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Abstract: In this paper we present possible improvement of the best known perfect
hashing algorithm. A comparison of the proposed algorithm with other known
important perfect hashing algorithms in addition to Brain-Tharp's algorithm is also
given. The Brain-Tharp's algorithm 1s the best known in the special class of algorithms
that can be used to form ordered minimal perfect hash functions for very large word
lists in terms of function building efficiency, pattern collision avoidance and retrieval
function complexity. However, building a perfect hash function by the Brain-Tharp's
algorithm 1s still extremely slow. In this paper we analysed mmportant features of
Brain-Tharp's algorithm and proposed three solutions to improve the total processing
time of the packing phase. The proposed techniques are validated empirically. The
improvement factor is close to 2 on the example of the standard UNIX dictionary.
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1. INTRODUCTION

A hashing algorithm or hash function is a means of calculating the disk
address of a block containing a given record from the value of its key [17]. Thus, the
software technique of direct access or key to address transtormation is called hashing.
Besides being a classical problem in computer science, hashing is applied in a wide
range of applications such as compilers (symbol tables and code convertor tables), file
organizations |14] (large databases), data mining [13|, hardware applications [15], and
so on. Perfect hashing and minimal perfect hashing are especially interesting and

'
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useful classes of hashing with a guaranteed single disk access retrieval. Perfect hashing
15 an injection or one-to-one type of mapping, that is, a different address corresponds to
each key |11, 12, 3, 2, 5|. If there are no unused addresses then it 18 minimal perfect
hashing |9, 10, 4, 8|. Hashing algorithms, which preserve the order of records after
hashing, are called order preserving or ordered hashing algorithms,

The first perfect hashing algorithm was introduced by Sprugnoli [19]. Two
techniques - the gquotient reduction method and the remainder reduction method were
developed. The hash function A for the quotient reduction method is

Ww -+ C
hw) = —= |, (1)
Cy

-] i

and for the remainder reduction method 1s

(C1 +W*co)mod ¢
h(w) = | ~ 2 3 | 9)

| “4

where wig the word to be hashed, and ¢y, ¢y, ¢3, and ¢4 are constants calculated by the
algorithm. Sprugnoli's algorithm is unique in the fact that it does not require auxiliary
tables at retrieval time - only the four constants must be stored. Without segmentation
Sprugmoli's algorithm is able to handle small word sets (10-12 words).

Cichelli ereated a minimal perfect hashing algorithm [6] that can handle up to
650 words, wherein no two words can have the same length and the same first and last
lotters. The form of his minimal perfect hash function is:

hw) = key length(w)+
assoctated value of the first letter(w)+ (3)
assoctated value of the last letter(w)

Although Cichelli's algorithm 1s very simple, efficient and machine
independent, the main disadvantage i1s its exponential time complexity O(e”) [6],
where n 18 the number of words to be hashed,

Sager introduced a minicycle algorithm [16] with polynomial time complexity
O(n") and thus improved Cichelli's algorithm. Sager's algorithm is able to handle up to
H12 words. The form of Sager's perfect hash function is:

h(w) = (hy(w)+gehy(w)+gehy(w)mod N , (4)

where w 1s the word to be hashed, hy, iy, and hy are three quickly computable
pseudorandom functions, N 1s a nonnegative integer greater than or equal to n which is
the number of words to be hashed, and g 18 a function to be determined by the
algorithm.
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Karplus and Haggard generalized Cichelli's algorithm using graph theory
methods [10]. Their algorithm can hash word sets of up to almost 700 words, but the
words in the sample lists seem to be carefully chosen. Experimental results have shown

that time complexity for Karplus-Haggard's algorithm is O(n'” ) .

Fox, Chen, Heath, and Datta |7] improved Sager's algorithm in such a way
that minimal perfect hash function can be generated for word sets of 1000 words. Fox,
Chen, Heath, and Daoud [8] have demonstrated a perfect hashing algorithm for very
large word lists. The algorithm is O(n) at build time and the hash tables needed at

retrieval time are very small.

So far, in the class of algorithms that can be used to form ordered perfect hash
functions, the best one is Brain-Tharp's algorithm [1] in terms of hash function
building efficiency, pattern collision avoidance, and retrieval function complexity. It is
important to note that unlike the algorithm introduced by Fox, Chen, Heath, and Doud
|8], Brain-Tharp's algorithm produces an ordered perfect hash function, and it is much
less expensive at retrieval time.

The rest of the paper is organized as follows. Section 2 introduces the problem
of the efficient construction of ordered perfect hash functions. Section 3 describes
Brain-Tharp's algorithm. Section 4 presents three possible solutions for significant
improvement of Brain-Tharp's algorithm. Experimental results presenting the
performance of the original BT and modified algorithms BT BM, BT IS and BT HS
are given in Section 5. A comparative analysis of the original BT algorithm with other
known perfect hashing algorithms is shown in section 6. Section 6 also compares the
BT algorithm to the BT HS algorithm, which has better performance than other
versions of the BT algorithm, using the example of a simulated dictionary with 100,000
words. In section 7 we conclude the paper.

2. PROBLEM DESCRIPTION

The terminology used in the paper is shown in Table 1. We assume that a
collection of objects is given in a database and each object has a unique associated
identifier 2, which we will call a key. Each key is a character string having maximum
length Lmax characters. This assumption 1s appropriate for keys that are words in any
natural or artificial language [8]. The characters are elements of the alphabet £ and all
keys are elements of the universe of keys U ={k).k5.k5.....kN}, where N is some

finite nonnegative integer. We assume also, that A ={k, . ky.kq.....k5} is a set of

actually used keys in a database, where n is a nonnegative integer and n< N . We
access the objects via a hash function 5 : A - M, which maps a set of keys onto a set of
memory addresses. The set of memory addresses M is defined in the following way M =
taddress, addressy, addresss, ..., address,,}, where m is a nonnegative integer and
m>n. The addresses in M are nonnegative integers. The objects are stored in the
corresponding memory addresses. Bearing in mind the previous assumptions we give
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the following definitions for perfect, minimal perfect and ordered perfect hash
functions.

Definition 1. A perfect hash function is an injection h: A —> M, where m>n [12].
Definition 2. A perfect hash function h: A —> M is minimal if m=n.

Definition 3. If for any two keys, k; and k;, from A we have that 1< j such that
h(k;)<h(k;) then the perfect hash function h is order preserving.

Table 1: Terminology

| DEFINITION | NOTATION
The alphabet .
1-th key value k;
Maximum length of a key (maximum number of characters) | Lmax
Universe of keys _ U
A set of actually used keys A
The cardinality of the universe of keys | N
The cardinality of the actually used set of keys | n
Hash function | h
i-th memory address address;
A set of memory addresses | M
The cardinality of the set of memory addresses m
Average seek time S
Average rotational latency ri
Block transfer time between disk and primary memory r bitt

It is well known that perfect hash functions are rare in the set of all functions.
For example, Knuth [11] pointed out that only one in 10 million functions is a perfect
hash function for mapping the 31 most frequently used English words into 41
addresses. Due to their definition the number of ordered perfect hash functions is
smaller than the number of perfect hash functions. So, searching for ordered perfect
hash functions is not easy and fast, especially for large sets of objects.

In this paper we address the problem of the efficient practical construction of
an ordered perfect hash function for a given set of objects. So far, Brain-Tharp's
algorithm is the best one in this class of algorithms. Our goal is to improve the total
time needed to construct an ordered perfect hash function for a given set of objects.

3. BRAIN-THARP'S (BT) ALGORITHM

Brain-Tharp's (BT) algorithm is a perfect hashing algorithm, which can be
used to create ordered minimal perfect hash functions for large word lists. The main
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implementation techniques of the BT algorithm are array-based tries and a sparse
matrix packing algorithm [1]. The pseudocode of the BT algorithm is shown in Fig. 1.

Build the 2-D trie array.

Sort the columns of the 2-D array. The columns with the most entries should

be at the beginning of the sorted list, and other columns should fill the list in

decreasing order.

Loop through all columns containing 1 or more values.
Attempt to place the current column at the first location of the 1-D array.
While the new column's values collide with values already in the 1-D array,
move the column one position down in the 1-D array and check for

collisions again.

Once a non-colliding position for the new column is found, place the
column in the 1-D array and update the CLT (Column Lookup Table).

Save the final CLT formed.

Figure 1: Pseudocode of Brain-Tharp's (BT) algorithm.
The CLT holds information about the starting location of each column in the 1-D array.

In the BT algorithm the input is a large word list, wherein no two words have
exactly the same characters in all positions. The algorithm consists of 3 phases: a 2-D
(dimensional) array-based trie creating, the 2-D array's column sorting, and packing of
the sorted columns into the 1-D array. A very important characteristic of the BT
algorithm 1s that in all phases processing 1s sequential. Therefore, in the next section of
this paper in order to obtain an improved version of the BT algorithm we will introduce
some form of parallelization.

3.1. Example

A simple example 1s now provided to illustrate the main features of the BT
algorithm. Figure 2 shows a 2-D array-based trie for a word list containing the words
ALAN, ALGORITHMS, CAT, COP, CORN, DEJAN, and DUSAN. The words are the
keys. For the given example the words are alphabetically arranged. This 1s not
necessary and the words can be ordered in any way.
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Word List
1 ALAN

§

2 ALGORITHMS

3 CAT

4 COP

1 5 CORN

’ 6 DEJAN

7 DUSAN

L] we 2}

Figure 2: An example of the 2-D array-based trie
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Figure 3: Sorted columns of the 2-D array shown in Fig. 2

The trie shown in Fig. 2 is a matrix representation for an initial data structure
of the BT algorithm. The elements of the 2-D array-based trie are pointers to columns
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and addresses of locations where words are stored. In the trie positive values point to
the word list, while negative values point to the next column. The number of bytes
needed for the address representation depends on the number of words in the given
word list. For word lists of up to 32767 words 2 bytes are sufficient. For the sake of
simplicity, the rows of the trie are denoted by the alphabet's 26 upper case letters and
by eow which stands for "End of Word". The main disadvantage of the 2-D array
structure is the low memory utilization. The memory utilization 1s only 8.8% for the
trie array shown in Fig. 2.

The second phase starts with the columns of the 2-D trie and ends with the

columns sorted. Figure 3 shows the sorted columns of the 2-D trie shown in Fig. 2 by
the number of non-empty fields in descending order [21].

The time complexity of the third phase is O(r“), where r is the number of

columns of the 2-D array. Once the columns are sorted, the third phase begins. The
third phase starts the column packing into the 1-D array. The column packing is
performed from the first location of the 1-D array using the first-fit strategy. The only
constraint on the packing process is that no two values from different columns can
occupy the same position in the 1-D array. After column packing into the 1-D array the
relative distance between column elements is preserved. The variable part is the
position of each column inside the 1-D array. In order to hold the starting position of
each column within the 1-D array, a column lookup table (CLT) 1s used. The number of
fields in CLT is equal to the number of columns in the 2-D array. Figure 4 shows the 1-
D array and associated CLT for the 2-D array shown in Fig. 3.

Column Lookup Table

o[2]1JaJ-o]

1-D Packed Trie

=R N A i I E R R =] | 5] [ 7

A

1. 28 4 ENET 78l 9o i 12 13 e 15 16 7 18 W 190 B0l 21 2T
|

Col 1 Col 4

Col 3 Col 2

Col 5

Col 6
Figure 4: The 1-D array and Column Lookup Table for the 2-D array shown in Fig. 3
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As the last step in the third phase, the CLT is incorporated into the 1-D array
and only the starting position for the first column is stored on disk. Remembering the
starting location for column 1 is needed because all words must index through column
1. The 1-D array is minimal if all its fields are populated. The 1-D array shown in Fig. 4
1s not minimal because it contains empty fields. Its memory utilization is 54.54%.
Moreover, for static databases it is very important to produce a minimal 1-D arrays.
Although In most cases minimal 1-D array is produced, it cannot be guaranteed for
every word list.

Experimental results published in [1] suggest that the column packing phase
1s dominant and extremely slow. For instance, packing the columns takes 4231 seconds
for the standard UNIX dictionary with 24481 words using a SB 8000 machine. Taking
into consideration that the third phase of the BT algorithm takes too much time, our
goal 1s to find a way to speed up the column packing phase. Every solution that
decreases the column packing time represents a significant contribution to the total

improvement of the BT algorithm. The rest of the paper is focused on speeding up the
BT algorithm.

4. IMPROVEMENT OF THE BT ALGORITHM

In the BT algorithm finding a set of initial column packing positions that
minimizes the size of the 1-D array is a NP-complete problem [21]. A good heuristic
algorithm for 1-D array column packing with the least amount of required time is still
an open problem. In addition, determination of the actual size of the 1-D array is not
possible before column packing. Theorem 1, given in the next section, is a good
estimation of the size of the 1-D array.

Columns with one or two non-empty fields are easier to pack densely into the
1-D array than columns with many non-empty fields. Attempting to find a better way
of column packing, we did not find a solution better than Ziegler's first-fit decreasing
method. Namely, investigating the run-time activities of various column packing
strategies showed no improvement. For example, we compared Ziegler's method to the
two pass method, where in the first pass columns are simply sequentially copied into
the 1-D array without testing for collision, and in the second pass columns are packed
with testing for collision. In the first pass the number of non-empty fields in the 2-D
array limits the size of the 1-D array. Ziegler's method had better performance in all
our tests.

As can be seen from previous experimental results [1], the column packing
phase takes most of the time. Taking this into consideration, we propose column
packing improvements by introducing three new solutions. The first solution is based
on bit manipulation instead of integer manipulation as a packing implementation
technique, because bit manipulation provides parallel processing on the single
processor architecture. The second solution is implemented with intelligent setting of
the initial column position in the 1-D packing array. Simply, we eliminate impossible
initial positions for columns in the 1-D array. And the third solution is a combination of
bit manipulation and intelligent setting of the initial column position. In this Section
we will describe all of these solutions.
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4.1 Improvement of the BT algorithm by bit manipulation

The bit manipulation technique 1is introduced by analysing the essence of the
BT algorithm. The essence of the BT algorithm is that it is character-based in the first
phase and integer-based in the second and third phase. Bearing this in mind, we
investigated a new packing paradig'm, which reduces the processing time by
simultaneously processing a larger number of elements of the 2-D trie. In fact, a very
efficient improvement of the BT algorithm denoted as BT BM can be achieved by the
parallelization of column element processing. The major point of the solution based on
bit manipulation is that bit representatives are created for all columns of the 2-D array.
Parallelization of column element processing is achieved using bit manipulation on the
bit representatives.

We divide the column packing phase in the BT algorithm into 2 steps. In the
first step bit representatives are created for all columns of the 2-D trie. In the second
step the column bindry bit representative is packed instead of real column packing.
After the position for the column packing is found, the real column is packed. A
pseudocode of the proposed improvement of the packed trie algorithm is shown in Fig.
5. The main technique of the algorithm combines basic bit manipulation operations.

Build the 2-D trie array.
Create bit representatives for columns of the 2-D array.

Sort the columns of the 2-D array. The columns with the most entries should be at
the beginning of the sorted list, and other columns should fill the list in decreasing
order.

Loop through all columns containing 1 or more values.

Attempt to place the current column bit representative at the first location
of the auxiliary vector AV.

While the new column bit representative's bits collide with the bits already
in the AV move the column bit representative one position down in the AV
and check for collisions again.

Once a non-colhiding position for the new column bit representative is
found, place the column bit representative in the AV, the column in the 1-D

array and update the CLT (Column Lookup Table).

Save the final CLT formed.

Figure 5: Pseudocode of the proposed improvement of the packed trie algorithm [1] by
bit manipulation
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Figure 6: Introducing a 128-bit representative CR; for each column C;, where 1<i<r
and r is the number of columns in a 2-D trie. Each occupied field of the column C; is

mapped to binary 1 and each empty field is mapped to binary 0.
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In order to use the entire ASCII character set, iIn our mimplementation the
number of rows of the 2-D trie is 128. Therefore every column has 128 fields as shown
in Fig. 6. At the same time every column C; of the 2-D trie, where 0 <: < r, and r is the
number of columns, is represented by a 128-bit column representative denoted as CR;.

The column representative is introduced by mapping the fields into bits in
such a way that if a field 1s empty the corresponding bit is set to 0. Otherwise, the
corresponding bit is set to 1. An auxiliary vector of bits denoted as AV is also created.
The purpose of the auxiliary vector is to hold information about occupied and empty
fields in a final 1-D array denoted as PT. The number of required bits in the auxihary
vector will be equal to the number of nonempty fields in the 2-D trie for each minimal
perfect hash function.

Initially, the bits of the auxiliary vector AV are set to 0. During the process of
column packing, we first start to pack the column representatives. The packing is
implemented by operations of bit manipulation. We use shifting and bit-wise "AND"
operation.

For example, to pack a column representative into the auxiliary vector of bits,
the result of the bit-wise "AND" operation between the column representative and
corresponding part of the vector must be zero. If the result is non-zero, the position is
forbidden and the next position for the column representative must be found (See Fig.
7). After packing the column representative, the corresponding value of CLT is known.
Having the values of the CL'T, the process of real column packing becomes trivial.

A 128-bit part of the auxiliary vector AV

11110110110001101011110011010110...11110110110001101011110010000000 I

A 128-bit representative CR; of column C,

00000000000000000000000000000000...00001001001110000100000100101000 I

00000000000000000000000000000000...00000000000000000000000000000000 I

The 128-bit result R of the bit-wise "AND" operation between the above two operands

Figure 7: The result of the bit-wise "AND" operation between operands (128 bits).
The result R equal to zero means the right position. Otherwise, the position is
forbidden.
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4.2. Improvement of the BT algorithm by better setting of initial packing
positions

Another proposed simple and efficient solution denoted as BT IS is the
intelligent setting of the initial packing position for each column in the 1-D array.
Analysing the pseudocode of the BT algorithm shown in Fig. 1 it can be seen that the
packing position for each column is initialised to the first location of the 1-D array.
Also, in the double displacement method described in [20, 21| and suggested in [1], the
packing position for each row is initialised to the first location of the 1-D array. For
small databases improving the setting of the initial packing position for each column is
not so important. However, for large databases it can be very nmportant. Namely, in
the column packing phase a large amount of time is wasted for each column because
searching for an empty location always starts from the first location of the 1-D array.
The larger the database, the greater the amount of time wasted. Therefore, we
investigated a new packing paradigm, which eliminates the wasted searching for an
initial column position in the final 1-D array. Instead of always starting from the first
location of the 1-D array, the first empty location is assigned to be the initial column
packing position. It is the first position that might be used for the column packing.
Previous positions are occupied and therefore cannot be used for packing the column. If
there are no collisions between the filled elements of the new column being placed into
the 1-D array and the already filled elements of the 1-D array then the initial position
will be actually used. Otherwise, the initial position must be changed and the test for
collision must be repeated.

We assumed that in the column packing phase list(z), a list of the nonzero
fields 1s used in column 7 where 1< <r and r 1s the number of columns in a 2-D trie.

It is important to note that without lists, the column packing phase takes an extremely
long time.

4.3 Hybrid solution

The third proposed improvement of the BT algorithm denoted as BT _HS is a
combination of the previous two solutions created to improve performance. We
implement bit manipulation on column bit representatives and intelligent setting of the
initial column position in the 1-D array at the same time. It is important to say that the
initial column position is set in relation to column bit representative packing in the
auxiliary vector AV.

5. EXPERIMENTAL RESULTS

Experimental results are given for the following versions of the BT algorithm:

BT - the original BT algorithm,

BT BM - modified BT algorithm with column bit representatives and bit
manipulation,
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BT IS - modified BT algorithm with intelligent setting of the initial column
position in the 1-D array, and without column bit representatives and bit
manipulation, and

BT HS - modified BT algorithm with intelligent setting of the initial column
position in the 1-D array, and with column bit representatives and bit
manipulation.

The BT algorithm and its modified versions BT BM, BT IS and BT HS
algorithms are all implemented in C programming language. The radix sort method is
used for the 2-D array's column sorting [21]. Performance testing was performed on a
standard UNIX dictionary with 25143 words usually found in the file /usr/dict/words.
For all tests we used an unloaded Pentium/166MHz computer with 64 MB memory
under SCO UNIX V 3.2v.4.2 operating system. We analysed the impact of the number
of words on algorithm performance. Minimal 1-D arrays are obtained in all tests.
Lxperimental results represent average performance measures for 5 tests.

Each column of the 2-D array has at least one non-empty field. A histogram
presenting the number of columns as a function of the number of nonempty fields is
given in Fig. 8 for the whole standard UNIX dictionary. The total number of columns of
the 2-D trie is 175632. The number of columns containing 1 nonempty field is 5472;
7562 columns contain two nonempty fields, 2112 columns contain three nonempty
fields, and so on. The maximum number of nonempty fields is 61 in a column. The total
number of nonempty fields is 42674.

In general, the exact number of fields in the compressed 1-D array is not easy
to determine before the column packing phase. The following theorem gives a good
cstimate of the size of the 1-D array. Let ¢ be the number of nonempty fields in the 2-D
array, let the function t(/), for />0, be the total number of nonempty fields in

columns with more than / nonempty values, and let the matrix representation of a trie
be sparse. By a sparse matrix, we mean a matrix in which the number of nonempty
fields 1s much less than the size of the matrix itself. Given the above definitions Tarjan
and Yao [21] proved the following theorem:

Theorem 1: Suppose the 2-D array has the following "harmonic decay" property:

For any {, the number of nonempty fields in columns with more than | nonempty value is
al most t/(l+1), that s

4
[+1

t(l) < (9)

hen every column displacement c()) computed for the 2-D array by the firsi-fi
decreasing method satisfies:

D<e() st (6)
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Proof: For any column j, consider the choice of ¢(j). Suppose ¢(j) contains [/ > 1

nonempty values. By the harmonic decay property the number of nonempty values in
previous columns is at most ¢//. Each such nonempty value can block at most / choices

for c¢(y). Altogether at most ¢ choices are blocked, and 0 < ¢(j) <t .

10000
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:

3 7000

S 6000
3

T 5000
2

= 4000

Z 3000

2000

1000

0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Number of nonempty fields

Figure 8: Histogram for columns of the 2-D array-based trie for standard UNIX
dictionary

The harmonic decay property requires that at least half of the non-empty
values come from columns with one non-empty value. The time complexity of the
procedure to determine the harmonic decay property is linear and proportional to the
number of columns in the 2-D array. In the case of the standard UNIX dictionary the 2-
D array does not have the harmonic decay property. In other words, £(1) = 37202, and
t(1) <42674/2 = 21337 is not true. However, after column packing a minimal 1-D array
is obtained. In order to have a guaranteed single disk access, generated 1-D arrays
should be located in the primary memory at retrieval time.

As the BT, BT BM, BT IS and BT HS algorithms provide data retrieval with
guaranteed single disk access, average time needed to retrieve data is

T1=s+rl+btt, (7)

where s is average seek time, rl 1s average rotational latency, and bft is a block transfer
time. If data are stored on several conseculive blocks then average tuime needed to
retrieve data 1s y
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Ty =s+rl +b*btt , (8)
where b 1s the number of disk blocks, where desired data are stored.

Fig. 9 shows the 1-D array memory requirements measured in bytes as a
function of the number of keywords from the standard UNIX dictionary. The shown
results are identical for the BT, BT BM, BT IS and BT HS algorithms. Experimental
results show the linear functional dependency proportional to the number of keywords,
i.e., they validated that the 1-D array memory requirements are O(n) . For the whole

UNIX dictionary the primary memory requirements are:

42674 (elements) * 2 (bytes/element) = 85348 (bytes),
or (85348 (bytes)+2 (bytes for CLT))/ 25143 (words) = 3.39 (bytes/word).

[B]
90000

85348 @
83254 @

80000

70000

60000

50000

40000

Memory requirements

30000

20000

® 10296
5396
..3586

10000

== |lwords]
0 5000 10000 15000 20000 25000 30000

Number of key words

Figure 9: The 1-D array memory requirements as a function of the number of
keywords from the standard UNIX dictionary.
Experimental results are identical for the BT, BT BM, BT IS and BT HS algorithms.
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The primary metric used in this paper is run time. Figure 10 shows column
packing time in seconds as a function of the number of words for the BT, BT BM,
BT IS and BT HS algorithms. The column packing time is measured for the first 1000,
1500, 3000, 6000, 12000, 24481, and 25143 words of the standard UNIX dictionary. The
modified algorithms are better than the original algorithm in all tests. In the case of
the whole UNIX dictionary the column packing phase implemented by the original
algorithm takes 145 seconds. Under the same conditions the column packing phase
implemented by modified algorithm BT HS takes 72 seconds. Improvement of column

packing time 1s 50.34% of the time needed by the original algorithm, ie.

improvement factor is 2.01.

[s]

160 — - I
O
140 ®
® BT algorithm
120 —8-— BT BM algorithm
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= :
S 100 #— BT HS algorithm |
o Btk -
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3
S 80 C
E 3
=
=,
senL B0
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@
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=
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Number of key words

[words|

Figure 10: Column packing time as a function of the number of words from the

standard UNIX dictionary
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Figure 11 shows the total time needed to create the 1-D array as a function of
the number of words from the standard UNIX dictionary. The total time is equal to the
sum of the time needed to create the 2-D array, the time needed to sort columns of the
2-D array, and the column packing time. Running implementation of the original
algorithm takes 147 seconds for the whole UNIX dictionary. Running implementation
of modified algorithm BT HS takes 74 seconds under the same conditions.
Consequently, using modified algorithm BT HS the improvement of the total time is
49.65% of the time needed to construct an ordered perfect hash function by the original
BT algorithm. It is important to note that total time for the 2-D array creation and
column sorting takes only 2 seconds.
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Figure 11: Total time needed to create the 1-D array as a function of the number of
words from the standard UNIX dictionary
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According to the results shown in Fig. 10 and Fig. 11, the time functions for
the BT algorithm have a quadratic form, i.e., y = kx® . where b is a positive constant,
and x >0. It can be seen that the time functions for BT _BM, BT IS, and BT HS
algorithm have a quadratic form as well. The nature of the time functions for the
original and modified algorithms is not changed. The difference is only in the values of
positive constant k, which graphically shows the mmprovement achieved in the
construction of ordered minimal perfect hash functions. In other words, decreasing the
number of needed operations resulted in decreasing value of the positive constant in
the quadratic function.

6. COMPARISON TO OTHER PERFECT HASHING
ALGORITHMS

There are many criteria for comparing perfect hashing algorithms. Table 2
shows a comparison of the original BT algorithm to other known perfect hashing
algorithms. The criteria for comparison are: the function build order, the number of
words in the input word list, the amount of memory space (in bytes) required to hold
the table used by the given algorithm per item stored in the item list, and confirmation
that the perfect hash function is ordered. The build order is the computational
complexity of the algorithm at build time.

Although the construction of a perfect hash function occurs once for a given
static set of words, a very important characteristic of perfect hashing algorithms is
their time complexity. Time complexity directly limits the number of words which can
be processed. It should be said that we analysed worst case time complexity. As can be
seen 1n Table 2, Cichelli's algorithm has the worst time complexity - exponential, and
Fox's algorithm (Algorithm 2) |8] has the best time complexity - linear. Fox's algorithm
1s currently the most computationally efficient. The time complexity of other
algorithms shown in Table 2 falls in between these extremes. It should be noted that
the time complexity of Karplus's algorithm is derived from experimental results.

Cichelli's algorithm can handle very small sets of words (40 words), while
Fox s algorithm (Algorithm 2) |8] can handle very large sets on the order of a million
words. However, Fox s perfect hash functions are not ordered. The BT algorithm can
handle large sets of words (an example for 100,000 words is shown in Table 3) and the
generated perfect hash functions are ordered. For larger sets of words Sprugnoli
suggests a segmentation process [19], which implements the divide and conquer
paradigm. For instance, applying segmentation in the BT algorithm a list of 1,000,000
words can be divided into 26 distinct sublists using the first letter of each word to
determine the contents of each sublist. After that, an index structure is created for
each sublist in the form of the compressed 1-D array. Similarly, a list of 10,000,000
words can be divided into 676 distinct sublists using the first two letters of each word,
and so on.

Table 3 shows a comparison of the BT algorithm to the BT HS algorithm, the
best improvement of the BT algorithm. Our experiments are performed in such a way

P
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that both algorithms are implemented on the same computer under the same
conditions. Improvement of the BT algorithm is achieved in the column packing phase.

Due to the linear build order, Fox s algorithm [8] has the best results for the
total time needed to build a perfect hash function for sets of words where ordering is
not important. If ordering is important the BT HS algorithm is better than the others.
As Table 3 shows, the total time needed to build a perfect hash function for a given
word set by the BT HS algorithm is also better than the original BT algorithm and on
the example of a simulated dictionary with 100,000 words the improvement factor 1s
1.40. As can be seen 1n section 5 in the case of a real dictionary the improvement factor
is close to 2. Different improvements are due to different distributions of keyword

values.

Table 2: Comparison of the BT algorithm to other perfect hashing algorithms

Algorithm Reference Build Order List Size Space Ordered
Name (bytes/entry) Function
Cichelh (6] O(c™) 40 0.65 N
Karplus [10] on'®y 667 N.A. N
Chang (4] N.A. N.A. N.A. BY]
Sager [16] On®) 206 4.0 N
Fox 7] O(n?) 1,000 4.0 N
Fox Alg2 |8 O(n) 524,288 0.45 N
Brain 2] o2y 1,696 2.4 N
MSMP (3] O(n?) 5,000 2.0 N
S& H [18] O(n*) 900 1.35 Y
BT (1] O(r?) 24,481 3.4 Y
N.A. = Not available.
r 15 the number of columns of the 2-D array
*Derived from experimental results rather than theoretical analysis
Table 3: Comparison of the BT algorithm to the BT HS algorithm
Algorithm Reference Build List Total Time  Machine Space Ordered
Name Order Size (in s) (bytes/entry) Function
BT — O(r?) 25,143 147 Pentium/166 3.39 V¢
BT HS —- O(r%) 25,143 74 Pentium/166 3.39 ¥
BT — O(r%y 100,000 916 Pentium/166 5.34 Y
BT HS e O(r%y 100,000 652 Pentium/166 5.34 X

r 15 the number of columns of the 2-D array
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The amount of memory space required to hold the table used by the given
algorithm per item stored in the item list increases from 0.45 bytes for Fox's algorithm
(Algorithm 2) [8] to 5.34 bytes for the BT and the BT HS algorithms.

In Table 2 and Table 3 the very important fact cannot be seen that for the BT
and BT_HS algorithms worst case search time is proportional only to the length of the
search string. In other words, search times do not directly relate to the number of
keywords.

An mmportant open problem in the class of ordered perfect hash algorithms is
that the BT and BT HS algorithms work only with static databases.

7. CONCLUSION

Perfect and minimal perfect hashing algorithms have been studied in many
research projects in the last two decades. So far, the BT algorithm is the best perfect
hashing algorithm with the possibility to create ordered minimal perfect hash
functions. In relation to other competitive algorithms, the BT algorithm is superior in
terms of function building efficiency and function complexity at retrieval time. Unlike
some previous perfect hashing algorithms, the BT algorithm eliminates all pattern
collisions. However, the main disadvantage of the BT algorithm is the time consuming
column packing phase. This paper presents three different improvements to the BT
algorithm. Namely, the BT BM algorithm introduces column bit representatives and
the bit manipulation paradigm. In the BT IS algorithm the column-packing phase in
the original BT algorithm is modified in such a way that instead of always returning to
the first position of the 1-D array, intelligent setting of the initial packing position for
each column in the 1-D array is introduced. Hence, the time for finding column packing
positions into the 1-D array is decreased. Finally, the BT HS algorithm combines bit
manipulation and intelligent setting of the initial packing position for column bit
representatives. |

Our experimental results indicate that significant performance improvement
may be achieved by the aforementioned three modified versions of the BT algorithm. In
order to comparatively evaluate the algorithms detailed experimental analysis was
performed for the BT, BT _BM, BT _IS and BT_HS algorithms on the example of the
standard UNIX dictionary. Test results have shown that the modified algorithms are
better than the original. In the case of the whole standard UNIX dictionary,
improvement in total time achieved by the BT_HS algorithm is about 50% of the time
needed by the original algorithm to create the 1-D array, that is, the improvement
factor is close to 2. The improvement represents a significant contribution to providing
possibilities for wider applicability of the described algorithm.
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