
Yugoslav J ournal of Operations Research
H (1HHH J, Number 2,257-271

A CLASSIFICATION OF REVERSE ENGINEERING TOOLS
AND CRITERIA FOR THEIR EVALUATION AND SELECTION

Dragan BOJIC, Dusan VELASEVIC
University of Belgrade, Faculty of Electrical Engineering

Buleoar Heuolucij e 7.'3, 11120 Belgrade, Yugoslavia
IbO';;I;, velaseoic I((/lbuerJ L etf. bg .ac.yu

Abstract: In the current t rend of evo lutionary software life cycles and the reuse of
software com ponen ts, great emphasis is pu t on to the reverse engineering and
reengineering of exist ing software systems. This paper presents a classification of
commercial tools that su pport reverse engineer ing and reengineering activities . TIll'
tools are classified according to the domains of their application : main tenance, reverse
design, redocumentation , metrics analysis , restructuring, objectificat ion, reusable
component extract ion, etc. Also presented is a general framework for the process of
reverse engineer ing too l eva luation and selection by a potent ial user with emphasis on
the criteria for their qu ant ita tive evaluation.

Keywords: Software engineering, reverse engineeri ng, software tools classiticat ion, softwa re tool

evaluation .

1. INTRODUCTION

In the modern process of software production , the maintenance and functional
enhancement of existing systems represent sign ificant and costly activities in their
en t ire life cycle. i t is estimated II II that 30-35% of total life-cycle costs are consumed in
t rying to understand software after it has been delivered and ma ke changes
representing 60-70% of maintenance costs. The number of complex systems built from
scratch is steadily decreasing, while a t the same time there are more and more legacy
systems in every area of com puter usage.

•

Program understanding is the process of developing mental models of /I

softwa re system's intended architecture, meaning, and behavior 141 . Program
understanding is accomplished by the reverse enginee r ing process , which consists of
the following activities:

258 D. Bojic, D. Velasevic I 1\ Class ifica t ion of Reverse Engineering Tool s

1. Model : Const ruct domain-specific models of the application using conceptual
modeling techniques .

2. Extract: Gather the raw data from the subject system using the appropriate
extract ion mechanisms.

3. Abstract: Crea te abstractions that facilitate program understanding and permit
the navigation , analysis, and presentation of the resultant information structu res.

Reverse enginee r ing is a constitutive element of software reengineering . the
process of examin ing and altering a subject system to reconstitute it in a new form , to
improve one's understanding of software, or to prepare or improve the software itself
for increased maintainability, reu sability, or evulvability Wig. 1). The activities and
tuols described in this paper are conceived to support the process uf understanding
legacy systems and transforming them intu evolu t iona ry systems 151 - systems which
are adaptable to changing functional requirements and the implementatiun uf
technology throughout their ent ire life cycle .

2. APPLICATION AREAS

The application areas fur reverse engineer ing and reengincering tuuls include
softwa re maintenance , redocumentatiun, design recovery, metric analysis ,
restructuring, sou rce code translation, migration tu another hardware
platform/operating system, objectification, reu sable component ext raction , year 2000
problem solving and others 141 . Table 1 presents some basic data about several popular
tuo ls classified according tu their main functionality , based on 11 j, WWVv and toul
documentation . The rest of the section is concerned with a shor t description of the
application areas of these touls .

• •

recngmccnng

/

IInp lenient atitl\l

• •

engmccnng

forward

design

iIII Plen rent aI ion

•restructun ng

res tructuring

•

rest ruetunng

•

'l: tj ul rl:

m cnts

design

reverse
• •enginccn ng

ex Isung systern largd sysk ill

Fil-.'Urc I: Softwa re rocugineering

D. Bojic, D. Velasevic / 1\ Classificatio n of Reverse Enginef'rin g Tnnls

2.1. Software maintenance

~ii!J

These tools are mean t to suppor t the activities uf corrective, perfective and
adaptive ma in tenance of large software systems. These tool s maintain the central
repository of information about a system structure formed in the process of the stat ic
analysis of program code . The information may be presented in variou s form s:

• Cross-refe rence reports (e.g. the list of a ll fu nctions that use a certain globa l
va r iable)

• Various presentat ions of the system st ructu re (contro l flow graphs , data flow
graphs, call hierarchy graphs, class h ierarchy graphs, data dictionaries ,...)

• Metric data etc.

Table 1: Selected reverse engineering and reengineering tools

Manufacturer tool language platform application areas

DBSta r , DBStar from DB~ into Sun database design , data
Inc Oracle, Sybase. reengi neering, business rule

... ext ract ion

Rational Rational Rose C + + Windows, Unix object -orient ed forward a nd
reverse dasi n

Hewlet t - AdaFormat I\da IIP-UX reformatti ng

Packard

Reasoning Software Ada, lIP UX, set of tool genera to rs for

Systems Refinery FORTRIU'\; , IBM/AIX, Su n reverse e ngi nee r ing and
COBOL, C, ... as • •reengi neerin

VERILOG Logiscope more that 35 UNIX, VMS, metrics, testing - co ve rage
IBM/MVS, .. . analysis

•

McCabe Visual Ada, C, C + +, VI\X/VMS, integrated e n viro n me nt:

Toolsets COBOL, Pascal , Sun/Spare, • •metrrcs, restructurmg,
FORTi\N, ... DEC/Ultrix, ... reu sable component

ex tract ion ,...

Cadre E nsemble C AIX, Sun OS, Integrated forward and
ULTRLX • •reverse engmeerrng

environment

Viasoft , E xisti ng various COBO L IBM/MVS , integrated environment for
d ial ects Windows •

Inc. Systems mainte nance,

Wor kbench redocumentation and
restructu ring

General ENCORE from Su n Spare sou rce code translat ion,

Electric FORTRIU'\' into restru ctu ri ng

ADA

Xinotech 2001 COBOL Windows , Analysis and transformations
OS/2 , Unix to solve year ~OOO problem

•

Xinotech Object from FORTRI\N Windows, tran formati on ,

Abstractor COBOL into Ada, OS/2, Unix objecti fi cat ion , reusable

SmallTalk, C + + components ext raction

260 D. Boj ic, D. Velasevic / A Classilication of Reverse Engineering Tools

Built-in editors typically possess a hypertext-like navigation functionality (e.g.
by select ing a function name it is possible to locate the function definition in the sou rce
listing). Navigation through graphical presentations of the system st ructu re is also
provided.

The functionality of select ing and filtering information is very important
because of the t remendous amount of data-generated for a large system. Tools typically
provide a number of predefined queries, e.g. to display a selected function and its
immediate successors in a hierarchy call graph. Some tools (e.g, SMARTSystem)
support u er defined qu eries in the information database.

Special attention is paid to maintaining the consistenr..-y of the database while
changes to the code are being made, by incremental parsing technique and tracking the
changes.

Maintenance suppor t tools are frequently integrated with other reengineering
tools in main tenance and reengineering environments (Fig. 2 presents an example of
such an in tegration). lnteroperability with other development tools (debuggers,
emulators, compilers, version control systems, etc.) is usually provided.

•

2.2. Integrated development and maintenance environments

In recent times the functionality of maintenance tools is being integrated more
and more in software development environments as a su pplement to the main
functionality of compiling, edit ing and debugging programs, An example of such an
in tegrated environment is Microsoft Visual + + . In these envir onments, there is
rela tively modest su pport for reverse engineer ing activities - basic st ructure
presentation a nd navigation functionality.

•

2.3. Reverse engineering subsystems in design support tools

Tools that su pport requirement analysis and software design phases achieve
va r ious manipulations with specifica t ions (crea t ing, updating, consistency checking and
animating) and source code generat ion based on certain design methodology. More
recent tools embody a reverse engineer ing component that is used to update design
specificat ions after the cha nges are made to the source code outside the design tool.
'I'he scope of th is analysis is typically limited to systems with already exist ing
sp scificatic ns . e.g. the a nalysis uses the design information built in the code in the
form uf comments.

2.4. Redocumentation
..

Hedocumentatiun is the oldest form of reverse engine ning. It deals with
creating dosign sp scifi ca t ions from the ixist ing source cod ' . The tool output mainly is
in the form of a textua l doeum nt that describes the st ru ctu ral aspects of the system

VIA/Renaissance

VI NSmart Test

VINSmart Edit

Existing
Systems

Analytical
Engine

Application
Knowledge
Repository

VINlnsight

Application
Definition

Facility

Visual Recap

YINAlliance

2.5. Metric analysis

Numerous metric parameters are defined and used in practice tu assess size,
complexity, quality, maintability and other code parameters, the impact of change in
one part of code to the rest, to identify reusable components 121 etc, For example,
McCabe's Visual Quality Toolset calculates 20 different classical and 13 object-oriented
metrics. The data is presented in a graphical manner - using a structu re graph in which
modules are shown in different colors denoting different values for some metric
parameters (Fig, 3), '\

Figure 2: The st ructu re of Existing Systems Workbench integrated environment

Restructuring is the transformation from one representation form to another
at the same relative abstraction level , while preserving the subject system's external
behavior (funct ionality and semant ics), .

2.6. Restructuring

D. Dojic, D. Velasevic I I\. Classification ofReverse E ngineering Tools :l61

and is formatted according to some of the standards for software documentat ion (e.g,

MIL_STD 498), Some tools use special comments embedded in code to document the
functional aspects of the system, Documentation in electronic form is mainly hypertext
like, and often can be exported in format that is recognized by some design tuol.

=

D, Bojic. IJ, Velnse vi :' I A Clusai fi cnt.io n o r Heve rse 8 ngi n lcw r ing T ool s

On-Screen Battlemap
[li e ~Iew I Oll is Metri cs IIUOnG Uelp

Pr Ot)roim I"n , SI ..ndard Mod. 'D~slgn Vo"ion ' 0,0)

S"'t ~m M~trlos ' so. 8S,5 1.77, ObjvctS I. 71 [main root; commands]
Cololm9 on memes tvC} and \/9 fpf im.' IJ 's \'cond "'~l

f<'iJ,.'Urc :1: Gra ph ica l presenta tion of metric data

T IH' s im plest 1'0 1'111 of restru ct.m-ing is code re fo rmatting (pret ty-pr int ing)
includi nu 'odl' indontntiun , idont ifier cupita lizution, keywords marking e tc, A
s ijrn ificn n t form o f rostruct u r ing is sou rce code t rn ns lation . t he t rn ns fo ruuition from
one progrnnuni ng' IlIn/-,'1.II\g'(' to a noth ' I' (c.g. 1'01'11I C0l:30 L to ADA >UI' 1'1'0111 one version
of some langl.l llg'l' to a nothe r dialect of the same lunguugo. Another kind of
rest. ru ctu ring is rl' tlll'g'l' ting' · m igrnt. io n to unothor con figu ra t.ion or target platform. Yet

a not ho r ki nd o f rostru ctu r uu; is ruun o SPlICl' rntio nu lizutio n - os tnblis h ing' a uniform
ruu n ir u; cuuvr-nt iu n for lo /-,,;clllly HI II I\(' duta lICroHHvmiuus SyHtl'1II COIll P0I\(' IIt.S,

2.7. Ohjcet.ificlltion

Prog'1'lI1II ohjl' .t. ifi cnt. inn invo lves trn us fo rmnt.iun of t ho procedural progriun in

II fun ctionn lly oq u ivn lc nt pl'Og'l'lII n ill o bjcct-o rionu-d sty le, in to 1I110 tl ll'1' progranuning'

hlllg'lIl1g'1' 01' into thl' 1II0)'{ ' l'l'Cl'n t di nloct of till' sum o 11I1I /-,'1.IIIg'l" Ohjl' .t -u r ic n tcd s ty le

1I 11 'III1H t hat : 1I) Llu- pl'll /-,'l '1II 1l s tru .t u re is defined by t ho s t ructu re of its ChlSHl'H ; h) the

n -dundu ncy of n ' llltio nHhot woon c1l1 HHl'H iHm in imul ; c) pl'O/-,'l 'lIl11 hohnvior is dctormincd

by II11' lilOdH lIHHocilltl'd to c1l1HHI'H, II l1d d) dl' llIyl'd h inding' is u sod to nvoid Hl,ll' 'lillg' 1I

pll 'CI' of codl' stut. icn lly ill l'lIHl'H who u t111'n' lin' 1II01 'l' vari nn ts o f illlpll'III('IIt.ing HOlII l'
funcuo 1I 111 i ty .

•

•

D. Bojic, D. Velasevic / A Classification of Reverse Engineer ing Tool s 263

For example, Xinotech's Object Abstractor tool su pports the process of
transforming procedural programs to object-oriented Ada 95 programming language.
The process involves restructuring data types and subtype derivation, data grouping,
identifying methods and object candidates from program fragments using var ious
strategies and redesigning the resulting packets (Ada's equ ivalen t to classes) to achieve
a satisfying level of reusability. The tool embodies a knowledge base in which
progranuning cliches, information abstraction and program transformation rules are
stored. The rules are written in XPAL language (Xinotech Plan Abstraction
Metalanguage).

2.8. Reusable components extraction

The concept of software reuse concerns the mass production of software
components to form a repository from which they can be selected and combined in
more complex components or used to develop a new software system 11]. The objective
is to achieve a more productive software development process and to improve the
quality of software products. The development of a huge component repository from
scratch is a great initial investment, and a viable alternative is the extraction of
components from existing systems. The concept of reusability applies not only to code,
but also to design and architecture solut ions.

The process of the extract ion of reusable components from exist ing system is
termed reuse reengineering. It consists of the following activities:

• analysis of an existing system to identify candidates for reusable components

• modification of extracted components to decouple them from the rest of the
system

• creation of a functional specifica tion for the ext racted components

Components are stored in a repository from which they can 8e selected
according to the required functionality . Techniques used to identify components and
functionally describe code include st ructure methods based on metrics , based on
programming cliches and formal methods.

2.9. Year 2000 problem (Y2K)

The problem of incorrect manipulation with dates is technically limited , but
economically very significant; it is estimated that the worldwide cost of its elimination
could approach several hundred billion dollars and the time to solve it is limited.
Although the problem mainly affects information systems, it also st r ikes hardware,
operating systems, embedded and communications systems and all other computer
systems that operate with dates. The problem involves the following implementation
errors:

• Representing the year with a two-digit number.

•

•
•

D. Bojic, D. Velasevic / A Classification of Reverse E ngineeri ng T ools

Incorrectly calc lating leap years.

Hard-coding the prefix 19_in code, or using the date field to code 'magic numbers'
(e .g. 99 means 'never delete this record').

T he overflow in the field for storing a complete date.

There are a number of different techn iques to solve these problems depending
on whether there is a sou rce code for the system and whether the date format is
extendible: extending the date field, coding in the same fie ld but in the binary system.
bridging componen ts inside which no change is being made, etc. Modifications are
needed not only in data processing modules, but aloin inter face modu les (e.g. da te
en trv fi elds).,

Customized tools to su ppor t the elim ina tion of Y2K problems estim ate the
amount of affe cted code" loca te the program fragmen ts that need change, automatically
make changes and verify changed code using standard reverse engineering techniques.

2.10. Meta tools

Meta 1.001£ are used to creat reverse (igme ring and r engin er ing tools . One
of the well-known too l ets in thi category I Rea s In 'l~ _ S ems' of ware Refinery, It
consists of three tools: DlALE T i ' used t il gl' ne .. I I' syn tax-seman t. re nalyzers for a
particu lar language , I{EFI N ' is used to ~PllerH v data repository . ubsy tern, and
INTERVISTA is u sed to generate 11 U "'P in t. rfa - sui) .. tern (F ig 4),

3. TOOL SEL CTIO AND EV J r TION FRAMEWORK

The CASE tools market is in exp 1Il I' 1 a use t.hore IS a -loa r ly expressed
need in the sofr wm c indu st rj t il U', t ill' ' ~. fi ll I " II ' rodu c ion expenses a nd improve
programmer producti ity BUrl S It ware '1U III ~ " I . \ f other hand, t e rosults from
everal studio Ii'll show tha t thei e ar obst: cles III I! I t ing this ('Ch110 10 tv in pracuce.

A survey of severa l hundred soft ar« \:.JIl panie. h." . hown that Ii :: han 25% of
personn I usps any tool. year after introduction , 70'1{ of the tools mop not used lit. a ll,
25% of the to ols a re used hv II sm a ll percent of t h» .,l llff, lind onl flC}; of the tools woe
widely used , hil t not in the ir full . ipacity Th is 1 ° main ly caused by mistakes made
when se lect ing appro prmt« tools und by underos timatuig the effect 0 1 m rodu 'ing J\l' W

technology. Th.. lea rn ing curve shows that I I oriod of 6 to 12 months is needed fo r
productivity to gain the same II' IllS before th« ini mductiun of II 11l'\\' ech nology, and
productivity im proves on ly after that period .

Far 1,(10 oft. in , tool IISSPSRl11 mts li re completed hy tho produ it's vendor or by
someone who :

• just scans the hro -hun's li nd user 111a IIIIII I,

• is u n fa milia r with tho tool's mot.hods ,

:.W5

TA

I I

/

,

\.. ~ ~_~J
y

I TERVI

edit

display

a na lvzc
•

par e

Figure 4: Software Refinery toolset

D. Bojic, D. Velasevi c I A Classificat io n of Rever e Engineering Too ls

Input
ource
Files

Object Ba e
unparse

Output
ource
Files

transform

\.. J \..
V V

DIALE T REFI E

• lacks an understanding of the project or user requ irements, or

• uses the too l for a 30·day trial on useless examples that fa ll shor t of testing the
tool's functionality ,

• preparation

• evalua t ion and select ion

• pilot project

• t ransition

The process of in troducing a new tool into regu la r use is composed of the
following activities:

To elim inate these problems, the oftwarc Engineering Inst itu te of larn 'brie
Mellon University a nd the Westinghouse oftware Tools Evaluation 'ommittee have
esta blished a general framework for CASE tool eva luation and adoption process ' s 131,
18 J. In this sect ion , the specific cr iter ia for the evaluat ion of I' ' verse engineer ing tool
are discussed, in accordance to the general framework.

During the preparation activity, the general object ives and organizational
aspects of the whole process are established: resources and process dynamics . The
evalua t ion and select ion activity is performed in the following phases:

• Needs analysis , to establish the purpose for which the tool will be used.

• Analysis of the existing environmen t to establish various technical, economical and
other limitations in tool se lect ion. .

266 D. Bojic, D. Velasevic / A Classificat ion of Reverse Engineering Tools

• Establishing a list of candidates and their categor izat ion, that is, determining their
functionality.

• Evaluation of candidates; the assessment criteria a nd methods fo r their estimation
are defined.

• Tool selection on the basis of a integral cr iterion.

The purpose of the pilot project is to provide a realistic trial of the selected too l
in the target environment. That shou ld be a project of lim ited value and duration, with
typical requirements . It shou ld confirm the usability of the too l and generate
information needed to plan the transition process .

The transition process involves planning activity on how to in troduce the too l
progressively into wider use, organize t raining, track the in t roduction and finally
est imate the success of tool in troduct ion.

•

3.1. Tool evalu at ion criteria

The structured cr iter ia for reverse engineer ing tool evaluat ion defined in the
rest of the section can serve as the basis for quant ita tive assessment. The assessment
process involves defining the relative weight factors for each criter ion in accordance to
user preferences, defining exper iments to estimate the level of criteria satisfaction,
conducting experiments on each candidate tool and com put ing the integral evaluation
fo r each tool.

The assessment categor ies include:

• functionality

• ease of use

• extensibility

• robustness

• environment fitt ing

• level of su pport

The crite r ia of functionali ty include:

•

• Types of activities that are supported by the tool (design recovery ,
redocum entation, re mginee ring, ...)

• The level of a bstraction: does the too l su pport a system modeled on a structu ral,
d 'sign or functional level?

• Support for mul tiple knowledge domains: does the too l su pport multiple>
prugranuning langu ages a nd application domains (e.g. databases a nd embedded
systems). Based on th is aspect, there are : a) domain specific so lu t ions (su itahle for
one pa rticu lar dom a in, not a pplicable to others); b) fl xihle or retargotnble

D. Bojic, D. Velasevic I /\. Class ifica t ion 01" Reverse E ngineer ing Too ls ~(j 7

solu t ions (that ca n be adapted by the user to another domain , e.g. by adding a new
language parser), and c) general solut ions that can be used for multiple domains
without the need for modifications.

• Assessment of the underlying methodology

1. The number of different analysis techniques used by the tool.

2. Does the tool analyze sta t ic and/or dynamic aspects of the system?

3. Scalability - the ability to a nalyze both small and big systems equally efficiently.
What is the biggest system that ca n be analyzed with acceptable tool perfo rmance?

4. Automation level - does the tool use a manual, semiautomatic or fu lly automatic
technique in system analysis?

5. Use of information of a different kind - whether the tool uses, besides syntactic
semant ic information from code, other sources of information such as
documentation, comments , etc.

6. Is there the possibility of a partial match of information in cases when a fu ll match
with a desired programming conce pt is not possible?

The criteria for ease of use include:

• Ease of learning - whether the tool has an interactive learning support; whether a
small number of basic commands cover a large percent of tool functionali ty; how
much time is needed to learn this basic set of commands; whether the tool has
context-sensitive help.

• Interactivity - whether easy navigation and selection of information is provided ;
whether the u ser in terface includes gr aphics, sou nd, icons.

• Cu stomizability - whether the main elements of the user in terface ar e
custornizable.

• Active su pport - whether the tool caches most frequent user operations: is it
passive , so that actions are initiated by the user only, or active , so that some
actions are suggested by the tool.

• Workb'1'OUP su pport in a centralized and distribu ted environment - are there
mechanisms for the t ransparent use of distribu ted informat ion? Is there
configuration control and version control su pport?

• Polymorphism of commands - whether the tool has a large number of commands
with specific labels or a limited number with clear semant ics that can opera te on
various kinds of objects and collections of diverse objects. For exam ple, whether
there are separate commands for copying a graph and copying a text, or the same
copy command can be used for a select ion that contains both gr aph and text) .

•

• Predictability and error correction - whether there is a warning preceding the
execu t ion of all potentially dangerous commands; whether the undo operation is
su pplied.

268 • D. Boj ic, D. Velasevic I A Classificat ion of Reverse Engin eering Tools

T he criteria for extensibility include:

• T he possibility of su pport ing conceptual domains which are not initially built-in .

• The possibility of su pporting analysis methods which are not initially built-in (e.g.
adding a new language parser).

• The possibility of support ing a new kind of information presentation .

• The possibility of adding new functionality (open software architecture).

T he cr iter ia for robustness include:

• Tolerance to errors in the input data and detection of inconsistency in internal
data caused by some external action (e.g. editing a source file by some external
editor).

• Analysis exactness and com patibility with the standar ds of the methodology used
•

(e.g. whether the tool cor rect ly calculates pointer aliasing information)
•

• Low level of failures and self-instrumentat ion - built-in mechanisms of se lf-test ing
and logging of the failure situat ions.

• Vertical compatibility between different versions of the tool; whether a tool can use
old version data; whether a new and old version can coexist at the same time in the
system.

T he cr iter ia for environment fitting include:

• T he use of methodology, presentation and vocabulary already known to the user.

• T he command se t of the tool shou ld not be in conflict with comma nd sets of other
tools used by the user (e.g. commands with the same name and a different
behavior). .

• Tool availability on the user's hardware/software platform; operat ion with the
sat isfactory perfo rmance level ; easy installation.

• Interoperability , that is , the too l's ability to exchange data and cooperate in other
ways with other tools. Generally, there ar e st rongly coupled environments where
tool interaction is progr ammed into each too l, and loosely cou pled environments
where standa rd data formats and communicat ion mechanisms are used by each
tool.

T he crite r ia for the level of suppor t include:

• The history of the too l and the producer's repu tation - whether the tool is known
a nd mature and there are known uses in areas close to user needs; whether the
future of the producer a nd too l su ppor t is ensu red.

• Is there a possibility of obtaining the source code? Ar e there a ny possible
limita tions on using products created by the too l?

• Is there enough su pport for insta lling, t rain ing, on-lin' trou bleshooting, and
maintenance? At what ra te are new versions released?

I n OJle, D. Velasevi c \ ('In IIi a t Ion o f' Re \ erse Enginel'l'ing Tool

S(Ci) =We r.S((/·) ,S(A) = r.S(Ci)
, J

I ')- " i)· i · 7

I ., l' ti t! I ' JO II p I'OCeRR . A hrii-f eva lua t ion I::; IIWI!l

I pt;,ul"d l ' 'li lua t \()n or when a credible , I rpert 11<';(I

.I' se fulne 01 use lessness. It a nswer" till' quest 'II

I iof report hl . to include t ho too 1 '~ bood aud IJ<ld
In' o f th« evaluation lind a ny pr- rt inent , el l , ' d J

_ I Ci Ci Ci I, C, - lql ,q'2 ,q"i IA = UC i
I' , . 7•

where n i is the number of ques tions in category C,. Each assessment practiuoner

shou ld be trained on how to use the weighted assessment instru m ent and IS as signed a
set of tools to classify and eva luate . Each category (not a purticu lur qtu-st uin) is
assigned a relative weigh t We in percents, based on t he user's requirements, for

•

exam ple, to em phasize functionali ty by weighting its questions 30"1 over robustness
(5%) .

The assessment instr ument A is the se t. of ques t ion ' r/" , based on criteria
J

from the previous sect ion, categor ized in six categories C, plus one addrt rona l cate gor '

for other specific criteria not covered by the exist ing six categories :

3.2. Quantit tiv e ev uut.ion

Category scores m'e plotted as a line graph, like the one in Fig. 5, to provide II

pictorial representation of the result. Figure 5 shows that Tool X scored a lit tle above
the median in ease of use , ro bustness , ease of insertion, and "other." In t h is cas« . t he

The practitioner then evaluates each tool, giving one of three possihlo score"
C CS(q /) E{O.5.10 } for each question q / to lim it the amount ofsuh]ectivl ty . 'l'he

weighted score S(Ci) in each category G, , a nd the overall score S (A) are obtai ned as

follows:

The maximum score S max (G i) in each category C, IS the score a tool can

achieve if it receives the maximum points allowed on each question in (', . 'I'he median

score S med (Gi) in each category C, is the a rithmet ic average of scores S(C,) in

category C, of a ll tools that are cur ren t ly being evaluated.

W(' . • II 1 0 \' h It'hhglll
when time co I .. in t I' cluck
can effect ively, mn a rrze t he t ,

how well h Ill1 perform . '1'1
points and cr cn t: a bou tl
points a bout t nroduct 0 1' ('I

Quan native assessuien performed whe-n WI' need a dota ilod (,I' compar I lVI'

analysis of II or more too 0 make sure the assessments an' fa ir ',I vera l,
assessment pi ac rtu mers houlu it s igned to the same tool. To establish "rpdibilitv ,
the tools shou ld be applied on sca led down versions of real projects , thu s obtam mg a
more realistic assessment of what the tool can actua lly do .

268 • D. Bojic, D. Velasevic / A Classification of Reverse Engineering Tools

The criteria for extensibility include:

• The possibility of support ing conceptual domains which are not initially built-in.

• The possibility of supporting analysis methods which are not initially built-in (e.g.
adding a new language parser).

• The possibility of supporting a new kind of information presentation.

• The possibility of adding new functionality (open software architecture).

The criter ia for robustness include:

• Tolerance to errors in the input data and detection of inconsistency in internal
data caused by some external action (e.g. editing a source file by some external
editor).

• Analysis exactness and compatibility with the standards of the methodology used
•

(e.g. whether the tool correctly calculates pointer aliasing information)
•

• Low level of failures and self-instrumentation - built-in mechanisms of self-testing
and logging of the failure situations.

• Vertical compatibility between different versions of the tool; whether a tool can use
old version data; whether a new and old version can coexist at the same time in the
system.

The criter ia for environment fitting include:

• The use of methodology, presentation and vocabulary already known to the user.

• The command se t of the tool should not be in conflict with command sets of other
tools used by the user (e.g. commands with the same name and a different
behavior). .

• Tool availability on the user's hardware/software platform; operation with the
sat isfactory performance level; easy installation.

• Interoperability, that is, the tool's ability to exchange data and cooperate in other
ways with other tools. Generally, there are st rongly coupled environmen ts where
tool interaction is programmed into each tool, and loosely coupled environments
where standard data formats and communication mechanisms are used by each
tool.

The cr iteria for the level of suppor t include:

• The history of the tool and the producer's reputation - whether the tool is known
and mature and there are known uses in areas close to user needs; whether the
future of the producer and tool support is ensured.

• Is there a possibility of obtaining the source code? Are there any possible
limitations on using products created by the tool?

• Is the re enough support for installing, training, on-line troubleshooting, and
maintenance? At what rate are new versions released?

D. Bojic, D. V/Jlallf vic I A Clasai fl cnuon of' f{e VIJr8IJ E ngineer ing 'I'nn ls

' I'h • cr- ite r ia for oxtc ns ihility include :

• ' I' he possihili ty of su ppo rt.ing' co nceptua l domains which are not initially hu ilt -in.

• 'I'he possib ili ty of supporti ng analysis III it hods which are not initially built-in (e .g.
lidding u new languug' • purse r) .

• 'l'h • possibili ty of supporti ng' a Il(w kind of information presentation .

• 'I'he posaihili ty of adding n ·w functionnlity (op m soft wa re urchit ict u r .J .

TIll' cr iu- r iu for robustness includ ' :

• '1'01 irunce to e lT01'1; in t he inpu t data and detection of inconsistency in int rr na l
da til caused by some oxternul action (•.g . xlit ing a source fil e hy some ixter n ul
I'd iUB') ,

•
Anulys is ixnct n 'Sfl und com pnt ihility with the sta nda rds of th • III rt hodo logy used
('.g', whe th ' 1' t he too l co r rectly ca lcu lates poin ter uliuaing information)

• Low I ivc l of fuilures und B ilf- inst ru m mtation • built-in III icha n isms of se lf-t ' st ing
a nd IOg'g'ing' of th • fuilur • ait uut inns.

•

• Vurt.icnl compntihility between differ mt, ve rsions of the tool ; whether u tool ca n use
old v 'I'fl ion du ur ; wh ·ther u new und old version cnn coexist ut th . sum o tim • in the
syst» II I.

' l' Iu- c r ite r ia for onviro mn -nt fitting in .lu d ' :

• 'I'h« us • of IlIl' l.hodoloJ.:'Y , 11I'eHmtation nnd vocnbulary ulrendy known to tho user.

• T he COII11I1IIIHI se t, of till' tool shou ld not he in confli ct with comma nd 8 its of oth '1'
\.001 11 used hy the user (e,g', 'OIllIllIIlHIH with tho SIIII IO nnme nnd n dill rent
IH ·! IIIViol'). .

• Tool nvnilnhil ity on the u ser s hurdwnre/sof'twar« platform : op 'rution with tho
Hll tiHfllC\.l ll'Y pr-rformunco level ; easy instnllutiun .

• lu torupornhility , that, is , t h« tool'Huhility to excluuu; dntu lind coop n-ato in other
wuys wit.h o thor t.oolH, C: l'llI'l'IllIy , til(re Ill" Ht rong'ly .ou plcd onviro u mo n ts whore
tool in tcructiun iH JlI'Og'1'1l1l11lI 'd into ouch tool , lind luoscly cou pled c nviro nm 'ntH
whort • Htll ndn 1'<1 duul lill'lllUtH nnd xunuum icnt ion moclumisms lire used by ell 'h
too l.

'I' ho 'I'itl'r ill for t lu- I" v' I of HUPIHll' t. in .ludo:

• Tho hiHtlll 'y of t ill' 1.1101 lind th« pl'OdUl'I'I"H I'l'll\lt.lltion - wh rt luu: tho tOil I is known
lind IlII1 LlIrf' lind tll('I'l! 111'0 known lI HI H in 1I1'l'IIH 'lOBO til user 1H'l'dH; whether till'
futur« of till' producer lind tool HlI pport iHunsu rr«].

• IH the... • II pOHHihiliLy of obtllining' th« suu rco 'odl''! An ' thoro nny pOHHih11'
lilllitll tionHon uHing' prudu 'tH .roa tod hy t.hl' too]?

• IH thor« ,noug'h Hu ppor t. Ii II' inHtlllling', trnining. on-liu« tl'Ouhll'Hhllot.ing', IIl1d
IIlllill\.l ·IIIIIICf''! At wluu 1'Il1.(' 111'(' now VOl 'HionH1'll1l'IIH('d '!

I BOJIC, n Velasevrc Cln Iii .1110 () f n p\ pr~e Engine..r ing Tool

3.2. Quantit tive e v •ua .ro n

\\ e , II, I I (\ h 'l:,h hgnl
when t im e co rain t I" clud.
can effect i e ly surnn arize t h« tt I

how well h 1111 pe l form• . 'I I
uoin ts a nd C(n t. a bou I•

po in ts abou t t r product 0 1' ('I

I·" I' rlu II 10 11 process , A hric-f valuation ts 1I1l1dl

o etailed I> 'a lua t lOn or when 1\ credible , (' pert \1 <;(I

sefuln s 01 uselessness. It a nswe-rs th« quest "1

I ref I cp irt 11~ • to include .1lL' oCJI '~ bl)od and 1),11 I
I I'P of th« eva lua t ion and any port.ment , I'll " a l

Quan itatrv« a sessmen per formed whvn WI' neod a detni lod or c.unpur.i ivt
a nalysis of I 11 or m ore t« It I I make su re the asses ments an' la ir , ~ l v ' ra l
a ssessm ent IlI d C itio ners hou lu , .I signed to the sam e tool. To establish «rr-dibilit.v.
the tools shou ld be applied on sca led down versions of real projects , thus obtamnu; II

more realistic as sessment of what the tool ca n actua lly do,

('iThe a ssessment instrument A is t he set. of questions 't , ha spd Oil cr itoria
J

from the previous sect ion, ca tegor ized in s ix categories C, plu s 0111.' »ddrt.ronal categllry

for other specific criteria not cove red by the existing six categor ies:

•

A = UCi
I' I 7

_ I Ci Ci Ci I, C, - ,ql ,q'2 ,qlli I

where n ; is the number of ques tions in category C,. Ea ch a ssessment pructiuoner

shou ld be trained on how to u se t he weighted ass sssment ins trumen t a nd IS as signed a
set of tools to classify and eva luate. Each category (not a particula r quost ron) is
a ssigned a relative weight We in percents, based on the u..«r's requi rements, for

•

exam ple, to em phasize functionali ty by weighting it s questions 30"; over robustness

(5%).

The practitioner t hen eva luates each tool, giving one of three possible S COI'L' S

e CS(q /) E {O.5.10} for ea ch question q J I to lim it t he amount of subjectivity. The

weighted score S(C;) in each category C, , and the overall score S(A) a re obtai ned us

follows:

S(C;) =We r.S(qe') , S(A) = r.S(C;)
I J

I, j : /1; 1:..; - 7

The maximum score SII1<LX (C ;) in each category C, I the score a tool can

achieve if it receives the maximum points a llowed on each quest ion in (',. T he median

score Smed (C ;) in each category C; is t he a r ithmetic average ' of scores S(C,) in

category C, of all tools that are cur rently being evaluated .

Category scores are plo tted as a line graph , like the one in Fig, 5 , tu provide a
pictorial representation of the resul t , Figu re 5 shows t hat T ool X scored a little above
t he m edian in ease of u se , robu stness , ease of inse rtio n, a nd "other ." In this caso , the

:17U D. Bojic, D. Velasevic / A Classi ficat ion of Reverse E ngi neer ing Tools

assigned weights clearly show that functionality is the top priority, followed by ease of
use.

100

90

80

~ 70
0
u 60VI

"0
C) 50-....-co 40.-ll)
::: 30

20

10

0

Smax(Ci)

A Smed(Ci)
'-'

S(Ci)

,
t;\J •

'---o f t-
'J \t

~

\~ ~....
~ ~

, , , ,

Figure 5: Sample tool evaluation graph

In the fmal step, the evaluator takes the results of the assessment, extracts
•

the critical and essential characteristics according to the user's requirements, and
completes a tailored summary of what the score really represents. Table 2 shows the
tailored summary of Tool X in an abbreviated fo rmat.

Table 2: Tailored summary of too l X

Smax (G i) S(Gj)

Ease of use 24 15 17 Has good user interface, but
ke scan t be tailored ...

Extens ibility 23 14 13 Could be upgraded to network
•versio n...

Robustness 11 8 8 T here is vertical compatibility
between versions...

Functionality 88 50 57 Supports t he methodology well ,
bu t does not do...

E nv iro nment
Fitti n

10 6 6 lias good installation procedures.
but is available onl for ...

12

4
-"'(Al 117

16

4
Sm..I(A) =11 3

24

4

Sma~ (A) = 184

Level of
9U ort

;",;",;",.'-----+------+------+-----+....:..:..:=.;=~-------_4
Other

Overall score

D. Bojic, D. Velasevic / I\. Class ificat ion of Reverse Engineering Tool s

4. CONCLUSIONS

27 1

While there is a great need for automating a rduous a nd costly maintenance
and reengineering activities , there are also obstacles to adopting new too ls and
techniques. Frequently, potential users are not aware that there exists automated
support for the kinds of tasks they perform. Therefore, we t ried to increase this
awareness by enumerat ing the application areas fur reverse engineer ing too ls in the
first part of this paper. Other common factors that im pede too l adoption include
unsystematic and su perficia l toul se lection and evaluation, which results in buying an
inapprupriate tool. Hence, we are presenting a framework for quan ti ta tive too l
evaluation that for the most part elim inates subject ivity from the evaluat ion process ,
thus increasing the probability of se lect ing the appropriate too l that will actually fi t the
needs .of the user.

Tool evaluation can continue after the tool has been in troduced in to regu lar
use by collecting and comparing the productivity and quali ty stat ist ics of the
reengineering process , before and after the tool's introduction , to est im ate whether it
lives up to expectations.

REFERENCES

III Ahrens, J . D., a nd P rywes, N. S., "T ra ns it ion to a legacy- and reuse-based soft wa re li fe cycle",

IEEE Computer, October HJ95, 27-36.
121 Caldiera, G., and Basil i, V. R., "Ide nt ifying and qualifying reusabl e so ft wa re co m pone nts",

IEEE Computer, F ebruary 199 1, 61-69.
131 Firth , R. et al , "A gu ide to t he c1assificalion a nd assess ment of so ft ware e ngi neeri ng tools".

Technical Report CMU/SEI-87-TR-I0, Software E ngineering Inst itute, Car negie Mell on

University , 1987.
14) Fuggetta, /\.., "A class ificat ion ofC/\.SE technology", IEEE Computer, December 1993.
151 Information Technology - "G uide for ISOIlEC 12207 (Soft ware life cyc le processes)", Draft

Tech . RpL PDTR 15271 , ISOIlEC JTC l/SC7/wG7 94, In te rn a t iona l Organi zalion for

Standardization, 1996.
16) Kemerer, C. F ., "How the learning cu rve affects C/\.SE tool ado ption", IEEE Software, May

1992, 23-29.
171 Leiter, M., Meyers, S ., and Reiss, S . P ., "S u pport for maintaining object-or ie nted programs".

IEEE Transactions on Software Engin eering , 18 (12) {1992) 1045-1 052.
181 Mosley, V., "How to assess tools effic ie nt ly a nd quant itati vely", IEEE Software, May 1992, 29

32.
191 MUlier, H . A., "U ndersta nding soft wa re syste ms using reverse e nginee ring technologies

research and practice", I\. t u tor ial presented at ICSE-1 8 18th I nterna t iona l Con ference on
Software Engi neering, Berl in, Germany , March 25-29, 1996.

11 0J Olsern , M.R., and S it te na uer, C., Reengineering Techllology Report , Software Technology
Support Center, OO-I\.LC/TISEC, 7278 Fou rth Street. Ili ll /\.FB , UT 84056-5205 , 1995.

1111 Tilley, S . R. , and S mit h, D. B., Perspectives Oil Legacy System Reengineering ; Soft ware
Engineering Institute, Carnegie Mellon Univers ity, P ittsburgh , PI\. 1521 3-3890, 1995.

