
Yugosla v J ournal of Ope rat io n Resea rch
U (1 U9~)J, Number 2, 235-256

EFFICIENT IMPROVEMENT OF BRAIN-THAUP'S
ALGORITHM

,

Dejan SIM IC

Mihajlo Pupin 1tistitute, "1MP-Hai:lIna rski SIS t CIII i ", d .o.o.
Volgin o 15, 11060 Belgrad e, Yugoslcun«

. ,

Dusan TAR EVI

Faculty of Org anizational ctcnces
J ove l lica 154. 11000 Belgra de, Yugosla uia

Abstract: In this paper we present possible improvement of the best known per fect
hashing a lgorithm. A comparison of the proposed algorithm with uthe I' known
important perfect hashing algorithms in addition to Brain-Tharp's a lgori thm IS a lso
given. The Brain-Tharp's algorithm is the best known in the specia l class of a lgor ithms
that can be used to form ordered minimal per fect hash functions for very large word
lists in terms of function building effi ciency, pa ttern coll ision avoidance and ret.ru-va l
function com plexity. However, building a pe rfect hash function hy tilt' Brain-Tha rp's
algorithm is st ill ext remely slow. In th is paper we a na lysed un portant features of
Brain-Tharp's algorithm and proposed th ree e lutions to improve tho tota l processing
time of the packing phase. The proposed techn iques are valida ted un pir ically . The
improvement factor is close to 2 on the example of the sta ndard U IX dictionary .

Keywords: Algorithms, file s t.ruc t u res , pe r fect ha hi ng, physical design .

1. INTRODUCTION

A hashing algorithm or hash function is a means of calcu lating the disk
address of a block containing a given record from the value of its key 1171. Thus , the
software technique of direct access 01' key to address t ransformat. ion is ca lled hash ing.
Besides being a classical problem in computer science, hashing is a pplied in a wide
range of applications su ch as compilers (sym bol tables and code converto r tab les), file
organizations 114 J (large databases), data mining 11:3J, hardws re applica tions 11 51, and
so on. Perfect hashing and minimal per fect hash ing are especia lly in teresting a nd

l). Hind. l), Htnrc vi<I / 1 ~ rJi c llJ n t Im nrnvumunt o l' Hrn in-Thn r p's AI/:orithlll

lI H I'll I 'III HHIJHof hush ing' wi th II gunru nte xl s ing'IIJ di s k II CC 'SHretr ieva l. I' er!i~ ,t ha shing'
iH111\ inj . .t ion or one-to-one typ , of mapping. t hat is , II diff ' re nt add ress CO lT isponds to
'II 'h key 111 , 12, :1, ~, 11 1, If t h ' I" nro no unus id nddr 'SHeH t he n it iH minimal perfect
hll Hh inJ.:' IU, 10, tl , HI, II/lHhinJ.:' IIIg'ol'i thms , which preserve t he order of records a fte r
I III f';hin~ , nrc '1I 11 ml nrd ' I' preserving or ord ' I' -d hashing' algorithms ,

'I'ho firs t, p ir fect, hashing al gori thm was introduced by S prugnoli 11 91 , Two

to .lm iqu s - t he quo t.i in t reduction method and t h I rcmnind ' I' reduction In sthod wer '
rlov ilo ped. ' l'h« ha sh function h for the quoti in t, reduction method is

h (w) -
,
:l

, (l)

and for t ho I' nnuind 'I' I' «luct ion m ,thod is

,

(c I I III" ':l) mod C:l
h ew) -

<: ·1
,

wh ' I" \I' iHth I word to bo hash 'd, and C I, C:l , C;j , and (;4 lire cuns tn nts ca lcu lated by th e
nlgurit.lun . S prugno li's al~orithm is unique in the fact that it dues nut rcqu ir ' uuxiliary

tnhlcs at ro t ri 'val t ime - only t h ' [our consta nts must b ' s to r sd. Withou t segm mtation
S prug'no li's algorithm is uh l • to hnndl ' small word se ts 110-1~ words).

'i iho lli 'n'a ted a minimal p ir fcct hashing al~orithm 161 that can handle up to
1)0 words , whe rein no two words can 11IIv ' the sum ' I ' ngt h and the same first und lus t
le t ters . ' I'h ' form of his minimal perfect hash function is :

h ew) = hcy _ ' ellg /h (w) I

associotecl uo l uc or th e [i rst I ' I/cr(w)+- - - - -
(Isso(;io ll''' ua l uc or the 101'1 lcl/cr(w)- - - - -

(3)

Although 'i ·h 'IIi 's algorithm is

indcpund nit, the main disudvnntage is it s

where II is t h ' number of words to he hashed.

V n'y s im ple, iffi cicn t and machine

ixpon mtinl time com plex ity O(c") 161 ,

•'age l' in trudu 'c'd a minicycle algori thm I l fi] wi th polynoinial t im e com p lexity

()(II Ii) and thus improved ' i .holli's algorithm . •' ug 'r's alguri thm is a b le to lumdl ' up to

II I~ words . T ho form of Sngor's p rr fe ,t hash function is :

h ew) = (ho(III) I I-! " h I (III) "g " h '}, (w)) mod N , (4)

when- III is the word to 1)(1 hnshod, h o, hi , und h'l. ur three quickly com puta b l
pSI'WIOI'llIHlom fu n 'Lio ns, N is a nonucgutivo int 'g 'I' b'l'euter t ha n 01' equa l to II which is
t ill) uumber of words \.0 be hushed, and g is a function to he d st, irm in rd by t he
a lgorith m ,

D. Simic, D. Starcevic / E ffic ient Improvemen t of Brain-Tharp's Algorithm ~37

Karplus and Haggard generalized Cichelli's algorithm using graph theory
methods [10J . T heir a lgor ith m can hash word sets of u p to almost 700 words , bu t the
words in the sample lis ts seem to be carefu lly chosen. Experimental resu lt!' have shown

t ha t time com plexity for Karplus-Haggard's a lgor ithm is 0 (11 1 S) .

Fox, Chen, Heath , and Dat ta 171 improved Sager 's algorithm in such (1 way
t hat minimal perfect hash funct iun can be generated for word sets of 1000 words . Fox,
Chen, Heath, and Daoud 181 have demonstrated a per fect hashin g algor ithm fo r very
large word lis t s . The algorithm is O(n) at build t ime and the hash tables needed at
retrieval time are very small.

So far , in the class of algorithms that can be u sed to form ordered perfect hash
functions , the best one is Brain-Tharp's algurithm 11 J in terms of hash fu nction
building efficiency, pattern collision avoidance, and retrieval function complexity. It is
important to note that unlike the algorithm introduced by Fox, Chen , Heath , and Dou d
18 1, Brain-Tharp's algorithm produces an ordered per fect hash funct ion , and it is much
less expensive at retrieval time .

The rest of the paper is organ ized as follows. Section 2 introduces the problem
of the efficient construction of ordered perfect hash functions. Section 3 describes
Brain-Tharp's algorithm. Section 4 presents t h ree possible solutions fo r sign ifica nt
improvement of Brain-Tharp's algorithm. Experimental results present ing the
performance of the original BT and modified algorithms BT_B~1. BT_IS and BT_HS
are given in Section 5. A com parative ana lys is of the original BT algorithm with other
known perfect hashing algorithms is shown in section 6. Section 6 also com pares the
BT algorithm to the BT_HS algorithm, which has better per fo rmance than other
versions of the BT algorithm, using the example of a simulated dictionary with 100,000
words. In section 7 we conclude the paper.

•

2. PROBLEM DESCRIPTION

The terminology used in t he paper is shown in Table 1. We assume that a
collection of objects is given in a database and each object has a unique associa ted
identifier k , which we will call a key . Each key is a character st ring having maximum
length Lmax characters. This assumption is appropriate for keys tha t are words in any
natural or artificial language [8 1. The characters are elemen ts of the a lphabet ~ and all
keys are elemen ts of the universe of keys U = {hi . k:;' . !liJ !ltv I , where N is some

fmite nonnegative integer. We assume also, that A = {k l .k2. !l3 kN I is a set of

actually u sed keys in a database , where n is a nonnegative integer a nd n < N . We
access the objects via a hash function h : A -) M , which maps a set of keys ontu a set of

memory addresses . The set of memory addresses M is defined in the fo llowing way M =
uuldress i , addresss, addresss , ... , addressi, f, where m is a nonnegat ive in teger and
tn. > n . The addresses in M are nonnegative integers . The objects are stored in th

corresponding memory addresses . Bearing in mind the previous assum ptions we give
,

,

•

238 D. Sirnic, D. Starcevic / Efficient Improvement of Brain-Tharp's Algorithm

the following definitions for perfect, minimal perfect and ordered perfect hash
functions.

Definition 1. A perfect hash function is an injection h :A --+ M, where m. > n [121.

Definition 2. A perfect hash function h :A --+ M is minimal if m. = n.

Definition 3. If for any two keys, k; and kj , from A we have that i < j such that

h(k;) < h(k j) then the perfect hash function h. is order preserving.

Table 1: Terminology

DEFINITION NOTATION
The alphabet ,

~

i-th key value k ·I
Maximum length of a key {maximum number of characters) Lmax
Universe of keys U
A set of actually used keys A

The cardinality of the universe of keys N
The cardinality of the actually used set of keys n
Hash function h
i-th memory address address;
A set of memory addresses M
The cardinality of the set of memory addresses m.

Average seek time s
Average rotational latency rl
Block transfer time between disk and primary memory btt

•

•

It is well known that perfect hash functions are rare in the set of all functions.
For example, Knuth [Ill pointed out that only one in 10 million functions is a perfect
hash function for mapping the 31 most frequently used English words into 41
addresses. Due to their definition the number of ordered perfect hash functions is
smaller than the number of perfect hash functions. So, searching for ordered perfect
hash functions is not easy and fast, especially for large sets of objects.

In this paper we address the problem of the efficient practical construction of
an ordered perfect hash function for a given set of objects. So far , Brain-Tharp's
algorithm is the best one in this class of algorithms. Our goal is to improve the total
time needed to construct an ordered perfect hash function for a given set of objects.

3. BRAIN-THARP'S (BT) ALGORITHM

Brain-Tharp's (BTl algorithm is a perfect hashing algorithm, which can be
used to create ordered minimal perfect hash functions for large word lists . The main

D. Si mic, D. St.arcevic / E fficie nt Improvement of Brain-Tharp's Algorithm :l39

implementation techniques of the BT algorithm are array-based tries and a sparse
matrix packing algorithm 111 . The pseudocode of the BT algorithm is shown in Fig. 1.

Build the 2-D trie array.

Sort the columns of the 2-D array. The columns with the most ent r ies should
be at the beginning of the sorted list, and other columns should fill the list in
decreasing order.

Loop through all columns contain ing I or more values.

Attempt to place the current column at the first location of the l-D array.

While the new column's values collide with values already in the l-D array ,
move the column one position down in the I-D array and check for
collisions again.

Once a non-colliding position for the new column is found , place the
column in the l-D array and update the CLT (Colum n Lookup Table).

Save the final CLT formed.

Figure 1: Pseudocode of Brain-Tharp's (BT) algorithm.
The CLT holds information about the star ting location of each column in the l-D array.

In the BT algorithm the input is a large word list, wherein no two words have
exact ly the same characters in all positions. The algorithm consists of 3 phases: a 2-D
(dimensional) array-based t r ie creating, the 2-D array's column sort ing, and packing of
the sor ted columns into the l-D array. A very important characteristic of the BT
algorithm is that in all phases processing is sequen t ia l. Therefore, in the next section of
this paper in order to obtain an improved version of the BT algorithm we will introduce
some form of parallelization.

3.1. Example

A sim ple exam ple is now provided to illustrate the main features of the BT
algorithm. Figure 2 shows a 2-D array-based trie for a word list containing the words
ALAN , ALGORITHMS, CAT, COP, CORN, DEJAN , and DUSAN . The words are the
keys. For the given exam ple the words are alphabetically arranged. This is not
necessary and the words can be ordered in any way.

,
,

•

240 D. Simic, D. Starcevic I Efficient Improvement of Brain-Tharp's Algorithm

I 2 4 5 6

A

B

C

o
E

F

G

H

I

J

K

L

M

N

o
p

Q

R

S

T

u
. y

W

X

Y

Z

eow

-2 I 3

-4

-6

6

2

•

-3

-5

4

-)

7

Word List

1 ALAN

2 ALGORITHMS

3 CAT

4COP

5 CORN

6 DEJAN

7 DUSAN

•

Figure 2: An example of the 2-D array-based trie

D. Simic, D. Starcevic / Efficient Improvement 01" Brain-Tharp's Algor it hm 24)

I 4 2

A

B

c
[)

E

F

G

II

I

J

L

t\ 1

N

()

p

o
R

s

T

I J

v

w

x
y

z
eow

-2 I .1

-4

-6

6

2

-1•

-5

4

5

7

the number of
non-empty
fi elds

•

Figure 3: Sorted colu m ns of the 2-D array shown in Fig. 2

The t r ie shown in Fig. 2 is a matr ix representat ion for an initial data structure
of the BT algor ithm . The elements of the 2-D array-based trie are pointers to columns

242 D. Si rnic, D. Starcevic I Efficient Improvement of Brain-Tharp's Algorit hm

and addresses of locations where words a re stored. In the trie positive values point to
the word list, while negative values point to the next colum n . The number of bytes
needed for the address representation depends on the number of words in the given
word list. For word lists of up to 32767 words 2 bytes are su fficient. For the sa ke of
sim plicity, the rows of t he trie are denoted by the a lphabet's 26 upper case let ters and
by eow which stands for "E nd of Word". The main disadvantage of t he 2-0 array
st ructu re is t he low memory u tiliza tion. The memory utilization is on ly 8.8% fo r the
trie array shown in Fig. 2.

The second phase starts with the colu m ns of the 2-0 trie and ends with the
columns sor ted. Figure 3 shows the sorted colum ns of the 2-0 tr io shown in Fig. 2 by
the number of non-empty fields in descending order 12 11.

The time complexity of the third phase is 0 (,.2) , where v' is t he number of

columns of the 2-0 array. Once the columns are sorted, the third phase begins. The
third phase star ts the' column packing into the 1-0 array . T he colu m n packing is
performed from the firs t location of the 1-0 array u sing t he first-fit strategy. T he on ly
constraint on the packing process is tha t no two values from different colum ns can
occupy the same position in the 1-0 array . After colum n packing into the 1-0 array the
relative distance between column elements is preserved. The variable part is the
position of each column inside the 1-0 array. In orde r to hold the starting position of
each column within the 1-0 array, a colum n looku p table (CUI') is used. The number of
fields in CLT is equa l to the number of colu m ns in the 2-D array . Figure 4 shows the 1
o array and associated CLT for the 2-0 array shown in Fig. 3.

Column Lookup Table

I 0 I -2 I I I 4 I -9 I 1 I
1-0 Packed Trie

I -2. I
I

I I -4 I -6 I 3 I 6 I <1 I 2 I 5 I -3 I I
2 3 4 5 6 7 8 9 10 I I

I I I
12 13 14

1_'
15 16 17

I I -5 I_I
18 19 20

I 7 I
2 1 22

ColI

Col 3

Col4

Col 5

Col2

Col 6

Figure 4: The 1-D array and Colu m n Lookup Table for the 2-0 array shown in Fig. 3

D. S im ic, D. S tarcevic I E fficient Imp rovemen t o r Brai n-T harp's Algorithm :l4;J

As the las t step in the third phase, the CLT is incorporated into the 1-0 array
and only the sta rting position for the first column is stored on disk. Hemembering the
star t ing location for column 1 is needed because all words must index th rough column
1. The 1-0 array is minimal if all its fields are populated. The 1-0 urrny shown in Fig. 4
is not minimal because it contains empty fields. It s memory utili za t ion is 54 .54'JI .
Moreover, for sta t ic databases it is very important to produ ce a minimal 1-0 arrays.
Although in most cases minimal 1-0 array is produced, it cannot be gu aranteed for
every word list.

Experimental results published in III suggest that the colu mn packing phase
is dominant and ext remely slow. For instance , packing the colum ns takes 4231 seconds
for the stan da rd UNIX dictionary with 24481 words using a SH 8000 machine. Taking
into consideration that the th ird phase uf the HT algorithm takes too mu ch t ime, our
goa l is to find a way to speed up the colum n packing phase. Every solut io n that
decreases the column packing time represents a sign ifi ca nt contribution to the tota l
improvement of the BT algorithm. The rest of the paper is focused on speeding up the
BT algorithm.

4. IMPROVEMENT OF THE BT ALGORITHM

In the BT algorithm finding a set of initial colum n packing posit ions that
minimizes the size of the 1-0 array is a NP-complete problem 1211 . A good heuristic
algorithm for 1-0 array colum n packing with the leas t !UTIOunt of requ ired t ime is still
an open problem. In addition , determination of the actual size of the 1-0 array is not
possible before colum n packing. Theorem 1, given in the next section, is a good
est imation of the size of the 1-0 array.

•

Colum ns with one or two non-empty fields are easier to pack densely into the
1-0 array than columns with many non-empty fields. Attempting tu find a better way
of column packing, we did not find a solut ion better than Ziegler's fi rst -fit decreasing
method. Namely, investigating the run-time activities of var ious column packing
st ra tegies showed no improvement . Fur exam ple, we compared Ziegler's method tu the
two pass method, where in the first pass columns are sim ply sequentia lly copied into
the 1-0 array withou t test ing for collision, and in the second pass columns are packed
with testing for collision. In the first pass the number of non-empty fi elds in the 2-0
array limits the size of the 1-0 array. Ziegler's method had better performance in all
our tests.

As can be seen from previous exper imental results 111, the column packing
phase takes most of the time. Taking this into consideration, we propose column
packing improvements by introducing three new solu t ions. The first solu t ion is based
on bit manipulation instead of integer manipulation as a packing implementa tion
technique, because bit manipulation provides parallel processing un the single
processor architecture. The second solut ion is implemented with intelligent setting of
the initial column position in the 1-0 packing array. Simply, we elim inate im possible
initial positions for columns in the 1-0 array. And the third solut ion is a combination of
bit manipulation and in telligent set t ing of the initial column position . In this Section
we will describe all of these solu tions.

244 D. Simic, D. Starcevic / Efficient Improvement of Brain-Tharp's Algorithm

4.1 Improvement of the BT algorithm by bit manipulation

The bit manipulation technique is introduced by analysing the essence of the
BT algorithm. The essence of the BT algorithm is that it is character-based in the first
phase and integer-based in the second and third phase. Bearing this in mind, we,
investigated a new packing paradigm, which reduces the processing time by
simultaneously processing a larger number of elements of the 2-D trie. In fact , a very
efficient improvement of the BT algorithm denoted as BT_BM can be achieved by the
parallelization of column element processing. The major point of the solution based on
bit manipulation is that bit representatives are created for all columns of the 2-D array.
Parallelization of column element processing is achieved using bit manipulation on the
bit representatives.

We divide the column packing phase in the BT algoritlun into 2 steps. In the
first step bit representatives are created for all columns of the 2-D trie. In the second
step the column binary bit representative is packed instead of real column packing.
After the position for the column packing is found , the real column is packed. A
pseudocode of the proposed improvement of the packed trie algorithm is shown in Fig.
5. The main technique of the algorithm combines basic bit manipulation operations.

Build the 2-D trie array.

Create bit representatives for columns of the 2-D array.

Sort the columns of the 2-D array. The columns with the most ent ries shou ld be at
the beginning of the sorted list, and other columns shou ld fill the list in decreasing
order.

•

Loop through all columns containing 1 or more values.

At tempt to place the current column bit representative at the first location
of the auxiliary vector AV.

While the new column bit representative's bits collide with the bits already
in the AV move the column bit representative one position down in the AV
and check for collisions again.

Once a non-colliding position for the new column bit representative is
found, place the column bit representative in the AV, the column in the 1-D
array and update the CLT (Column Lookup Table).

•

Save the final CLT formed.

Figure 5: Pseudocode of the proposed improvement of the packed trio algorithm 111 by
bit manipulation

D. S irn ic, D. St.a rcevic / E fficient Improvem en t of Bra in-Tbur p's Algorithm ~45

•

•

('N
I

Fou r t h

word

(3 2 bits)

Pi rst

word

(32 bit s)

('
1

eco nd
A 128·lield word

column
(3 ~ bits)

containing •
word Fou r 32·bit

addresses words
and pointers •

to other

column s

T hi rd

• word

(3 2 bits)

Figure 6: Introducing a 128-bit representative CRi for «acn column Ci, where 1 :5 i :5 r

and r is the number of columns in a 2-D trie , Each occupied field of the colum n C, is
mapped to binary 1 and each empty field is mapped to binary O.

246 D. Sirnic, D. Starcevic I Efficient Improvement of Brain-Tharp's Algorithm

In order to use the entire ABCll character set, in ou r implementation the
number of rows of the 2-D t r ie is 128. Therefore every column has 128 fields as shown
in Fig. 6. At the same t ime every column C, of the 2-D t r ie, where 0 < i < r , and r is the
nu mber of colum ns, is represented by a 128-bit colum n representative denoted as CRi .

The column representative is in troduced by mapping the fields into bits in
such a way that if a field is empty the corresponding bit is set to O. Otherwise, the
corresponding bit is set to 1. An auxiliary vector of bits denoted as AV is also created.
The purpose of the auxiliary vector is to hold information about occupied and em pty
fields in a final I-D array denoted as PT. The number of required bits in the auxiliary
vector will be equal to the number of nonempty fields in the 2-D trie for each minimal
perfect hash function.

Initially, the bits of the auxiliary vector AV are set to O. During the process of
colum n packing, we first start to pack the column representatives. The packing is
implemented by operations of bi t manipulation. We use shift ing and bit-wise "AND"
operation.

For example, to pack a colum n representative into the auxiliary vector of bits ,
the result of the bit-wise "A D" operation between the column representative and
corresponding part of the vector must be zero. If the result is non-zero, the position is
forbidden and the next position for the colum n representative must be found (See Fig.
71. After packing the column representative , the corresponding value of CLT is known.
Having the values of the LT, the process of real column packing becomes t r ivial.

A 128-bit part of the auxiliary vector AV
•

1111011 011000 11 010111100 11 010110...11110110110001101011110010000000

A 128-bit representative CR, of column c,

00000000000000000000000000000000...00001 00100 1110000100000100101000

00000000000000000000000000000000 ...00000000000000000000000000000000

The 128-bit resu lt R of the bit-wise "A 0 " operation b etwe sn the above two operands

Figure 7: The resu lt of the bit -wise "AN D" operation between operands 1128 bi ts).
Th resu lt H. qual to zero means the righ t position. Otherwise, the position is

forbidden.

D. Si mic, D. Starcevic / Efficient Improvement of Brain-Tharp' Algorit hm 247

4.2. Improvement of the BT algorithm by better setting of initial packing
positions

Another proposed sim ple and efficient solution denoted as BT_IS is the
intelligent set t ing of the initial packing position for each column in the 1-0 array .
Analysing the pseudocode of the BT algorithm shown in Fig. 1 it can be seen tha t the
packing position for each column is initialised to the first location uf t he 1-0 array.
Also , in the double displacement method described in [20, 211and suggested in [11, the
packing position for each row is initialised to the first location of the 1-0 array . For
small databases improving the set t ing uf the initial packing position for each colum n is
nut so important. However, fur large databases it can be very important. Namely, in
the column packing phase a large amount of time is wasted for each colu mn because
searching for an empty location always star ts from the first location uf the 1-0 array.
The larger the database, the greater the amount of time wasted. Therefore, we
investigated a new packing paradigm, which elim ina tes the was ted search ing for an
initial column position in the final 1-0 array . Instead of always sta rting from the first
location of the 1-0 array, the first em pty location is assigned to be the initial colum n
packing position. It is the first position that might be used for the column packing.
Previous positions are occupied and therefore cannot be used for packing the colum n. If
there are no collisions between the ruled elements of the new column being placed in to
the 1-0 array and the already filled e lements of the 1-0 array then the initial position
will be actually used. Otherwise, the initial position must be changed and the test for
collision must be repeated.

,
We assumed that in the column packing phase list ii), a list of the nonzero

fields is used in column i where 1 < i < rand r is the number of colu mns in a 2-0 trie .

It is important to note that without lists , the colum n packing phase takes an extremely
long time.

4.3 Hybrid solution

The third proposed improvement of the BT algorithm denoted as BT_HS is a
combination of the previous two solutions created to improve performance. We
implement bit manipulation on column bit representatives ~U1d intelligent set t ing of the
initial column position in the 1-0 array at the same time. It is important to say that the
initial column position is set in relation to column bit representative packing in the
auxiliary vector AV.

5. EXPERIMENTAL RESULTS

Experimental results are given for the following versions of the BT algorithm:

BT - the original BT algorithm,

BT_BM - modified BT algorithm with column bit representatives and bit
manipulation,

•

~48 D. S imic, D. Stareevic I E fficie n t Improvement of Brain-Tharp's Algorithm

I~T_lS - modified BT algorithm with intelligent setting of the initial column
position in the 1-D array, and without column bit representatives and bit
munipulation , and

BT HS - modified BT algorithm with intelligent setting of the initial column-
position in till' 1-D array, and with column bit representatives and bit
manipulation.

'l'h BT algorithm and it modified versions BT_BM, BT_lS and BT_HS
al rorithms are all implemented in C programming language. The radix sort method is
U ' d for the 2-D array's column sorting 1211. Performance testing was performed on a
standard UND' dictionary with 25143 words usually found in the me [usrldicthuords .
For all tests we used an unloaded Pentium/166MHz computer with 64 ME memory
under 0 UND' V 3,2v.4.2 operating system. We analysed the impact of the number
of words on algorithm p rformance, Minimal 1-D morays are obtained in all tests.
Exporimon U results represent average performance measures for 5 tests.

Each column of the 2-D urruy has at least one non-empty field. A histogram
pre ' mtin r the number of columns as a function of the number of nonempty fields is
riven in Fig. fo r the whole standnrd U D' dictionary. The total number of columns of
the 2-D trio is 17532. The number of colum ns containing 1 nonernpty field is 5472;
7562 columns contain two nonempty fields , 2112 columns contain three nonernpty
fie lds, ind so on . T he maximum number of nonernpty fields is 61 in a column, The total
number of non empty fields is 4:"674 .

In neral, the exact number of field. in the com pressed 1-D moray is not easy
to determine b for the colum n packing phase. The following theorem gives a good
«st imate I the siz of the 1-0 lUT IY. Let t be the n umber of nonernpty fields in the 2-D
u-r I , ' , let till' fun ·tion tt l), for 1_ 0, be the total number of nonem pty fields in

coluums with more thUl l nonempty valu s. and let the matrix representation of a trie
Ill' pars ' . " I sparse mntrix, w mean a matrix in which the 'number of nonernpty
fi Id is much 1 : ' th n the . ize of the matrix it 'elf. Given the above definitions Trojan
md 'no 1:"11 pr v d th following th rem:

•

1 h m 1: ... IIpP 'Cthe 2-D army luis tJ ' [ollo ioing "harmonic de ay" prop rty:

For all I, th
•

III m ·t t I
IHlm r o(IlOlI t II p ty rid, .
L) , that 1.:'

-olumns ioitl, I lOr: than l noncmpty value "

t I

I'll I t'I"' M.'
•

o

t

I 1

'''''1I III di pian'

tlu. j eatisfi '.'

iL

('n puled ,. the :.. · D errnv- v the
•

lo)

l)

Number of nonempty fields

D. S im ic, D. S t a rcevic I E fficie nt Improvement of Brnin-Tha r p's Algorithm ::!4!1

(7)

•

10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 6 1

T) = s + rl + btt ,

10000

9000

lfl 8000
~

S 7000;::l-0 6000Co)

'-
0

5000:..
cv

..0 4000E
;::l

Z 3000

2000

1000

0

1 4 7

where s is average seek time, rl is average rotational latency, and btt is a block transfer
time. If data are stored on several consecutive blocks then average t ime needed to
retrieve data is .

Proof: For any column i . conside r the cho ice of c(j) . Su ppose c(j) contains 12: 1

nonernpty values . By the harmonic decay property the number of nonempty values in
previous columns is at most 1/1. Each such nonempty value can block at most I choices
for c(j). Altogether a t most I cho ices are blocked, and 0 ~ c(j) ~ t .

Figure 8: Histogram for columns of the 2-D array-based trie for standar d UNIX
dictionary

The harmonic decay property requires that a t least half of the non-empty
values come from columns with one non-empty value. The time complexity of the
procedure to determine the harmonic decay property is linear and proportional to t he
number of columns in the 2-D array. In the case of the standar d UNIX dictionary the 2
D array does not have the harmonic decay property. In other words, i (1) ::; 37202, and
i (l) :S 42674/2 = 21337 is not true. However, after column packing a minimal I-D array
is obtained. In order to have a guaranteed single disk access, generated I-D arrays
shou ld be located in the primary memory a t retrieval time.

As the BT, BT_BM, BT_IS and BT_HS algorithms provide data retrieval with
guaranteed single disk access , average time needed to retrieve data is

250 D. Simic, D. Starcevic I Efficient Improveme nt of Brain-Tharp's Algorithm

Tz =s+ rl « b e btt , (81

where b is the number of disk blocks, where desired data are stored.

Fig. 9 shows the I -D array memory requirements measured in bytes as a

function of the number of keywords from the standar d UN IX dictionary, The shown
results a re identical for the BT, BT_BM, B'1'_I. and BTJiS algorithms. Exper imental
resu lts show the linear functional dependency proportiona l to the number of keywords ,
i.e ., they validated tha t t he I-D array memory requirements are O (n) . For the whole

UNlX dictionary the primary memory requirements are :

42674 (elemen ts) '" 2 (bytes/element) = 85348 (bytes) ,
or (85348 (bytes l-l-Z (bytes for CUI'l)/ 251 43 (words) = 3.39 (bytes/word).

,

IBI

90000 .,---'------------------,
85348 _

83254 _
80000 -

70000 -

<fl 60000 -....,,..-c:.>
E
c:.>

50000 -•-.-;:l
0-
c:.>

41216•->. 4000 0 - -•-0
E
c:.>

:;E 3000 0 -

20572
20000 -

10000 - • 10296
5396

_-3586

0
, I I I I [words]I I I I I

0 5000 10000 15000 20000 25000 30000

Number of key words

Figure 9: The I-D array memory requ irem en t as a function of the number of
keywords from the stan dard UNIX dictionary.

Experimental resu lts are identical for the 1:3'1' , 1:3'1'_BM, B'1'_IS and 1:3'1'_H S algorithms.

D. Simic, D. St.arcevic I E fli cient Irn prnveruent of Brai n-T hnrp's Algorith m :.!5 1

The primary metric used in th is paper is run time. Figu re] 0 shows column
packing time in seconds as a function of the number of words fiJi' the 13'1' , In'_HM .
13'1'_1 and 8T_HS algorithms. The column packing time is measured for the first 1000 ,
1500 ,3000,6000,12000 , 24481 , a nd 25143 words of the standard IX dictionary. I'he
modified algorithms are better than the or iginal a lgor ithm in all tests. In the case of
the whole UNIX dictionary the column packing phase implemented by the origi nal
algorithm ta kes 145 seconds. Unde r the same conditions the column packing phase
implemented by modified algorithm BT_HS ta kes 72 seconds. Im provement of column
packing time is 50.34% of the t ime needed by the origi na l ulgorithrn , i.e., t he
improvement factor is 2.01.

[s1
160 ..,.----------------------,

140

•
•
•

BT algor ithm

•
20

40

120 - 0 BT_BM algori thm

• BT I algor ithm
Cl>
~- 100 BT H algor ithm.- •....,
co ---.-
~

:..>
:ll
P.. 80
c
E
;::l-0
u 60

o [words]

o 5000 10000 15000 20000 25000 30000

Number of key words

Figure 10: Column packing t ime as a function of the number of words fr om the
standa rd UN IX dictionary

252 D. Simic, D. Starcevic I Efficient Improvement or Brain-Tharp's Algorithm

Figure 11 shows the total time needed to create the I -D array as a function of
the number of words from the standard UNIX dictionary. The total time is equal to the
sum of the time needed to create the 2-D array, the time needed to sor t columns of the
2-D array, and the colum n packing time. Running implementation of the or iginal
algorithm takes 147 seconds for the whole UNIX dictionary. Running implementation
of modified algorithm BT_HS takes 74 seconds under the sa me conditions.
Consequently, using modified algorithm BT_HS the improvement of the total time is
49.65% of the t ime needed to construct an ordered perfect hash function by the original
BT algorithm. It is important to note that total time for the 2-D array creat ion and
column sorting takes only 2 seconds.

[s]

160 ,..--------------------,

••••140

120

•

BT algorithm

- 8 -- BT_BM algorithm

- .-BT_IS algorithm

-11-- BT_HS algorithm

•
•

100
(lJ

E.-.....,-ro 80.....,
0•t"'"

60

40

20

•

0 +

o 5000 10000

[words]

15000 20000 25000 30000

Number of key words

Figure 11: Total time needed to create the 1-D array as a function of the number of
words from the standard UNIX dictionary

6. COMPARISON TO OTHER PERFECT HASHING
ALGORITHMS

There are many criter ia for comparing perfect hashing algorithms. Table 2
shows a comparison of the original BT algor ithm to other known perfect hashing
algorithms. The criteria for com par ison are: the function build order, the number of
words in the inpu t word list , t he amount of memoI}' space lin bytes) required to hold
the table u sed by the given algorithm pel' item stored in the item list , a nd confirmation
that the perfect hash function is ordered. The huild order is the computational
complexity of the a lgor ithm at build t ime.

According to the results shown in Fig. 10 and Fig. 11, the time fu nctions for

the BT algorithm have a quadratic form , i.e.. y = kx'2 , where h is a positive constant,

and x > 0 . It ca n be seen that the time functions for BT BM, BT IS, and B'I' HS- - -
algorithm have a quadratic form as well. The nature of the t ime functions for rh..
original and modified algorithms is no t changed. The difference is only in the va lues of
positive constant h, which graphically shows the improvement ach ieved in tho
construction of orde red minimal perfect hash functions. In other words , decreasing t ill'
number of needed operations resu lted in decreasing value of t he posi tive constan t in
the quadratic function.

'J"')_do.)D. S im ic, D. Sl.n rcevic / E ffic ie nt Improvemen t of Bra in-Tha r p's Algorithm

Although t he construction of a perfect hash function occu rs once for a given
sta t ic set of words , a very important characteristic of perfect hashing algorithms is
their time complexity. Time complexity directly limits the numbe r of words which can
be processed. It should be said that we analysed worst case t ime complexity. As can he
seen in Table 2, Cichelli's algorithm has the worst time complexity - exponen tia l, and
Fox's algorithm (Algorithm 2) 181 has the best t ime complexity - lineal' . Fox's algorithm
is currently the most computationally efficient . The time complexity of other .
algorithms shown in Table 2 falls in between these ext remes. It should be noted that
t he time complexity of Karplus's algorithm is derived from exper imental results.

Ciehelli's a lgor ithm can handle very small sets of words l40 words), while
Fox s algorithm (Alguri thm 2) 181 ca n handle very large sets on the order of a million
words. However, Fox s perfect hash functions are not ordered. The BT algor it hm can
handle large sets of words (an example for 100,000 words is shown in Table :3) and till'
generated perfect hash functions are ordered. For larger sets uf words Sprugnoli
suggests a segmentat ion process 1191, which implements the divide and conquer
paradigm. For instance, applying segmentat ion in the BT algorithm a list of 1,000,000
words can be divided into 26 distinct sublists using the first let ter of each word tu
determine the contents uf each sublist . After that , an index st ructu re is created for
each sublist in the form of the compressed 1-U array. Similarly , a list of 10,000,000
words can be divided in to 676 distinct sublists using the first two let ters of each word,
and so on.

Table 3 shows a comparison of the BT algorithm to the HTJIS a lgorithm , the
best,improvement of the BT algorithm. Our exper iments are performed in such a way

254 D. Simic, D. Starcevic / E ffic ient Improvement of Brain-Tharp's Algorithm

that both algorithms are implemented on the same computer under the same
conditions. Improvement of the BT algorithm is achieved in the colum n packing phase .

Due to the linear build order, Fox s algorithm 181 has the best results for the
total t ime needed to build a perfect hash function for sets of words where order ing is
not important. If order ing is important the BT_HS algorithm is better than the others .
As Table 3 shows, the tota l time needed to build a perfect hash function for a given
word set by the BT_HS algorithm is also better than the or iginal BT algorithm and on
the example of a simu lated dictionary with 100,000 words the improvement factor is
1.40. As can be seen in section 5 in the case of a real dictionary the improvement factor
is close to 2. Different improvements are due to different distributions of keyword
values . .

Table 2: Com parison of the BT algor ithm to other perfect hashing algorithms

Algorithm Reference Build Order Li st Size Space Ordered
•

Name (bytes/ent ry) Function

Cichelli 16 J O(c") 40 0.65 N

Karplus [10 J o» I 5)· 667 .A.

Chang [41 .A. .A. N.A. Y
agel' 116 J O(n(j) 256 4.0

Fox 171 0 (1l3) 1,000 4.0

Fox Alg2 181 O(n) 524,288 0.45
•

Brain 121 0 (1l2). 1,696 2.4 •

MSMP 131 O(1l2) 5,000 2.0

&H [18 1 0 (1l 3) 900 1.35 Y

B1' [11 OC,,2) 24,481 3.4 y

N.A. ::;: Not available.
" is the number of columns of the 2-0 array
"Der ived from exper imental results rather than theoret ica l analysis

Table :J: Com parison of the BT algorithm to the BTJIS algorithm

Algorithm Reference Build List Total Time Machine Space Ordered
Name Order Size (in s) (bytes/entry) Function

BT 0 (,,2) 25, 143 147 Pcntium/1 6B 3.39 y

BT HS 0 (,,2) 2f1, 143 74 Pcnt ium/1 6B 3.39 Y-
BT 0 (,,2) 100,000 916 Pcntium/16G 5.34 y

BT HS 0 (,,2) 100,000 652 Pcnt ium/1 G6 5.34 Y-

" is the numbor of colum ns of the 2-() IUTay

D. Sirnic, D. Starcevic / E fficient Improvement 01" Bra in-Tharp's Algor it hm 255

The amount of memory space required to hold the table used by the given
algorithm per item stored in the item list increases from 0.45 bytes for Fox's algorithm
(Algorithm 2) 18J to 5.34 bytes for the BT and the BT_HS algorithms.

In Table 2 and Table 3 the very important fact cannot be seen that for the BT
and BT_HS algorithms worst case search time is proportional only to the length of the
search string. In other words, sea rch t imes do not directly relate to the number of
keywords .

An important open problem in the class of orde red perfect hash algorithms is
that the BT and BT_HS algorithms work unly with static databases .

7. CONCLUSION

Perfect and minimal perfect hashing algorithms have been studied in many
research projects in the last twu decades . So far , the BT algorithm is the best perfect
hashing algorithm with the possibility to create ordered minimal perfect hash
functions. In relation to other com pet it ive algorithms, the BT algorithm is su perior in
terms of function building efficiency and function complexity at retrieval time. Unlike
some previous perfect hashing algorithms, the BT algorithm eliminates all pattern
collisions. However, the main disadvantage of the BT algorithm is the t ime cunsum ing
column packing phase. This paper presents three different improvements to the BT
algorithm. Namely, the BT_BM algorithm introduces colum n bit representatives and
the bit manipulation paradigm, In t he BT_IS algorithm the colum n-packing phase in
the original BT algorithm is modified in such a way that instead uf always returning to
the first position of the I-D array , intelligent sett ing of the initial packing positiun for
each column in the I-D array is introdu ced. Hence, t he time for finding colum n packing
positions into the I-D array is decreased. Finally, the BT_H S algorithm com bines bit
manipulation and intelligent set t ing of the initial packing position for colum n bit
representatives .

Our experimental results indicate that significan t performance improvement
may be achieved by the aforementioned three modified versions of the BT algorithm. In
order to comparatively evaluate the algorithms detailed exper imental analysis was
performed for the BT, BT_BM, BT_IS and BT_HS algorithms un the example of the
standard UNIX dictionary. Test results have shown that the modified algorithms are
better than the original. In the case of the whole standard UNIX dictionary ,
improvement in total time achieved by the BT_HS algorithm is about 50% of the t ime
needed by the original algorithm to create the I-D array , that is, the improvement
factor is close to 2. The improvement represents a sign ificant contr ibution to providing
possibilities for wider applicability uf the described algorithm.

•

~56 D. Simic, D. Starcevic I Ellicient Improvement of Brain-Tharp's Algorithm

REFERENCES

III Brain , M.D., and Tharp. A. L., "Us ing tries to eli minate pattern collisions in perfect hashing",
TEEE Tran sactions Oil Knuioledgc and Data Engineering; 6 l ~) lH194) ~39-~47.

121 Brain , M.. a nd Tharp. A., "Nea r-pe r fect hashing of large word sets" , Sol/ware Practice and
Experience. 19 U 0) U 989) 967-978.

1:11 Brain . M., and Tharp, A" "Per fec t hashing using sparse matrix packing" , lntormat ion
Systems , 15 l3) 0990) ~81-~90 .

141 Chang, C. C., "T he st udy of an ordered minimal perfect hashing scheme", Communications of
the A CM , 27 (4) 0984) 384-387.

I:' I Cha ng, C. C.. Chen, C. Y., and Jan , J . K., "O n the design of a machine-independent perfect
hashing sche me", Th e Computer J ournal , 34 l5 1l 1991).

161 Cichell i, R. J ., "Min ima l perfect hashing made s imple", Com m unicat ions of the A CM, ~3 (1)
(1980) 17-19.

17 1 Fox, E . A. . Chen , Q. F ., Heath, L. S., and Datta, S.. "II. more cost effective algorithm for
finding minimal perfect hash fun ctions", A CM Con]. Proc.• 1989. 114-1 ~~ .

1'1 Fox, E . 11..• Heath , ' L. S ., Chen, Q. F ., and Daoud, A. M., "P ract ica l minimal perfect hash
fu nc tions lo r large databases", Conunu nicat ions uf the ACM, 35 (1) l l!192) 105-1 ~1 .

II>! J aeschke, G., "Reciprocal hashing: II. method for ge nerat ing minimal perfect hash fun ctions",
Com m uuicat ions uf the A CM. ~4 (1~) 0981 J 8~9-833 .

1101 Karplus, K., a nd Haggard , G., "Finding minimal perfect hash function s". Comput , S ci. Dept .,
Cor ne ll U niv., TR84-637, l!J84 .

11II Knu th , D. E ., Th e Art uf Computer Programm ing, Vol. 3. S ortin}! and S earclung, S econd

Ed it ion , Addison Wesley, Readin g Massachusett s , H198.
11 21 Majewski . B. S., Worm ald . N. C., Havas, n" and Czech. Z. J ., "II. family of perfect hashing

method s", Th e Computer J ournal , 39 (6) l W96) 547-554.
IU I P ark . J . S" Che n, M.-S .• a nd Ph ilip, S . v«, "Using a hash-based method with transaction

t ri m ming fo r mining associat ion rules", TEEE Tran sactions on Knouilcdg» and Data
Engineering , 9 (5) (l!197) 813-825.

1141 Ramakrishna . M. V., a nd Larson, P . 11.., "F ile organi zation using com posite perfect hashing",
A CM Trun saction s on Databas e Systems, 14 (~) U\l89) ~31-:W3.

11 :' 1 Ramakrishna . M. V., Fu , E ., a nd Bahcekapili , E ., "II. performance stu dy of hashing function s
for ha rd wa re a pplicat ions", Proc. of ln ternationnl Con]. O il Compllt ill}! and lnformation, 19~J4,

162 1- 1636.
11 61 Sager, T . J ., "II. polynomial tim e ge nerator lor minimal perfect hash fun ctions",

Com m unications of tlu: A CM. ~8 l5) 098515~3 ·532 .

11 71 Salzberg, n., File Structures: All Analytic Approach, Prentice Hall , Englewood Clifls , New
J ersey, 1\188.

II ~ I Seide n, S . S ., a nd H iI' chberg, D. S .. "F ind ing succinc t ordered minim al perfect hash
Iu nct ions", Tech . Repor t , U n ive rsi ty ofCalifor nia. I rv ine, ICS-TR-9~-2 3 , Sep. l!Hl4.

1191 S prugnn li, R. J ., "P e r fect hashing functions: II. s ingle probe retri eval method lor s ta t ic sets",
Conunun icutions of th e ACM , zo u u l 1977).841 -850,

1201 'l'arjn n, R, E., "S tor ing a spa rse t able", T ech . Report, Com puter Science Department. School
of l l u man it ies a nd Scie nces, S t a nfo rd Uni versity. ST II.J'I: -CS-78·683, Dec. H178, 1-~6 .

1211 'l'a rju n, H. E .. and Yan, 11. . C., "S tnr ing a spa rse tabl e", Conun u.uications of the A CM , 22 0 1)
(1!17!1) 6011-6 11.

•

