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Abstract: The paper discusses fuzzy controllers based on fuzzy relation equations in
the case when fuzzy controller inputs are exact. The Godelian implication and
minimum function as {-norm are considered. The fuzzy relation equation with sup-t
composition results in plausible control and the adjoint equation leads to simple fuzzy
control (min-max inference method). The computation of fuzzy relations is not
necessary. The relation between fuzzy plausible control and simple fuzzy control is
discussed. Control algorithms are compared on a simulation example.
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1. INTRODUCTION

Fuzzy logic control is one of the expanding application fields of fuzzy set
theory [6]. Recent applications of fuzzy logic control have spread over various areas of
automatic control, particularly in process control [3, 7-9, 11]. A fuzzy logic controller
(FLC) allows a simple and more human approach to control design due to its ability to
determine outputs for a given set of inputs without using a conventional, mathematical
model. FL.C follows the general strategy of control worked out by a human being.
Including a set of control rules and membership functions, the fuzzy controller
converts linguistic variables into numeric values required in most applications. Altering
control rules or membership functions provides fuzzy controllers with adaptive
capabilities that are very important for industry.

A typical FLC is composed of three basic parts: an input signal fuzzification
where continuous input signals are transformed into linguistic variables, a fuzzy engine
that handles rule inference, and a defuzzification part that ensures exact and physically
interpretable values for control variables.
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The design of FLC may include: the definition of input and output variables,
selection of the data manipulation method, membership function design and the rule
(control) base design. The most frequently used data manipulation method is the "min-
max-gravity" method (simple fuzzy control). This Mamdani-type controller assumes
min-max inference operators and center of gravity defuzzification [6, 8, 11|. However,
any {-norm and /-conorm as inference operator can be used. Some properties of FLC
using different inference operators can be found in [2, 4].

Simple control is a reasoning procedure based on modus ponens
(AA(A=B))=B tautology [8, 11]. Modus ponens tautology reads:

e Implication: if A then B
e Premise:" A 1s true

e Conclusion: B 1s true
where A and B are fuzzy statements or propositions.

Approximate reasoning based on other tautologies, such as modus tolens,
syllogism or generalized modus ponens, which gives (A=(A=B))=B (11|, have also
been suggested |5, 10]. Here we are concerned with plausible control. Fuzzy control is
plausible [8] if it fulfil features given with F1-F4. Plausible control reads:

with implication if A then B

F1- Premise A 1s true Conclusion B 1s true

F2 - Premise A 1s not true Conclusion B 1s unknown
F3 - Premise A 1s more fuzzy Conclusion B 1s more fuzzy
F4 -  Premise . Ais less fuzzy Conclusion Bis B

where feature F1 describes modus ponens tautology.

Inference methods can also be obtained by utilizing fuzzy relation equations
6] with different implication functions. Fuzzy sets and fuzzy relations, calculated for
simple control, satisfy neither the fuzzy relational equation with sup-f composition nor
the adjoint equation. Therefore, simple control is not "mathematically correct".
However, the solutions of fuzzy relation equations are not unique, because the ¢~
operator presented in (6] and the f-norm [2, 8, 11] are not unique. It is shown in [8]
which combinations of different implication functions (g-operator) and {-norms give
plausible control. In this paper the Godelian implication for ¢-operator and minimum
function (intersection) for /-norm are considered.

Despite being "incorrect”, simple control is applied rather than plausible
control. Fuzzy control algorithms based on fuzzy relation equations require the
calculation of fuzzy relations. Fuzzy relations often need more memory requirements
as disposed. Besides, all the necessary calculations for simple control are trivial,
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demanding minimum time, whish is of great importance, especially for real time
applications.

This paper discusses the case when fuzzy controller inputs are not fuzzy. This
1s the case when measured variables and set points are not fuzzy, or when they are
fuzzy, they are defuzzified before succeeding to the fuzzy controller. From the practical
aspect, this assumption is not restrictive. The assumption of defuzzified controller
inputs leads to many simplifications in fuzzy control based on fuzzy relation equations.
These simplifications concern the fuzzy relation for there is no more need to calculate
the fuzzy relation. All mathematical computations are similar to fuzzy simple control,
providing the enhanced application of plausible control.

2. FUZZY CONTROLLER AND CONTROL BASE

A typical closed loop system with a fuzzy controller is shown in Fig. 1.
Controlled variables (inputs to the fuzzy controller) and set points can be first fuzzified
and then used. However, that phase is skipped here, causing exact data to succeed to
control rules.

The main source of knowledge to construct the set of control rules comes from
the control protocol of the human operator. The protocol consists of a set of conditional
"if-then" statements, where the first part (if) contains a condition and the second part
(then) deals with an action (control) that is to be taken. It conveys the human strategy,

expressing which control is to be applied when a certain state of the process being
controlled is matched. A set of n control rules (control base) i1s given with (1)

b IF Xll AND le AND le, THEN Ul
o “IF A%Y AND X‘.;}' AND A THEN U;

e IF X,; AND X,; AND X,, THEN U, (1)

Condition X;; is expressed by its membership function u(X;;(x)), where x
belongs to the space of X;;. The space [Xj;] is the same for all 7 =1.....n . In the case

when any X;; does not exist in the control base, it 1s assumed that the membership

function equals one over the entire space.

Control variables U. that are to be applied when certain conditions are
satisfied are expressed by membership functions u«(U;(u)), where u belongs to the
space of U. . All U, are defined over the same space, here denoted as [U] .

Statements like else or or are easy to incorporate in the control base [1]. For
reasons of simplification here we observe the control base in the following form:

eIF X, THEN U;; i=l...n (2)
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where membership functions x(X;(x)) are defined over the same space, here denoted

with [X]. The generalization from (2) to (1) can be easily made.

The defuzzification phase ensures exact and physically interpretable values for
control variables. There are several defuzzification methods and here the center of
gravity procedure is used [6].

3. SIMPLE FUZZY CONTROL

Supposing the control base is given with (2) and using fuzzy relation notation,
simple fuzzy control is given with [6]

® R,‘ =Xf' *U,'l t=1....71
] R:UR’
e U=XOR (3)

where * denotes the Cartesian product operator and ® denotes the sup-min
composition. Fuzzy relations R, are defined over product space [X.U| and are

calculated as [1,6,11] w

R.(x.u)= X;(x) ¥ U;(x) = min{X;(x). U;(w)} forall xe[X] and ue[U] (4)

where X,;(x) and U,;(u) are expressed by their membership functions. In (3) the

maximum (union) function is denoted with « [11]: The controller's input (condition-
value obtained from the system) is denoted with X. Controller input X(x) is defined

over the space | X]. In the case when the control base is given with (1) X; and X | in

(3), are fuzzy relations.

The calculated fuzzy control is denoted by U(w), which is defined over the
space [U] . Defuzzification is later applied to obtain the exact control value. Relating to
sup-min composition |1, 6], fuzzy control 1s

Uu)=X(x) ® R(x,u)=-sup,, (X mmi{X(x), R(x.u)}} (5)

More generally, operator ® describes the sup-f composition, and here the
minimum function for the -norm is observed [6, 8, 11]. Subject to (3)

U(u) = supyex ) imin{X(x), u; R;(x,u)}} (6)

The sup-min composition is distributed with respect to union |1, 6]

U(w) = sup,( x 1V min{X(x), B;(x,u)}} (7)

Subject to (3)
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U(u) = sup,; x{v; min{X(x), X;(x) * U, (u)}} (8)
Subject to associatively this can be rewritten as
U(u) =, sup, o ximin{X(x), X;(x)}} * U;(u) =u; A; * U (u) (9)

where A; 1s a scalar value, called the possibility of X with respect to X, [6], defined by
.'\,‘ = n(X/X, )‘= SUp .. (X ] :lllill:X(I). AX,'(I):‘ : (10)

In simple fuzzy control, A, is a scalar value even in the case when the
controller's input 1s fuzzy. However, here is a particular case, when X(x) is nonfuzzy,
which means
il =2,

X(x) = (11)
S iO: otherwise

In that case, A, is calculated as

A; =sup imin{l. X, (xg)}t. min{0.X;(x)}} = X;(x) (12)

4. FUZZY CONTROL BASED ON A FUZZY RELATION
EQUATION WITH sup-f COMPOSITION

Using fuzzy relation notation and control base (2) this type of fuzzy control is
given with |6]
e R.=X;0U,;. y=ilseseen
e R=nNnR,
e U=XOR (13)

The minimum (intersection) function is denoted with » [11], and operator ®
describes the sup-¢ (here sup-min) composition. Operator ¢ represents the implication
function [6]. In this paper the Godelian implication, defined in [1, 6, 8] is concerned:

Jl; w(X(x)) < u(Y(y))

S g i A A | (X (x)), p(X(x)> u(Y(y))
From (5) and (13) fuzzy control is
U(u) = supyx) imin{X(x), n; F(x,u)}] (15)

Sup-min composition is not distributed with respect to intersection |1]
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XOXYn2)<=(XOY)Nn(X®2Z) (16)

Therefore, obtaining fuzzy control U(u), in (13), demands the calculation of
fuzzy relation R(x.ux). However, in the particular case when the controller's input
X(x) 1s exact (11), equation (15) can be rewritten as:

U(w) =sup{min{l. n; R;(xg.u)}. min{0. n; R;(x.u)}} =n; R;(xg.u) (17)

Subject to (13) and (14), equation (17) leads to
Uu)=n; X;(xg) e U;(w)=n; A; o U; (1) (18)

where A; is a scalar value given by (12). The computations of plauSible fuzzy control

(18) and simple fuzzy control (9) are very similar, enhancing the possible application of
plausible control.

5. FUZZY CONTROL BASED ON AN ADJOINT FUZZY
RELATION EQUATION

This fuzzy control, concerning (2), is given with [6]
e R=X:%U;; 1=1...n
e R=uUR,
e U=X¢R (19)

where operators * and U are already defined. Operator ¢ in (19) denotes the Godelian
implication between fuzzy set and fuzzy relation [6]

U(u)zinfxe[Xl{X(x)(pR(x.,u)} (20)
In the particular case when X(x) 1s nonfuzzy (11), equation (20) leads to:

U(w) =t x {(1 ¢ R(xgp,u)), (0 ¢ R(x,u))} (21)
Concerning (14) and (19), fuzzy control is given with

Uu) =y;R;(xp,u) = v; X;(xg9) ¥ U;(w) =U; \; X U;(u) (22)
Obviously, fuzzy control based on the adjoint fuzzy relation equation, in the

case when the controller's input is nonfuzzy, gives the same control algorithm as simple
fuzzy control.
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6. SIMULATION EXAMPLE

The control problem is to hold an object with mass m on the top of a "hill", Fig.
2. The observed object is influenced by force F:

—

F=m+ﬁ+ﬁ (23)

where Fm denotes "movement" force, Fd denotes random disturbance force and Ff
denotes fuzzy control force, and

G'(p) ¥ G'(p)

Fm=Fg
J1+(G'(p)’ J1+(G'(p))’

(24)

where G'(p) denotes the derivation of ground shape. Two ground shapes (functions)
were considered

¢ Glip)=e ”
e G2(p)=-p° (25)

The object's position (p) and velocity (v) are calculated in discrete time (¢) domain as

o p(t+1)=p(t)+uv(t)AL
s M I I 2

where friction constant is denoted with C; and Af represents sample time. Concrete

values were

e m=10Kg
e g=981m/s*
o At=0.0ls
® C/ =0.04

The control base is given with Table 1. Membership functions for position and
force are shown in Fig. 3, and velocity membership functions are shown in Fig. 4.

Experiments with simple fuzzy control and plausible control were done under
the same circumstances - the same set of control rules, the same membership functions
and the same disturbance force. Simulation was done for 3000 sampling intervals and
the sum of the squares of the applied disturbance force was

3000 o
Y Fg“(¢)=2176-10" [N°]
t=1
For both ground functions, two initial points were considered p(0)=0 and
p(0) =1 with exact controller input. Position error (PE) and fuzzy power (FP) were as

results concerned.
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t=3000 B
e PE = } pT(t) [m?]
£=1

t=3000 9
o FP = 3" F7(t) [10°N=] (27)
=

The obtained results with simple fuzzy control are shown in Table 2 and with
plausible control in Table 3.

7. CONCLUSION

It is shown that in the case when fuzzy controllers' inputs are exact, simple
fuzzy control and fuzzy control based on the sup-f relation equation result in similar
control algorithms. Both algorithms do not require calculation and memory storage of
the fuzzy relation. Here was minimum function as /-norm and Godelian implication
function observed, that gives plausible control. The application possibility of plausible
control is, therefore, enhanced.

Fuzzy control based on the adjoint relation equation results in the same
control algorithm as simple fuzzy control when controllers' inputs are nonfuzzy.

The simulation example shows that the quality of system behavior with a
fuzzy plausible controller can be superior compared to system behavior with a simple
fuzzy controller.
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Figure 1: Closed loop system with fuzzy controller
G(p)
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Figure 2: Simulation example
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Figure 3: Position and force membership functions
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Figure 4: Velocity membership functions
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Table 1: Fuzzy control force
P VELOCITY
0 NS ZR PS
S NB | PB |PB [ PS PB - positive big
I NS | PS 1 PS 1 ZR | PS - positive small
T ZR | PS | zr | NS ZR - zero
I PSS | ZR f NS | NS L NS - negative small
e | NS 'NB ! NB NB - negative big
N
Table 2: Obtained results with simple fuzzy control
Gl(p) G2(p)
p(0)=0 | p0)=1 2(0)=0 p0)=1 |
PE | 0.535 20.018 0.43¢ |  19.306
FP | 4.589 5.921 4656 |  6.022
Table 3: Obtained results with fuzzy plausible control
G1(p) G2(p)
p(0)=0 | p0)=1 p(0)=0 p(0)=1
PE 0172 19.857 0.162 19.047
FP 6727 7.949 6.803 |  7.992




