graph Transformation that Preserves the Stability Number

A demagnetization of a graph is called an s-demagnetization if only special
magnets are used when applying transformation 

T

. The following theorem is a direct
consequence of Lemma 2 and Lemma 3.

Theorem 2. Theorem 2. Theorem 2. Theorem 2. Let G be a 

5C

-free graph that contains a special vertex, and let H be an s-

demagnetization of G. Then H has an empty edge set.

Notice that if a special vertex in a graph G is isolated, then both G and 

G

 are

5P

-free (since, otherwise, a would be an exterior vertex of any 

5P

 in G or 

G

). The

following algorithm can therefore be used for computing the stability number of a 

5C

-

free graph that contains a special vertex.

Input.Input.Input.Input.  A 

5C

- free graph G that contains a special vertex.

Output. Output. Output. Output. The stability number 

)(Gα

 of G.

1. Determine a special vertex a in G. Set 

GH:

.

2. While the edge set of H is not empty do
If a is an isolated vertex, then set a equal to any nonisolated vertex in H.
Determine a vertex b adjacent to a that minimizes 

|)()(| bNaNGG∪

Set 

)),(,(: baHHT

.

3. Set 

)(Gα

 equal to the number of vertices in H.

Finding a special vertex a (if any) in a graph 

),( EVG

 can be performed in

)|(|5VO

 time. Determining a vertex b adjacent to a that minimizes 

|)()(| bNaNGG∪

takes 

)|(|2VO

 time. Given a magnet 

),( ba

 in H, the construction of 

)),(,( baHT

 takes

|)(|VO

 time. Since the main loop is performed 

)(|| GVα

 times, it follows that the

above algorithm runs in 

)|(|5VO

 time.

A graph G is called Meyniel [18] if each odd cycle in G with at least five
vertices contains at least two chords. It is easy to observe that a graph G is 

5C

-free,

5P

-free and 

5P

-free if and only if both G and 

G

 are Meyniel. Notice that each vertex

in such a graph is special; hence, the first step of the above algorithm can be simplified.
It therefore follows that if both G and 

G

 are Meyniel, then the stability number 

)(Gα

of G can be computed in 

)|(|3VO

 time by means of the above algorithm.

4.2. On 4.2. On 4.2. On 4.2. On PPPP5 5 5 5 -free, flag-free, gem-free and -free, flag-free, gem-free and -free, flag-free, gem-free and -free, flag-free, gem-free and 

2
2 2
23

3 3
3 K
K K
K

-free graphs-free graphs-free graphs-free graphs

Lemma 4. Lemma 4. Lemma 4. Lemma 4. Let G be a 

5P

-free, flag-free, gem-free and 

23K

-free graph that contains no

d-magnet. Then G is diamond-free.
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Proof: Proof: Proof: Proof: Argue by contradiction: assume G contains an induced diamond

),,,( dcba

.
Since b does not dominate a, there is a vertex e in G adjacent to a but not to b. Vertex e
cannot be adjacent to exactly one vertex among c and d else 

},,,,{edcba

 induces a gem
in G.
We first show that e cannot be adjacent to both c and d. If this is the case, then there
exists a vertex f adjacent to e but not to a in G (else a dominates e). Now f is adjacent to
b else G contains an induced flag

),,,,( dbcef

, gem

),,,,( cbaef

 or gem

),,,,( dbaef

. Also,
f is neither adjacent to c, nor to d, else G contains an induced gem

),,,,( bdacf

,

gem

),,,,( bcadf

 or 

),,,,,( fadbceK23

. Since a does not dominate c, there exists a

vertex g adjacent to c but not to a. Vertex g is not adjacent to b, else G contains an

induced gem

),,,,( bdacg

, gem

),,,,( deabg

 or 

),,,,,( gadbceK23

. It follows that G

contains an induced gem

),,,,( cgeab

, flag

),,,,( edbcg

, flag

),,,,( dgcef

 or
flag

),,,,( cadgf

, a contradiction.

So e is adjacent neither to a, nor to b. Up to this point, we have proved that any vertex
that is adjacent to exactly one vertex among a and b is adjacent neither to c, nor to d.
Now, since a does not dominate e, there exists a vertex f adjacent to e but not to a.
Vertex f cannot be adjacent to c or d else f would not be adjacent to b (by the above
observation) and G would contain an induced flag

),,,,( cfead

, flag

),,,,( dfeac

 or
flag

),,,,( cbdfe

.

Since a does not dominate c, there exists a vertex g adjacent to c but not to a,
and this implies that g is not adjacent to b (by the above observation). So, g is adjacent
to e and f else G contains an induced 

),,,,( gcaefP5

, 

),,,,( gfeadP5

, flag

),,,,( gcaef

 or

flag

),,,,( dgcae

. Finally, G contains an induced flag

),,,,( cgead

 or flag

),,,,( dbcge

, a

contradiction.      ❑

Corollary 1. Corollary 1. Corollary 1. Corollary 1. Let G be a 

5P

-free, flag-free, gem-free and 

23K

-free graph. Let H be a d-

demagnetization of G. Then G is 

5P

-free, flag-free and diamond-free.

Proof:Proof:Proof:Proof: H is an induced subgraph of G. Hence, this corollary directly follows from
Lemma 4 and from the fact that a diamond is an induced subgraph of a gem and of a

23K

. ❑

Lemma 5. Lemma 5. Lemma 5. Lemma 5. Let 

),( ba

 be a magnet in a 

5P

-free, flag-free and diamond-free graph G.

Then 

)),(,( baGT

 is also 

5P

-free, flag-free and diamond-free.

Proof: Proof: Proof: Proof: The fact that 

)),(,( baGT

 is diamond-free follows from Property 1. Notice also

that if two vertices c and d are adjacent to 

ab

 in 

)),(,( baGHT

 then c is adjacent to
d, else G contains an induced diamond

),,,( dcba

. It now remains to prove that H is 

5P

-

free and flag-free. We argue by contradiction and assume first that H contains an

induced 

),,,,( utzyxP5

. According to Property 1 and the above observation, 

ab

 can
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only be equal to x or u. We may assume 

xab

. Now, neither a, nor b is adjacent to z in
G, else G contains an induced diamond

),,,( zbya

 or diamond

),,,( zayb

. So G contains
an induced 

),,,,( utzyaP5

, 

),,,,( utzybP5

, fiag

),,,,( ayztu

 or flag

),,,,( byztu

, a

contradiction.

So, we assume now H contains an induced flag

),,,,( utzyx

. Again, according to

Property 1 and to the above observation, 

ab

 can only be equal to x. Now, neither a nor
b can be adjacent to z or u, else 

},,,{zyba

 or 

},,,{uyba

 induces a diamond in G. It
follows that G contains an induced flag

),,,,( utzya

 or flag

),,,,( utzyb

, a contradiction.
 ❑

Lemma 6. Lemma 6. Lemma 6. Lemma 6. Let G be a 

5P

-free, flag-free and diamond-free connected graph containing

an induced 

5C

. Then G is 

5C

.

Proof: Proof: Proof: Proof: Argue by contradiction: let 

),,( 515vvC!

 be an induced subgraph of 

),( EVG

and suppose 

},,{51vvV!≠

. Since G is connected, we may assume that there is a

vertex a in 

},,{\ 51vvV!

 adjacent to 

1v

. Vertex a cannot be adjacent to both 

2v

and

5v

 else G contains an induced diamond

),,,( 521vvav

. We may assume that a is not

adjacent to 

5v

. Now a is adjacent to 

3v

 else G contains an induced 

),,,,( avvvvP15435

or flag

),,,,( avvvv1543

. Hence, G contains an induced diamond

),,,( 312vvav

 or

flag

),,,,( avvvv3215

, a contradiction. ❑

Theorem 3. Theorem 3. Theorem 3. Theorem 3. Let G be a 

5P

-free, flag-free, gem-free and 

23K

-free graph, let H be a d-

demagnetization of G and let L be a demagnetization of H. Then each connected
component of L is either

(i) an isolated vertex, or

(ii) a 

5C

.

Proof: Proof: Proof: Proof: We know from Corollary 1 that H is 

5P

-free, flag-free and diamond-free.

Hence, it follows from Lemma 5 that L is also 

5P

-free, flag-free and diamond-free.

Consider any connected component 

L

 of L. We may assume that 

L

 has a
nonempty edge set, else 

L

 is an isolated vertex and nothing has to be proved. So let a
and b be two adjacent vertices in 

L

. Since 

),( ba

 is not a magnet in 

L

 there is an

induced 

),,,( dbacP4

 in 

L

. Now, since 

),( ca

 is not a magnet in 

L

, there is an

induced 

),,,( fcaeP4

 in 

L

 (vertex e is possibly equal to b). It follows that f is not

adjacent to b in 

L

, else 

L

 contains an induced flag

),,,,( bfcae

, flag

),,,,( fcabd

,

),,,,( dfcaeP5

 or diamond

),,,( dabe

. Also, f is adjacent to d in 

L

 else 

L

 contains an

induced 

),,,,( dbacfP5

. It follows that 

L

 contains an induced 

),,,,( dbacfC5

, which

means that 

),,,,( dbacfCL5

, by Lemma 6. ❑
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It follows from the above theorem that the stability number of 

5P

-free, flag-

free, gem-free and 

23K

-free graphs can be computed in polynomial time by means of

the following algorithm.

Input.Input.Input.Input.  A 

5P

-free, flag-free, gem-free and 

23K

-free graph.

Output.Output.Output.Output. The stability number 

)(Gα

 of G.

1. Set 

GH:

.
While H contains a d-magnet do

Choose any d-magnet 

),( ba

 in H and set 

)),(,(: baHHT

.

2. Set 

HL:

.
While L contains a magnet do

Choose any magnet 

),( ba

 in L and set 

)),(,(: baLLT

.

3. Let n and c be the number of vertices and the number of induced 

5C

 in L,

respectively. Set 

)(Gα

 equal to 

cn3

.

Finding a magnet or a d-magnet (if any) in a graph 

),( EVG

 can be

performed in 

)|(|4VO

 time. Since at most 

)(|| GVα

 magnets are determined in Steps

1 and 2, the above algorithm runs in 

)|(|5VO

 time.

Let G be an arbitrary graph, and let L be the graph resulting from the
application on G of Steps 1 and 2 of the above algorithm. If each connected component
of L is either an isolated vertex, or a 

5C

, then Step 3 can be applied on L in order to

compute the stability number of G. According to Theorem 3, such a situation

necessarily occurs if G is 

5P

-free, flag-free, gem-free and 

23K

-free. It can, however,

also occur for other kinds of graphs. For example, if G is a flag, then L contains exactly
three isolated vertices, which means that the stability number of a flag is three. There
is therefore no need to design a recognition algorithm for 

5P

-free, flag-free, gem-free

and 

23K

-free graphs. It is more interesting to apply Steps 1 and 2 of the above

algorithm to any given graph G, and to check whether the reduced graph L has the
desired structure.

5. CONCLUDING REMARKS

One of the aims of this paper was to prove that Boolean methods can suggest
graph theoretical procedures. We have studied a simplification on posiforms which,
when applicable, amounts to reducing the size of the corresponding conflict graph while
preserving its stability number. We have described in section 4 classes of graphs G for
which such a transformation leads to a polynomial algorithm for the computation of

)(Gα

.
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Let 

CC

be a class of graphs for which the stability number can be determined in
polynomial time. Future research in the use of transformation 

T

 would be to
characterize those graphs G that admit a demagnetization H with 

CC∈H

. We could for
example choose 

CC

 as being the class of claw-free graphs [19, 20]. Notice that given any
magnet 

),( ba

 in a claw-free graph G, the graph 

)),(,( baGT

 is also claw-free, by
Property 1.
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