Yugoslav Journal of Operations Research
9 (1999), Number 2, 257-271

A CLASSIFICATION OF REVERSE ENGINEERING TOOLS
AND CRITERIA FOR THEIR EVALUATION AND SELECTION

Dragan BOJIC, Dusan VELASEVIC

University of Belgrade, Faculty of Electrical Engineering
Bulevar Revolucije 73, 11120 Belgrade, Yugoslavia
tbojic, velasevic j(wbuef31.etf.bg.ac.yu

Abstract: In the current trend of evolutionary software life cycles and the reuse of
software components, great emphasis 1s put onto the reverse engineering and
reengineering of existing software systems. This paper presents a classification of
commercial tools that support reverse engineering and reengineering activities. The
tools are classified according to the domains of their application: maintenance, reverse
design, redocumentation, metrics analysis, restructuring, objectification, reusable
component extraction, etc. Also presented i1s a general framework for the process of
reverse engineering tool evaluation and selection by a potential user with emphasis on
the criteria for their quantitative evaluation.

Keywords: Software engineering, reverse engineering, software tools classification, software tool
evaluation.

1. INTRODUCTION

In the modern process of software production, the maintenance and functional
enhancement of existing systems represent significant and costly activities in their
entire life cycle. It 1s estimated [11] that 30-35% of total life-cycle costs are consumed in
trying to understand software after it has been delivered and make changes -
representing 60-70% of maintenance costs. The number of complex systems built from
scratch is steadily decreasing, while at the same time there are more and more legacy
systems 1n every area of computer usage.

Program understanding 1s the process of developing mental models of a
software system's intended architecture, meaning, and behavior [Y]. Program
understanding is accomplished by the reverse engineering process, which consists of
the following activities:

258 D. Boji¢, D. Velasevic¢ / A Classification of Reverse Engineering Tools

1. Model: Construct domain-specific models of the application using conceptual
modeling techniques.

2. Extract: Gather the raw data from the subject system using the appropriate
extraction mechanisms.

3. Abstract: Create abstractions that facilitate program understanding and permit
the navigation, analysis, and presentation of the resultant information structures.

Reverse engineering 1s a constitutive element of software reengineering - the
process of examining and altering a subject system to reconstitute it in a new form, to
improve one's understanding of software, or to prepare or improve the software itself
for increased maintainability, reusability, or evolvability (Fig. 1). The activities and
tools described in this paper are conceived to support the process of understanding
legacy systems and transforming them into evolutionary systems [5| - systems which
are adaptable to changing functional requirements and the unplementation of
technology throughout their entire life cycle.

2. APPLICATION AREAS

The application areas for reverse engineering and reengineering tools include
software maintenance, redocumentation, design recovery, metric analysis,
restructuring, source code translation, migration to another hardware
platform/operating system, objectification, reusable component extraction, year 2000
problem solving and others [4]. Table 1 presents some basic data about several popular
tools classified according to their main functionality, based on [1|, WWW and tool
documentation. The rest of the section 1s concerned with a short description of the
application areas of these tools.

reengineerng

ra e

| forward
reverse | restructuring _ engineering
- 1 equire Prequire '
engineering 1 L
ments l ments
| restructuring *
design > design
| | restructuring . |
implementation » umplementation
existing system target system

Figure 1: Software reengineering

D. Boji¢, D. Velasevi¢ / A Classification of Reverse Engineering Tools 259

2.1. Software maintenance

These tools are meant to support the activities of corrective, perfective and
adaptive maintenance of large software systems. These tools maintain the central
repository of information about a system structure formed in the process of the static
analysis of program code. The information may be presented in various forms:

e Cross-reference reports (e.g. the list of all functions that use a certain global
variable)

e Various presentations of the system structure (control flow graphs, data flow
graphs, call hierarchy graphs, class hierarchy graphs, data dictionaries,...)

e Metric data etc.

Table 1: Selected reverse engineering and reengineering tools

Manulacturer ele) language platform application areas
DBStar, DBStar from DB2 into Sun database design, data
Inc Oracle, Sybase, reengineering, business rule
| | extraction
Rational Rational Rose | C+ + Windows, Unix | object-oriented forward and
J _ | reverse design
Hewlett- AdaFormat Ada HP-UX reformatting
Packard _ 4 |
Reasoning Software Ada, HP UX, set of tool generators for
Systems Refinery FORTRAN, IBM/AIX, Sun | reverse engineering and
| | COBOL, G, ... | OS5 | reengineering
VERILOG Logiscope more that 35 UNIX, VMS, metrics, testing - coverage
_ ., IBM/MVS, ... | analysis
McCabe Visual Ada, C, C+ +, VAX/VMS, integrated environment:
Toolsets COBOL, Pascal, | Sun/Sparc, metrics, restructuring,
FORTAN, ... DEC/Ultrix, ... | reusable component
| | _ extraction,...
Cadre Ensemble C AIX, Sun OS, Integrated forward and
ULTRIX reverse engineering
_ | environment
Viasoft, T Existing various COBOL | IBM/MVS, integrated environment for
Inc. Systems dialects Windows maintenance,
Workbench redocumentation and
restructuring
(General j ENCORE from Sun Sparc source code translation,
Electric FORTRAN into restructuring
* ADA 1l |
Xinotech 2001 COBOL Windows, Analysis and transformations
05/2, Unix | to solve year 2000 problem
Xinotech Object from FORTRAN | Windows, transformation,
Abstractor COBOL into Ada,| OS/2, Unix objectification, reusable
SmallTalk, C+ + components extraction

260 D. Bojic, D. Velasevic¢ / A Classification of Reverse Engineering Tools

Built-in editors typically possess a hypertext-like navigation functionality (e.g.
by selecting a function name it is possible to locate the function definition in the source
listing). Navigation through graphical presentations of the system structure 1is also
provided.

The functionality of selecting and filtering information 1s very important
because of the tremendous amount of data-generated for a large system. Tools typically
provide a number of predefined queries, e.g. to display a selected function and its
immediate successors in a hierarchy call graph. Some tools (e.g. SMARTSystem)
support user defined queries in the information database.

Special attention is paid to maintaining the consistency of the database while
changes to the code are being made, by incremental parsing technique and tracking the
changes.

Maintenance support tools are frequently integrated with other reengineering
tools In maintenance and reengineering environments (Fig. 2 presents an example of
such an integration). Interoperability with other development tools (debuggers,
emulators, compilers, version control systems, etc.) is usually provided.

2.2. Integrated development and maintenance environments

In recent times the functionality of maintenance tools is being integrated more
and more in software development environments as a supplement to the main
functionality of compiling, editing and debugging programs. An example of such an
integrated environment is Microsoft Visual C++. In these environments, there is
relatively modest support for reverse engineering activities - basic structure
presentation and navigation functionality.

2.3. Reverse engineering subsystems in design support tools

Tools that support requirement analysis and software design phases achieve
various manipulations with specifications (creating, updating, consistency checking and
animating) and source code generation based on certain design methodology. More
recent tools embody a reverse engineering component that is used to update design
specifications after the changes are made to the source code outside the design tool.
The scope of this analysis is typically limited to systems with already existing
specifications - e.g. the analysis uses the design information built in the code in the
form of comments,

2.4. Redocumentation

Redocumentation is the oldest form of reverse engineering. It deals with
creating design specifications from the existing source code. The tool output mainly is
in the form of a textual document that describes the structural aspects of the system

D. Boji¢, D. Velasevic / A Classification of Reverse Engineering Tools 261

and 1s formatted according to some of the standards for software documentation (e.g.
MIL_STD 498). Some tools use special comments embedded in code to document the
functional aspects of the system. Documentation in electronic form is mainly hypertext-
like, and often can be exported in format that is recognized by some design tool.

VIA/Insight I

| \ () Pl VIA/Smart Test

~ Visual Recap M, | Application
Knowledge -

VIA/Smart Edit

l
[

Repository VIA/Smart Doc
T e -
Via/Alliance 1% i il \
Analytical VIA/Renaissance
Engine
_Tﬂ\ppl.ication = t T
Definition = -
Facility Existing
Systems
s Lo

Figure 2: The structure of Existing Systems Workbench integrated environment

2.5. Metric analysis

Numerous metric parameters are defined and used in practice to assess size,
complexity, quality, maintability and other code parameters, the impact of change in
one part of code to the rest, to identify reusable components [2] etc. For example,
McCabe's Visual Quality Toolset calculates 20 different classical and 13 object-oriented
metrics. The data is presented in a graphical manner - using a structure graph in which
modules are shown in different colors denoting different values for some metric
parameters (Fig. 3). 2

2.6. Restructuring

Restructuring is the transformation from one representation form to another
at the same relative abstraction level, while preserving the subject system's external
behavior (functionality and semantics).

262 D. Bojié, D. Velasevi¢é / A Classification of Reverse EKngineering ''ools

= On-Screen Battlemap v |-
File View Tlools Metrics Options Help

Program less, Standard Mode [Design Version: 0,0)

system Metrios S0+88 S1«77 DL||\--,!*3|—7?Irhmr.ll_u_-l commands)

Coloring on metrics evg and vg [primary/secondary)

Figure 3: Graphical presentation of metric data

The simplest form of restructuring 1s code reformatting (pretty-printing)
including code indentation, identifier capitalization, keywords marking ete. A
significant form of restructuring 1s source code translation - the transformation from
one programming language to another (e.g. form COBOL to ADA) or from one version
of some language to another dialect of the same language. Another kind of
restructuring i1s retargeting - migration to another configuration or target platform. Yet
another kind of restructuring 18 name space rationalization - establishing a uniform
naming convention for logcally same data across various system components,

2.7. Objectification

Program objectification mvolves transformation of the procedural program in
a functionally equivalent program in object-oriented style, into another programming
language or into the more recent dialect of the same language, Object-oriented style
means that: a) the program structure 15 defined by the structure of its classes; b) the
redundancy of relations between classes 18 minimal; ¢) program behavior 18 determined
by methods associated to classes, and d) delayed binding 18 used to avoid selecting a
plece of code E-ilH‘.II'!I“‘\" In cases when there are more variants of iIll|1l("lli(,"*lll.ll’tg.‘:r S01Ine
functionality,

D. Boji¢, D. Velasevi¢ / A Classification of Reverse Engineering Tools 263

For example, Xinotech's Object Abstractor tool supports the process of
transforming procedural programs to object-oriented Ada 95 programming language.
The process involves restructuring data types and subtype derivation, data grouping,
identifying methods and object candidates from program fragments using various
strategies and redesigning the resulting packets (Ada's equivalent to classes) to achieve
a satisfying level of reusability. The tool embodies a knowledge base in which
programming clichés, information abstraction and program transformation rules are

stored. The rules are written in XPAL language (Xinotech Plan Abstraction
Metalanguage).

2.8. Reusable components extraction

The concept of software reuse concerns the mass production of software
components to form a repository from which they can be selected and combined in
more complex components or used to develop a new software system [1]. The objective
i1s to achieve a more productive software development process and to improve the
quality of software products. The development of a huge component repository from
scratch i1s a great initial investment, and a viable alternative is the extraction of
components from existing systems. The concept of reusability applies not only to code,
but also to design and architecture solutions.

The process of the extraction of reusable components from existing system 1is
termed reuse reengineering. It consists of the following activities:

e analysis of an existing system to identify candidates for reusable components

e modification of extracted components to decouple them from the rest of the
system

e creation of a functional specification for the extracted components

Components are stored in a repository from which they can be selected
according to the required functionality. Techniques used to identify components and
functionally describe code include structure methods based on metrics, based on
programming clichés and formal methods.

2.9. Year 2000 problem (Y2K)

The problem of incorrect manipulation with dates is technically limited, but
economically very significant; it is estimated that the worldwide cost of its elimination
could approach several hundred billion dollars and the time to solve it is limited.
Although the problem mainly affects information systems, it also strikes hardware,
operating systems, embedded and communications systems and all other computer
systems that operate with dates. The problem involves the following implementation

errors:

e Representing the year with a two-digit number.

D. Bojie, D. Velasevié / A Ciassification of Reverse Engineering Tools

o
-
oS

e Incorrectly calculating leap years.

¢ Hard-coding the prefix 19 in code, or using the date field to code 'magic numbers’
(e.g. 99 means never delete this record).

» The overflow in the field for storing a complete date.

There are a number of different techniques to solve these problems depending
on whether there is a source code for the system and whether the date format is
extendible: extending the date field, coding in the same field but in the binary system,
bridging components inside which no change 1s being made, etc. Modifications are
needed not only in data processing modules, but also in interface modules (e.g. date
entry fields).

Customized tools to support the elimination of Y2K problems estimate the
amount of affected code, locate the program fragments that need change, automatically
make changes and verify changed code using standard reverse engineering techniques.

2.10. Meta tools

Meta tools are used to create reverse engineering and reengineering tools. One
of the well-known toolsets in this category 15 Reasoning Systems' Software Refinery. It
consists of three tools: DIALECT is used to generate syntax-semantic analyzers for a
particular language, REFINE 1s used to generate a data repository subsystem, and
INTERVISTA 1s used to generate a user interface subsystem (Fig. 4).

3. TOOL SELECTION AND EVALUATION FRAMEWORK

The CASE tools market is in expansion because there is a clearlv expressed
need in the software industry to use these tools to cut production expenses and improve
programmer productivity and sottware qualitv. On the other hand, the results from
several studies [6] show that there are obstacles in adopting this technology in practice.
A survey of several hundred software companies has shown that less than 25% of
personnel uses any tool. A year after introduction, 707% of the tools are not used at all,
25% of the tools are used by a small percent of the staff, and only 5% of the tools are
widely used, but not in their full capacity. This 15 mainly caused by mistakes made
when selecting appropriate tools and by underestimating the effect of introducing new
technology. The learning curve shows that a period of 6 to 12 months 1s needed for
productivity to gain the same level as before the introduction of a new technology, and
productivity improves only after that period.

Far too often, tool assessments are completed by the product's vendor or by
someone who:

 Just scans the brochures and user manual,

e 15 unfamiliar with the tool's methods,

D. Bojié, D. Velasevié¢ / A Classification of Reverse Engineering Tools 265

e lacks an understanding of the project or user requirements, or

e uses the tool for a 30-day trial on useless examples that fall short of testing the
tool's functionality.

To eliminate these problems, the Software Engineering Institute of Carnegie
Mellon University and the Westinghouse Software Tools Evaluation Committee have
established a general framework for CASE tool evaluation and adoption processes 3],

[8]. In this section, the specific criteria for the evaluation of reverse engineering tools
are discussed, in accordance to the general framework.

analyze
3
[nput parse f
Source diSplay s v \
Files _I’\ ~
o e Object Base | |
: i, unparse edit | =/
Output
| Source / \‘
| Files
I\/JI transform
_ /RS 7 N o4
SRS Y Y
DIALECT REFINE INTERVISTA

Figure 4: Software Refinery toolset

The process of introducing a new tool into regular use is composed of the
following activities:

e preparation
e evaluation and selection
e pilot project

o transition

During the preparation activity, the general objectives and organizational
aspects of the whole process are established: resources and process dynamics. The
evaluation and selection activity is performed in the following phases:

e Needs analysis, to establish the purpose for which the tool will be used.

e Analysis of the existing environment to establish various technical, economical and
other limitations in tool selection.

266 D. Boji¢, D. Velasevié / A Classification of Reverse Engineering Tools

o Establishing a list of candidates and their categorization, that is, determining their
functionality.

e Evaluation of candidates; the assessment criteria and methods for their estimation
are defined.

e Tool selection on the basis of a integral criterion.
The purpose of the pilot project is to provide a realistic trial of the selected tool
in the target environment. That should be a project of limited value and duration, with

typical requirements. It should confirm the usability of the tool and generate
information needed to plan the transition process.

The transition process involves planning activity on how to introduce the tool
progressively into wider use, organize training, track the introduction and finally
estimate the success of tool introduction.

3.1. Tool evaluation criteria

The structured criteria for reverse engineering tool evaluation defined in the
rest of the section can serve as the basis for quantitative assessment. The assessment
process involves defining the relative weight factors for each criterion in accordance to
user preferences, defining experiments to estimate the level of criteria satisfaction,
conducting experiments on each candidate tool and computing the integral evaluation
for each tool.

The assessment categories include:

e functionality

e ease of use

e extensibility

e robustness

e environment fitting

e level of support
The criteria of functionality include:

e Types of activities that are supported by the tool (design recovery,
redocumentation, reengineering, ...)

* The level of abstraction: does the tool support a system modeled on a structural,
design or functional level?

e Support for multiple knowledge domains: does the tool support multiple
programming languages and application domains (e.g. databases and embedded
systems). Based on this aspect, there are: a) domain specific solutions (suitable for
one particular domain, not applicable to others); b) flexible or retargetable

D. Boji¢, D. Velasevié / A Classification of Reverse Engineering Tools 267

solutions (that can be adapted by the user to another domain. e.g. by adding a new
language parser), and ¢) general solutions that can be used for multiple domains
without the need for modifications.

Assessment of the underlying methodology
The number of different analysis techniques used by the tool.
Does the tool analyze static and/or dynamic aspects of the system?

Scalability - the ability to analyze both small and big systems equally efficiently.
What is the biggest system that can be analyzed with acceptable tool performance?

Automation level - does the tool use a manual, semiautomatic or fully automatic
technique in system analysis?

Use of information of a different kind - whether the tool uses, besides syntactic-
semantic Information from code, other sources of information such as
documentation, comments, etc.

Is there the possibility of a partial match of information in cases when a full match
with a desired programming concept is not possible?

The eriteria for ease of use include:

Ease of learning - whether the tool has an interactive learning support; whether a
small number of basic commands cover a large percent of tool functionality; how
much time i1s needed to learn this basic set of commands; whether the tool has
context-sensitive help.

Interactivity - whether easy navigation and selection of information is provided:;
whether the user interface includes graphies, sound, icons.

Customizability - whether the main elements of the user interface are
customizable.

Active support - whether the tool caches most frequent user operations; 1s it
passive, so that actions are initiated by the user only, or active, so that some
actions are suggested by the tool.

Workgroup support in a centralized and distributed environment - are there
mechanisms for the transparent use of distributed information? Is there
configuration control and version control support?

Polymorphism of commands - whether the tool has a large number of commands
with specific labels or a limited number with clear semantics that can operate on
various kinds of objects and collections of diverse objects. For example, whether
there are separate commands for copying a graph and copying a text, or the same
copy command can be used for a selection that contains both graph and text).

Predictability and error correction - whether there i1s a warning preceding the
execution of all potentially dangerous commands; whether the undo operation is
supplied.

268

D. Boji¢, D. Velasevié / A Classification of Reverse Engineering Tools

The criteria for extensibility include:
The possibility of supporting conceptual domains which are not initially built-in.

The possibility of supporting analysis methods which are not initially built-in (e.g.
adding a new language parser).

The possibility of supporting a new kind of information presentation.
The possibility of adding new functionality (open software architecture).

The eriteria for robustness include:

Tolerance to errors in the input data and detection of inconsistency in internal
data caused by some external action (e.g. editing a source file by some external
editor).

Analysis exactness and compatibility with the standards of the methodology used
(e.g. whether the tool correctly calculates pointer aliasing information)

Low level of failures and self-instrumentation - built-in mechanisms of self-testing
and logging of the failure situations.

Vertical compatibility between different versions of the tool; whether a tool can use
old version data; whether a new and old version can coexist at the same time in the
system.

The criteria for environment fitting include:
The use of methodology, presentation and vocabulary already known to the user.

The command set of the tool should not be in conflict with command sets of other
tools used by the user (e.g. commands with the same name and a different
behavior). |

Tool availability on the user's hardware/software platform; operation with the
satisfactory performance level; easy installation.

Interoperability, that is, the tool's ability to exchange data and cooperate in other
ways with other tools. Generally, there are strongly coupled environments where
tool Interaction is programmed into each tool, and loosely coupled environments
where standard data formats and communication mechanisms are used by each
tool.

The criteria for the level of support include:

The history of the tool and the producer's reputation - whether the tool is known
and mature and there are known uses in areas close to user needs: whether the
future of the producer and tool support is ensured.

Is there a possibility of obtaining the source code? Are there any possible
limitations on using products created by the tool?

Is there enough support for installing, training, on-line troubleshooting, and
maintenance? At what rate are new versions released?

1. Bojic, D. Velasevié / A Classification of Reverse Engineering Tools 269

3.2. Quantitative evaluation

We shall now highlight the evaluation process. A brief evaluation is made
when time consiraints preclude s detailed evaluation or when a credible. expert user
can effectively summarize the tool's usefulness or uselessness. It answers the question
how well the tool performs. The brief report has to include the tool's rood and bhad
points and cominents about the nuture of the evaluation and any pertinent, crucial
points about the product or vendor

Quantitative assessment 1= performed when we need a detailed or comparative
analysis of one or more tools. To make sure the assessments are fair, several
assessment practitioners should be assigned to the same tool. To establish credibility,
the tools should be applied on scaled down versions of real projects, thus obtaining a
more realistic assessment of what the tool can actually do.

The assessment instrument A is the set of questions qi" , based on criteria
from the previous section, categorized in six categories C, plus one additional category
for other specific criteria not covered by the existing six categories:

Ci Ci Ci
A= UC; ’ C;’ I ‘:QI 42 5 qp;
1e7e.7
where n; 1s the number of questions in category C;. Each assessment practitioner

should be trained on how to use the weighted assessment instrument and 15 assigned a
set of tools to classify and evaluate. Each category (not a particular guestion) is
assigned a relative weight We in percents, based on the user's requirements, for

example, to emphasize functionality by weighting 1ts questions 307% over robustness
(5%).

The practitioner then evaluates each tool, giving one of three possible scores
.S(qf‘)e{Oﬁ.lO} for each question qj’" to limit the amount of subjectivity. The
weighted score S(C;) in each category C,;, and the overall score S(A) are obtained as
follows:

S(C))=W¢, ¥.S@}"), S(A)= ¥ S8(C;)

1+ jeni 1-i-7

The maximum score S .. (C;) in each category C; 1s the score a tool can
achieve if it receives the maximum points allowed on each question in (’, . The median
score S, .q(C;) in each category C; is the arithmetic average of scores S(C;) in
category C; of all tools that are currently being evaluated.

Category scores are plotted as a line graph, like the one in Fig. 5, to provide a
pictorial representation of the result. Figure 5 shows that Tool X scored a little above
the median in ease of use, robustness, ease of insertion, and "other." in this case, the

268

D. Boji¢, D. Velasevié / A Classification of Reverse Engineering Tools

The criteria for extensibility include:
The possibility of supporting conceptual domains which are not initially built-in.

The possibility of supporting analysis methods which are not initially built-in (e.g.
adding a new language parser).

The possibility of supporting a new kind of information presentation.
The possibility of adding new functionality (open software architecture).

The c¢riteria for robustness include:

Tolerance to errors in the input data and detection of inconsistency in internal
data caused by some external action (e.g. editing a source file by some external
editor).

Analysis exactness and compatibility with the standards of the methodology used
(e.g. whether the tool correctly calculates pointer aliasing information)

Low level of failures and self-instrumentation - built-in mechanisms of self-testing
and logging of the failure situations.

Vertical compatibility between different versions of the tool; whether a tool can use
old version data; whether a new and old version can coexist at the same time in the
system.

The criteria for environment fitting include:
The use of methodology, presentation and vocabulary already known to the user.

The command set of the tool should not be in conflict with command sets of other
tools used by the user (e.g. commands with the same name and a different
behavior). '

Tool availability on the user's hardware/software platform; operation with the
satisfactory performance level; easy installation.

Interoperability, that 1s, the tool's ability to exchange data and cooperate in other
ways with other tools. Generally, there are strongly coupled environments where
tool interaction 1s programmed into each tool, and loosely coupled environments
where standard data formats and communication mechanisms are used by each
tool.

The criteria for the level of support include:

The history of the tool and the producer's reputation - whether the tool is known
and mature and there are known uses in areas close to user needs: whether the
future of the producer and tool support is ensured.

Is there a possibility of obtaining the source code? Are there any possible
limitations on using products created by the tool?

Is there enough support for installing, training, on-line troubleshooting, and
maintenance? At what rate are new versions released?

268

D. Boji¢, D. Velasevié / A Classification of Reverse Engineering Tools

The criteria for extensibility include:
T'he possibility of supporting conceptual domains which are not initially built-in.

T'he possibility of supporting analysis methods which are not initially built-in (e.g.
adding a new language parser).

The possibility of supporting a new kind of information presentation.

T'he possibility of adding new functionality (open software architecture).

The eriteria for robustness include:

Tolerance to errors in the input data and detection of inconsistency in internal
data caused by some external action (e.g. editing a source file by some external
aditor).

Analysis exactness and compatibility with the standards of the methodology used
(e.gz. whether the tool correctly calculates pointer aliasing information)

Low level of failures and self-instrumentation - built-in mechanisms of self-testing
and logging of the failure situations.

Vertical compatibility between different versions of the tool; whether a tool can use
old version data; whether a new and old version can coexist at the same time in the
system.

T'he criteria for environment fitting include:
The use of methodology, presentation and vocabulary already known to the user.

T'he command set of the tool should not be 1in conflict with command sets of other

tools used by the user (e.g. commands with the same name and a different
behavior). |

Tool availability on the user's hardware/software platform; operation with the
satisfactory performance level; easy installation.

Interoperability, that is, the tool's ability to exchange data and cooperate in other
ways with other tools, Generally, there are strongly coupled environments where
tool interaction is programmed into each tool, and loosely coupled environments

where standard data formats and communication mechanisms are used by each
tool,

The criteria for the level of support include:

T'he history of the tool and the producer's reputation - whether the tool is known

and mature and there are known uses in areas close to user needs: whether the
future of the producer and tool support is ensured,

Is there a possibility of obtaining the source code? Are there any possible
limitations on using products created by the tool?

I8 there enough support for installing, training, on-line troubleshooting, and
maintenance? At what rate are new versions releasod?

). Bojig, D. Velasevic / A Classification of Reverse Engineering Tools 269

3.2. Quantitative evaluation

We shall now highlight the evaluation process. A brief evaluation is made
when time constiraints preclude s detailed evaluation or when a credible, expert user
can effectively summarize the tool's usefulness or uselessness. It answers the question
how well the tool performs. The brief report has to include the tool's rood and had
points and comunents about the rnuture of the evaluation and any pertinent, crucial
points about the product or vendor

Quantitative assessment 1= perforimed when we need a detailed or comparative
analysis of one or more tools. To make sure the assessments are fair, several
assessment practitioners should be assigned to the same tool. To establish eredibility,
the tools should be applied on scaled down versions of real projects, thus obtamning a
more realistic assessment of what the tool can actually do.

The assessment instrument A is the set of questions qff"'- , based on criteria
from the previous section, categorized in six categories C, plus one additional category
for other specific criteria not covered by the existing six categories:

Ci Ci Ci
A= UC;) C;‘ - {(Il 42 5 qn
1.1-7
where n; i1s the number of questions in category C,;. Each assessment practitioner

should be trained on how to use the weighted assessment instrument and 15 assigned a
set of tools to classify and evaluate. Each category (not a particular question) is
assigned a relative weight Wy in percents, based on the user's requirements, for

example, to emphasize functionality by weighting its questions 307% over robustness
(5%).

The practitioner then evaluates each tool, giving one of three possible scores
S(qf‘)e{015.10} for each question qj’" to limit the amount of subjectivity. The
weighted score S(C;) in each category C,;, and the overall score S(A) are obtained as
follows:

S(C)=W¢, Y.8@}"), S(A)= ¥ S(C;)

1« joni 1-0-7

The maximum score S . (C;) in each category C; 1s the score a tool can
achieve if it receives the maximum points allowed on each question in (, . The median
score S, .q4(C;) in each category C; is the arithmetic average of scores S(C;) in
category C; of all tools that are currently being evaluated.

Category scores are plotted as a line graph, like the one in Fig. 5, to provide a
pictorial representation of the result. Figure 5 shows that Tool X scored a little above
the median in ease of use, robustness, ease of insertion, and "other." in this case, the

270 D. Bojié, D. Velasevic / A Classification of Reverse Engineering Tools

assigned weights clearly show that functionality is the top priority, followed by ease of
use.

100
Smed(Ch)
80 ‘
o 70 = = '
-
S =
o
BAE geiltiraiare B / =
£, \

.5 40 T - \ = 1
= 30 \ : [
. \/ _ .

10 A DN,
0 Pe——————-— T Y
> D & N & Q &
O“ 39\ oc'ss\ e‘”\é Q{b R,;;))
& MGQ’ O QC.IQ' ,,;g‘ ,»}O
9 Qj" 2 Q} QO \}:&

Figure 5: Sample tool evaluation graph

In the final step, the evaluator takes the results of the assessment, extracts
the critical and essential characteristics according to the user's requirements, and

completes a tailored summary of what the score really represents. Table 2 shows the
taillored summary of Tool X in an abbreviated format.

Table 2: Tailored summary of tool X

Calegory S . (C;) Smed (C;) S(C;) Comments
24 15

Ease of use 17 Has good user interface, but

‘ J _ keys can t be tailored...
Extensibility 23 14 13 Could be upgraded to network

. _ | version...

Robustness 11 8 8 There is vertical compatibility

| | | | between versions...
Functionality 88 50 57 Supports the methodology well,

_ | | r but does not do...
Environment 10 6 6 Has good installation procedures,
Fitting _ . | | but is available only for...
Level of 24 16 12 There 1s maintenance, but no
support 1 | | bhotline...
Other | 4 | i brniagtle s il | High cost...
Overall score Snm (A)=184 Sped(A)=1138 S(A) =117

l

D. Bojic, D. Velasevi¢ / A Classification of Reverse Engineering Tools 271

4. CONCLUSIONS

While there is a great need for automating arduous and costly maintenance
and reengineering activities, there are also obstacles to adopting new tools and
techniques. Frequently, potential users are not aware that there exists automated
support for the kinds of tasks they perform. Therefore, we tried to increase this
awareness by enumerating the application areas for reverse engineering tools in the
first part of this paper. Other common factors that impede tool adoption include
unsystematic and superficial tool selection and evaluation, which results in buying an
inappropriate tool. Hence, we are presenting a framework for quantitative tool
evaluation that for the most part eliminates subjectivity from the evaluation process,

thus increasing the probability of selecting the appropriate tool that will actually fit the
needs of the user.

Tool evaluation can continue after the tool has been introduced into regular
use by collecting and comparing the productivity and quality statistics of the
reengineering process, before and after the tool's introduction, to estimate whether it
lives up to expectations.

REFERENCES

(1] Ahrens, J. D., and Prywes, N. S., "Transition to a legacy- and reuse-based software life cycle”,
IEEE Computer, October 1995, 27-36.

[2] Caldiera, G., and Basili, V. R., "Identifying and qualifying reusable software components’,
IEEE Computer, February 1991, 61-69.

[3] Firth, R. et al, "A guide to the classification and assessment of software engineering tools’,
Technical Report CMU/SEI-87-TR-10, Software Engineering Institute, Carnegie Mellon
University, 1987.

[4] Fuggetta, A, "A classification of CASE technology", IEEE Computer, December 1993.

[S] Information Technology - "Guide for ISO/IEC 12207 (Software life cycle processes)”, Draft
Tech. Rpt. PDTR 15271, ISO/IEC JTC1/SC7T/WGT7 N94, International Organization for
Standardization, 1996.

(6] Kemerer, C. F., "How the learning curve affects CASE tool adoption”, IEEE Software, May
1992, 23-29.

(7] Lejter, M., Meyers, S., and Reiss, S. P., "Support for maintaining object-oriented programs’,
IEEE Transactions on Software Engineering, 18 (12) (1992) 1045-1052.

(8] Mosley, V., "How to assess tools efficiently and quantitatively", IEEE Software, May 1992, 29-
32.

9] Miller, H. A., "Understanding software systems using reverse engineering technologies
research and practice", A tutorial presented at ICSE-18 18th International Conference on
Software Engineering, Berlin, Germany, March 25-29, 1996.

(10] Olsem, M.R., and Sittenauer, C., Reengineering Technology Report, Soltware Technology
Support Center, OO-ALC/TISEC, 7278 Fourth Street, Hill AFB, UT 84056-5205, 1995.

(11] Tilley, S. R., and Smith, D. B., Perspectives on Legacy System Reengineering, Soltware
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213-3890, 1995.

