Yugoslav Journal of Operations Research
9 (1999), Number 2, 285-300

SYMBOLIC IMPLEMENTATION OF THE HOOKE-JEEVES
METHOD®

Predrag S. STANIMIROVIC, Milan B. TASIC, Miroslav RISTIC

Unuwversity of Nis, Faculty of Philosophy,
Department of Mathematics, Cirila i1 Metodija 2,
18000 Nis, Yugoslavia

Abstract: In this paper we describe the symbolic implementation of various
modifications of the Hook-Jeeves method in the programming language
MATHEMATICA. A few numerical results are reported as well as several graphical
illustrations.

Keywords: Hook-Jeeves method, MATHEMATICA, symbolic computation.

1. INTRODUCTION

The Hooke-Jeeves method 1s a well-known method for wunconstrained
minimization. It does not use derivatives. Three modifications of this method are

described in (2], [6], [8], [17].

Computational systems for the numerical implementation of optimization
methods are known. They are written in procedural programming languages, mainly in
FORTRAN |2], [6], |9]: [14] and C [11]. But, procedural programming languages are not
convenient for the symbolic implementation of optimization methods. Two
modifications of the Hooke-Jeeves method can be used as typical examples.

In this paper we investigate the application of the symbolic computation of the
programming language MATHEMATICA in the implementation of the Hooke-Jeeves
method. The notion of the symbolic implementation of optimization methods assumes
the possibility of using symbolic computation in the implementation of these methods.
For example, symbolic computation in MATHEMATICA is described in |3], [5], [10],

*1991 Mathematics Subject Classification. 90C30, 68N15.

286 P. Stanimirovic, M. Tasi¢, M. Risti¢ / Symbolic Implementation

[15], [16]. From the symbolic computation available in MATHEMATICA we use mainly
the following:

algebraic manipulations, which include computations with symbols and
operations on algebraic expressions;

manipulating equations, which means the solution to various equations and
the elimination of unknown variables;

symbolic differentiation;

the application of transformation rules in the following form:

expr/.lhs—>rhs apply a transformation rule to expr,
expr/. {lhs1—>rhsl, lhs2—>rhs2,...} apply a sequence of rules to expr.

MATHEMATICA is the world's only fully integrated environment for technical
computing [15], [16]. It incorporate a range of programming paradigms, such as the
following: procedural programming, list-oriented programming, functional
programming, rule-based programming, object oriented programming, string-based
programming, and mixed programming paradigms [3], [5], [10], [15], [16]. Hence, by
means of MATHEMATICA, we can write every program in its most natural way.

_ The paper is organized as follows. In the second section we describe three
varieties of the Hooke-Jeeves method. The third section describes the. symbolic
implementation of these methods. In the last section we develop several numerical
examples and graphical illustrations.

2. DESCRIPTION OF THE METHOD AND MOTIVATION

For the sake of completeness, we shall briefly describe the Hooke-Jeeves
method for unconstrained optimization 2], [6], |8], [17]. Generally, the Hooke-Jeeves

algorithm consists of two major phases: an "exploratory search" around the base point
and a "pattern search" in a direction selected for minimization.

The original Hooke-Jeeves method is introduced in [7] and is also described in
6] and [17].

Step 1. Initial values for all coordinates of some point x, =xp must be

provided as well as the initial incremental change o .

Step 2. Then a type 1 exploratory search is performed. Each variable is
changed 1n rotation, one at a time, by incremental amounts, until the parameters have
been properly changed.

P. Stanimirovié, M. Tasi¢, M. Ristié¢ / Symbolic Implementation 287

More precisely, in the kth step, in the "basic point" x5 = (x{’” xi,’”) let xﬁ"’ |

be changed by some amount &, so that x*"" = x!* 4+ 5 _If the value Q(x) is improved,

then x;’“ +0 1s adopted as the new element in xf; . Otherwise, x‘,"” 1s changed by -0 |,

and the value of the objective function Q(x) is checked again. If the value of Q(x) is

not improved by either +o , then we keep the old value of the coordinate x{'”. Then

xgk) 1s changed by some amount +o6 , and so on, until all the independent variables

have been changed and the exploratory search is completed. For each step or move in
an independent variable, the value of the objective function is compared with the value
at the previous point. If the objective function is improved for the given step, then the
old value of the objective function is replaced by the new value of the objective function.
Otherwise, if the step is unsuccessful, the old value is retained.

In this way, the type I exploratory search is finished when the search is

performed using each of the independent variables. This produces a new basic point

=T,

Step 3. After making one (or more) exploratory searches, a "pattern search” 1s

made. A new point £, defined by

tgw =x"g' +(xlgl —x';‘f;) (2.1)
must be formed. Then the first successful point from t[’;"z defines a new basic point
X5 <.

Step 4. An exploratory search conducted after a pattern search 1s termed a
type II exploratory search. The success or failure of a pattern search is established after
the type Il exploratory search is completed.

A. If Q(x) is not improved after the type Il exploratory search, the pattern
search is said to fail. Then the step o is reduced gradually.

B. If Q(x) is improved after the type Il exploratory search, the last point
produced by the type 1I exploratory search is termed the new "basic point" x; *.
Step 5. The process is terminated when the value of variable ¢ is less than a

small prespecified number.
An alternative to equation (2.1) is to solve a one-dimensional problem in the

: , ; k+2 _
direction x5 - x5 in order to generate a new basic point /; =8

oY i +h(xk -x3), (2.2)

288 P. Stanimirovié, M. Tasi¢, M. Risti¢ / Symbolic Implementation

where step £, 1s defined by

D= mhinF(h) = n}'inQ(xf{] +h(xy ! -x5)). (2.3)

The optimal value A, of step h can be computed using an arbitrary unidimensional

optimization method. This is the essence of the first modification of the Hooke-Jeeves
method.

The second modification of the Hooke-Jeeves method is described in [2]. Let
d,.....d, be any selected appropriate vectors. Then the major steps in this

modification are as follows:

Step 1. Initial values: Select a real number & > 0, initial point x; and set the initial

values £ =0.y; = x; .
Step 2. Exploratory search: For each 7 =1.....n compute

¥ =Yi +4;d; , where 4, = minG(A) = mn Q(y; +4d;) . (2.4)
A A

Step 3. Set x;,,.1 = ¥,.1-If || .1 —x; || < ¢ then stop. Otherwise, go to Step 4.

Step 4. Compute

Y1 =% tap @ =), (2.5)
where
h;, =mm H(h) = m}in Q(xp.g +h(xp,. 1 —x)). (2.6)
h !
Go to Step 2.

What is the need of the symbolic implementation of the Hooke-Jeeves method?
Above all, the programming language used must be capable of generating formulas
which define functions F(h), G(A) and H(h). This requires a language which is able

to process arbitrary formulas, known only at the run time.

Also, 1t is desirable to use a language that 1s powerful in numerical compu-
tations in order to avoid truncation errors in numerical computations.

Finally, we also need good graphical illustrations of the generated results.

Therefore, we have just reported at least three reasons to use the
MATHEMATICA language in the implementation of the Hooke-Jeeves method.

P. Stanimirovi¢, M. Tasi¢, M. Risti¢ / Symbolic Implementation 289

3. IMPLEMENTATION

We suggest the following advantages which appear during the symbolic im-

plementation of the Hooke-Jeeves method and its modifications in functional
programming languages.

1.

3.

It 1s possible to take an arbitrary objective function, which is not defined by
subroutines, as a formal parameter under the program control.

For a given point xm = {x;..... x, |, 1t 1s possible to construct the following
function
P({)‘):Q(Il x,-_].x,- i()‘-xhl I") (27)

without previous definition of the function @.

We can construct, in a natural way, new objective functions F(h), GG(A) and
H(h), which are defined in (2.3), (2.4) and (2.6), respectively.

Let us first investigate Advantage 1. In the languages FORTRAN or C, the

objective function 1s usually rewritten as a sequence of calls to subroutines (4], [11],
|112]. In FORTRAN, an arbitrary objective function, which is not defined by
subroutines, can be placed as an argument to other functions only after a lexical and
syntactical analysis of the entered expression. In the language C, it is allowed to pass
functions as arguments to other functions using function pointers as arguments. But,
even in this case, corresponding subroutines which define the objective function must
be written by the user. In the programming package MATHEMATICA we represent an
arbitrary objective function ¢ in the internal form which contains the following two

parts:

the first part, denoted by ¢ , i1s an arbitrary arithmetic expression in
MATHEMATICA;

the second part, denoted by var , is the list of variables. Assume that ¢ 1is
the parameter denoting the objective function ¢ and the parameter var

denotes the parameter list of @. Let xm be the list representing a given point.
Then the value g¢|xm| can be computed by means of the following

transformation rules:

q0=q. Do|qO=q0/.var|[j]] =—=xm][j]] .{).n}]:

Shortly, we can write

q0=q. qO=q0/.var —>xm.

290 P. Stanimirovi¢, M. Tasi¢, M. Risti¢ / Symbolic Implementation

An arbitrary arithmetic expression, representing the objective function, can be
written as the actual parameter, instead of the formal parameter ¢ . Consequently,

the program is able to uses objective functions known only at the run time.
This 1s a verification of Advantage 1.

The exploratory search is implemented in the function ExpSearch. It is
assumed that an arbitrary objective function is given in the internal form ¢ , var .

More precisely, a new "basic point" i1s formed in the function ExpSearch and the new
value of the objective function is compared with the old one.

Assume that xm = {xm]|[l]].....xm|[n]]} represents a given point. Then the
function P(0), defined in (2.7), can be implemented using the following sequence of
transformation rules:

qm=q.

Do|gm=qm/.var|[}]]->xm][[j]], {), 1=1}]:
qgm=qm/.var|[1]]->(xm||1]]-delta);
Do[gm=qm/.var|[j]|-=xm[[1]], {1, 1+]1, n}];

The symbol delta in the second replacement is used instead of the parameter
O .
This 1s a verification of Advantage 2.

The function ExpSearch is written as follows:

ExpSearch [q., var_List , t List, delta | : =
Block [{q.qm.1,).n=Length[var], success=False, xm=t},
qO=qDo|qO=q0/ var[|)|]=>xm|[j|].{1.n}]:
For[1=1,1<=n, 1++,
qm-=q.
Dolqm=qm/. var[[)||==xm[[1]], {1a=11}]
qm=qm/.var|[t1]]==(m|[1]]+delta).
Do|gqm=qm/. var|[)|]==xm[[)]]. {10+ L.n}]
[f [qm<q0),
xmf[1][+=delta; success=True,
M=
Dolgm=qm/.var|[j]|==xm[[}]],). 1=1}]:
qm=qm/.var[[1]|==(xm][1]] =delta):
Dolqm=qm/.var|[j][==xm|[)]].{10+ .n}]
[t [qm<q0,
xmf[1]|==delta; success=True
|
|
|\

X1, Success |

P. Stanimirovié, M. Tasi¢, M. Risti¢ / Symbolic Implementation 291

The original Hooke-Jeeves method (originated in [7]) can be implemented as
follows.

Hookeleves [q., var List | xb_List. delta . eps| : =
Block [{n=Length |var|, xO=xl=xb, t=xb , succ=False, q0, del=delta, pn, 1t=01}.
q0=q; Do[q0=q0/.var|[[1]]->x0[[1]],{1.n}]:
While [Abs [del] >=eps,
(* Type I exploratory search *)
pn=ExpSearch|q,var.t.del]:
succ=pn|[2]];
[f]suce, xI=pn|[1]], del/=2].
(* Pattern search *)
t=x1H x1-x0):.
(* Type Il exploratory search *)
pn=ExpSearch|q,var.t.del]:
succ=pn|[2]]:
[f]suce, xO=xI; xI=pn|[[1]], del/=2].
qU=q; Do|qO=q0/ var|[1]]-=>x][[1]] ,{1.n}]:
it+=]
I,
q0=q; Do|q0=q0/ var[[1]]->xI[[1]] .{1,n}]
{x1 .q0}

We will now describe the implementation of the first modification of the
Hooke-Jeeves method and Advantage 3. The critical point in this implementation is the
construction of the new function F(h), depending on parameter . According to (2.3),

the function F(h) is defined by
F(h) = Q(x‘;';"' +h(x";;1 - x‘};)) = Q(x1 + h(x1-x0)) (2.8)

A universal algorithm for automatic construction of the function F(k) is not developed
in procedural programming languages. Even if the function Q(x) is defined by
subroutines, it is difficult to generate the function F(h) symbolically in procedural
programming languages. If the function Q(x) is given by a set of subroutines, then the
corresponding functions which define the function F(h) must also be written. This
problem can be easily solved in MATHEMATICA using the following algebraic
transformation -

t=xI+h*(xl—-x0).
and the following set of transformation rules:
f=q; Do[f=f/.var[[1]]->t[[1]],{1.n}]:
Now, the unidimensional minimization min F(h) can be performed using the

h
internal representation f.{h} of the objective function F(h). In this transition of

292 P. Stanimirovi¢, M. Tasi¢, M. Ristic / Symbolic Implementation

parameters it is assumed that available functions for unidimensional optimization use
the internal representation of the objective function as a formal parameter. This is
another verification of Advantage 1.

The first modification of the Hooke-Jeeves method i1s implemented in the
following function.

HookelJevesh [q.. var_List , xb_List . delta_. eps_| : =
Block [{n=Length|var], xO=xI=xb .t=xb , succ=False .q0, del=delta, pn. {, hk. 1t=0}.

q0=q; Do|qU=q0/ var[[1]]->x0][[1]]. {1.n}]

(* Form a new basic pomnt *)

While|del>=eps,
(* Type I exploratory search *)
pn=ExpSearch |q, var, t .del]; succ=pn||[2]];
[f]succ, x1=pn[[l]], del/=2].
(* Pattern search *)
(* Form a new function F(A) symbolically *)
t=x1+h*(x1-x0);
f=q.
Dol f=t/.var[[1]|->t[[1]], {1.n}]:

(* Unidimensional optimization Ak = min F(h) *)
h

t=x1+hk*(xl-x0):
(* Type Il exploratory search *)
pn=ExpSearch|q,var.t.del]:
succ=pn[|2]]:
[f]succ, xO0=xI. xI=pn|[1]], del/=2].
q0=q. Do[qO0=q0/ var[[1]]==x1[[1]]. {1.n}]:
1+=1
|
q0=q; Do|qO=q0/ var|[1]|==x1[[1]], {1,n}];
ix1.,q0]

In this way, we verify a part of Advantage 3.

Finally, the second modification of the Hooke-Jeeves method can be
implemented symbolically as follows. The function ExpDel, performing an exploratory
search, contains »n unidimensional optimizations. The optimization directions
A d, are defined such that each direction d,.1<i<n contains the ith coordinate

identical to 1 and zeros in all other positions.
For an arbitrary 1 € {1.....n} the function

G(A)=G(lam) = Q(y; +Ad;) = Q(xm +lam™*d,)

defined according to (2.4), can be effectively formed using algebraic manipulations with
an arbitrary symbol lam, two sequences of transformation rules of the form

P. Stanimirovié, M. Tasié¢, M. Risti¢ / Symbolic Implementation 293

| varl{ - > xmi[j1], j=1....i-1, varl(jll- > xml{j]], j=i+1... .n

and a transformation rule of the form

var|[i]l- > xm|[i]] + lam .
This is achieved in the following code:

qm=g.
| ~ Do[gm=qm/.var{[j]|->xm][[j]] .{j.i-1}]:
L’ qm=qu/.var{[i]}->(xm{[i] F+lam).

Dofgm=gm/.var{[j]|->xm[[j]],{j. i+1, n}]:
Now, the unidimensional optimization

| A; =lambda= min G(A) == min gm(lam)
ol A lam

can be performed using the internal form gm. {lam} of the function G(A).

&

------ mjh]l A1a=11:
o ﬁ [[1]]+Ham):
'H 1..I_*?‘j,E-:;ﬁ”fu“ﬁ‘- #! = _Lmlh{ﬂﬂﬂ-l’nﬂ’

1a u a]& nizati

AT oo ae

m ation of the second modification of the
1_ ;q!h"ll 1 n H(h) 18 dﬂﬁned by

(2.9)

294 P. Stanimirovi¢, M. Tasi¢, M. Risti¢ / Symbolic Implementation

This function can be formed in an analogous way as the function F(h),
defined in (2.8). Assume that x0 and x1 denote two successive approximations x, and

x,. 1, respectively. Then the function H(h) can be generated in the following way:

t=x1+h*(x1-x0):

JEXP=(.
Do|qgexp=qexp/.var[[1]]->t[[1]].{1.n}]

The second modification of the Hooke-Jeeves method is implemented in the
function HookedeevesDel.

HookelevesDel [q_,var_List xb List | epsL |: =
Block [{Lista={}, nl, n=Length|var], xO=x1=dd=xb, t=xb, succ=False, q0,
delta=eps, pn. gexp, hk, 1t=0},
Lista=Append|Lista.x0];
Do[q0=q0/.var[[1]]—=>xO0[[1]].1,n]:
pn=ExpDel|q.var.t.metod.eps]|.
delta=pn||2]].
it+=1.x1=pn|[1]];
Lista=Jom|Lista,pn||3]]]:
dd=x1-x0);
While[Abs [delta] >=eps,
(* Form a new tunction H(A) symbolically *)
t=x1+h*(x1-x0);
qexp=q,
Do|gexp=qexp/.var||1]]==t][1]],{1.n}]
t=x +hk*(x1-x0):
pn=ExpDel |q,var,tmetod,eps].
delta=pn||2]]
[Lista=Join|Lista,pn|[3]]].
xXO0=x1; xI=pn[| |||, Lista=Append|Lista,x1 .
dd=x1-x0: '
qO0=q; Do|qO=q0/ var|[[1]]=>xI[[1]].{1,n}];
ieE=1s
[,
q0=q. Do|qO=q0/ var||1]]-=>xT|]1]] ,{1,n}];
x1,q0,Lista)

4. NUMERICAL ILLUSTRATION

T'his section 15 devoted to a comparison of the above described modifications of
the Hooke-Jeeves method. Graphical illustrations are developed using two plots by
means of the functions ListPlot and ContourPlot, in a similar way as in [1] and [13].

Example 4.1. Consider the objective function Q(x,y)=x"+y* ~3sin[x-y|. The

original Hooke-Jeeves method used in the expression

P. Stanimirovié, M. Tasié, M. Risti¢ / Symbolic Implementation 295

In[1]):= Hookedeves|x"2+y"2-3*Sin(x-y],{x,y},{0.5,0.8 1,0.1,0.001]
produces a divergent process:

x1={0.8, 0.8} q=1.28 delta=0.1
x1={1.1, 0.8} q=0.963439 delta=0.1
x1={1.3, 0.8} q=0.891723 delta=0.1

x1=1{0.9, 2.22045 1016} q=-1.53998 delta=0.1
x1=1{0.9, -0.1} q=-1.70441 delta=0.1

x1=1{0.7, -0.4} q=-2.02362 delta=0.025
x1=1{0.575, -0.6} q=-2.07744 delta=0.025

x1=1{-1.325, -3.95} q= 15.8764 delta=0.025
x1=1{-1.3, -3.925} q=15.6139 delta=0.025

x1=1{0.5, -0.725} q=-2.04679 delta=0.025
x1={0.625, -0.5} q=-2.06618 delta=0.025

x1=1{1.45, 1.225} q=11.8603 delta=0.025
x1=1{0.15, 3.5} q=11.6518 delta=0.025

x1={1.975,13.65} q=187.889 delta=0.025
Out[1]= $Aborted

Under the same assumptions, the first modification of the Hooke-Jeeves met-
hod converges for an arbitrary unidimensional search optimization method. Consider

the expression

In[2]:= HookedJevesh|x"2+y"2-3*Sin|x-y|,{x,y},{0.5,0.8},0.1,0.001]

For example, in the starting point, symbolic function f(h) 1s equal to

f=(0.8+0.h2 + (0.6 +0.1h)?2 + 3Sin[0,2 -0.1 h]
The golden section method after minimization” A = mhin f(h) gives h; =0.999959

which implies

x1=1{0.799996,0.8}, ¢=1.28001, delta=0.1

In the 22th iteration we get

296 P. Stanimirovié, M. Tasié¢, M. Risti¢ / Symbolic Implementation

f = (-0.584927 - 5.03952 10-12 h)2 + (0.585755 + 0.00312474 h)2 -
> 3 Sin[1.17068 + 0.00312474 h|

hk = 0.0000408563 and
x] = {0.585755, -0.584927}, q = -2.0778, della = 0.00078125.

Consider now the expression

In[3]:= HookeJevesh|x*2+y"2-3*Sin|x-y],{x,y},10.5,0.8},0.1,0.00000000001}

Using the fixed step search during the unidimensional optimizations

h, =mm F(h), we get the result after 64 iterations.
h

The obtained results are illustrated in the following picture.

' L | 19 1

Figure 1: The first modification converges in 64 iterations

Under the same assumptions, the second modification of the method
converges in 3 iterations.

U L) . L8 i

Figure 2: T'he second modification converges in 3 iterations

P. Stanimirovi¢, M. Tasié, M. Risti¢ / Symbolic Implementation 297

Example 4.2. The resulting list of the expression
Hookedevesh|x"2+y"2,{x,y},12,3},0.1,0.00000000001

1s represented in the following figure:

Figure 3: Convergence of the original Hooke-Jeeves method

The first modification of the modified Hooke-Jeeves method

Hookedevesh|x"2+y"2,{x,y},12,3},0.1,0.00000000001 |

improves convergence rate and accuracy. The following figure illustrates the trajectory
generated by the fixed step method with the precision 10-11:

=" <

Figure 4: Application of the fixed step method in the first modification

The following figure illustrates the trajectory generated by the variable step
method with the precision 10-11:

298 P. Stanimirovi¢, M. Tasi¢, M. Ristic / Symbolic Implementation

-1 «-0S8 0 0.5 1 1.9 2

Figure b: Application of the variable step method in the first modification

The following computation, defined by the original Hooke-Jeeves method
Hookedeves|x"2+y"2,{x,y},{20,10},0.1,0.00000000001 |

diverges:

i
Al

-15 -10 =-§
Figure 6: 'The original Hooke-Jeeves diverges

Under the same conditions, the first modification converges. For example, the
results obtained applying the constant step search are illustrated in the following

Al

-15 ~10 -

Figure 7: T'he first modification convergos

P. Stanimirovié, M. Tasi¢, M. Ristié¢ / Symbolic Implementation 299

Example 4.3. Consider the objective function Q(x,y)=(x-2)* +(x -2 y)*. The
original Hooke-Jeeves method, used in the expression

Hookedeves|(x-2)"+(x-2y)"2],{x,v},{0,31.0.1,0.00000001 |

diverges. Under the same assumptions, the first modification of the method. denoted by
the expression

In|1]:=HookedJevesh|(x-2)"4+ (x-2y)"2],{x,y},{0,3} ,0.1,0.00000001 |

converges after 51 iterations:

Figure 8: The first modification converges in 51 iterations

Finally, the second modification of the method, used in the expression

HookedevesDel|(x-2)"4+(x-2y)"2],{x,y},{0,3},0.1,0.00000001 |

converges 1n 4 1iterations.

- s

L] § 1]

Figure 9: The second modification converges in 4 iterations

300 P. Stanimirovi¢, M. Tasi¢, M. Risti¢ / Symbolic Implementation

5. CONCLUSIONS

It 1s known that formula manipulation by a computer requires much more
time and memory space than traditional mmplementation 1 the procedural
programiming languages. But, as shown in the examples, improvements in the
convergence ensured by modifications of the Hooke-Jeeves method are significant. This
1s a compensation for the great memory space and time requirements for the above
described symbolic implementation of these modifications. The second compensation
for the symbolic implementation of the method i1s the simple mmplementation of
algorithms for symbolic manipulations in the package MATHEMATICA. Moreover, the
possibility of the software to process an arbitrary objective function makes it generally
applicable. The user is released from further modifications in the program.

Note that the mentioned improvements in the convergence depend only on the
modifications of the Hooke-Jeeves, but not on the implementation language.

REFERENCES

[1] Abbot, P., "T'ricks of the trade", The Mathematica Journal, 3 (1993) 18-22.

2] Bazaraa, M. S., and Shety, C. M., Nonlinear Programmaing, Theory and Algorithms, John
Wiley and Sons, New York, Chichester, Brisbane, 1979.

(3] Blackman, N., Mathematica: A Practical Approach, Prentice-Hall, Englewood Cliffs, New
Jersey, 1992.

(4] Dixon, L. C., and Price, R. C., "Truncated Newton method for sparse unconstrained
optimization using automatic differentiation’, JJ. Optimiz. Theory Appl., 60 (1989) 261-275.

[S] Gray, T., and Glynn, J., Exploring Mathematics in Mathematica, Adisson-Wesley, Redwood
City, California, 1991.

(6] Himellblau, D. M., Applied Nonlinear Programming, McGraw-Hill Book Company, 1972.

[7] Hooke, R., and Jeeves, T. A., "Direct search solution of numerical and statistical problems", /.
Assoc. Comput. Mash., 8 (1961) 212-229.

|8] dJacoby, S. L. S., Kowalik, J. S., and Pizzo, J. T., Iterative Methods for Nonlinear Optimizotion
Problems, Prentice-Hall, Inc, Englewood, New Jersey, 1977.

9] Kréevinac, S., Cupié, M., Petrié, J., and Nikolié, 1., Algorithms and Programs from Operations
Research, Naucéna Knjiga, Beograd, 1983. (in Serbian)

[10] Maeder, R., Programming in Mathematica, Third Edition, Addison-Wesley, Redwood City,
California, 1996.

[11] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes in
C, Cambridge University Press, New York, Melbourne, Sydney, 1990.

[12] Parker, T. S.; and Chua, L. O., "INSITE- a software toolkit for the analysis of nonlinear
dynamic systems", Proceedings of the IEEE, 75 (1987) 1081-1089.

|13] Smith, C., and Blackman, N., The Mathematica Graphics Guidebook, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1995.

[14] Stojanov, S., Methods and Algorithms for Optimization, Drzavno izdatelstvo, Tehnika, Sofija,
1990. (in Bulgarian)

[15] Wolfram, S., Mathematica: a System for Doing Mathematics by Computer, Addison-Wesley
Publishing Co, Redwood City, California, 1991.

[16] Wolfram, S., Mathematica Book, Version 3.0, Addison-Wesley Publishing Co, Redwood City,

| California, 1997.

{17] Zlobee, S., and Petrié, J., Nonlinear Programmaing, Naucéna knjiga, Beograd, 1989. (in

- Serbian)
\

