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Abstract: In this paper we present a Genetic Algorithm based heuristic for solving the
Product Line Design Problem using the Buyers' Welfare Criterion. The new approach is
compared with a recently developed Beam Search method on randomly generated
problems. Our method seems to be substantially better in terms of CPU time. Also, the
solutions found by our method are better than those found by the Beam Search method
in comparable times.
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1. INTRODUCTION

Optimal product design is well recognized as one of the most crucial decisions
for a firm. Many practitioners and academicians deal with optimal product design,
because the rates of failure of new products and their associated losses are very high
(2]. It 1s well known that the product design problem 1s NP-Hard [10]. For this reason
many researchers have proposed heuristic procedures to solve the problem (see |6] for a
review).

A very important problem in marketing i1s the optimal product line design,
Recently, many researchers have proposed preference-based procedures for this
problem. There are two different approaches to attack the problem. The first approach
considers a finite set of candidate 1items (reference set) from which a product line i1s
selected |5, 7, 12|. Preference evaluations for each item are used to select a product line
maximizing the buyers' welfare function (the "buyers' problem") or the sellers' return
function (the "sellers' problem"). If the number of attributes and attribute levels is large
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and most attribute level combinations define feasible products, it can be
computationally infeasible to enumerate the utilities of candidate items. For this class
of problems, it is preferable to use the second approach, which constructs product lines
directly from parts-worth data. Kohli and Sukumar [11] and Nair, Thakur and Wen
|14| have developed the most recent heuristic methods using the second approach. Our
method constructs product lines directly from parts-worth data.

There are two basic approaches for modelling the single product or product
line design problem: the multidimensional scaling approach (MDS) and the conjoint
approach. Conjoint analysis 1s a very popular method for real applications [15]. Green
and Krieger |7], McBride and Zufryden [12], Dobson and Kalish [5], Kohli and Sukumanr
[11] and Nair, Thakur and Wen [14] have used the conjoint method in product line
design problems. Our method uses conjoint analysis for modelling the product line
design problem.

2. PROBLEM DEFINITION

In the Buyers' Welfare Problem we consider that buyers choose the product
that gives them maximum utility and the product line is designed so that the total
utility of all the buyers of the product line is maximized. The Buyers' Welfare Criterion
can be used by nonprofit organizations. However, buyers' welfare is very important for
the survival of every firm.

The typical mathematical formulation of the product line design problem [10]
considers the following sets: Let Q=1{1.2.....K} denote the set of K attributes. Let

®, ={12.....J,} denote the set of J, levels of attribute ke Q. Let ¥ ={12..... PN}

denote the set of PN items to be selected, where the multi-attribute description of each
item 1s to be determined by solving the buyers' welfare problem. Let ® ={12.... .1}

denote the set of I buyers. Let w;;;. denote the part worth of level je @, of attribute

ke Q2 for consumer i € & . The parts-worth can be estimated using conjoint analysis.

Each buyer chooses the product that gives him maximum utility. The Buyers
Welfare problem is to select a product line that maximizes the total utility of all the
buyers of the product line. Let x;;, be a variable which indicates whether level

J € ®, of attribute ke Q 1s assigned to product m eV and consumer ie® . In

particular it is set that:

1,if level ; € D, of attribute £ € 2 1s assigned to product i € 'V and consumer: € <
Xijkm =
TR :
0.otherwise
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The Buyers' Welfare problem can be formulated as the following 0-1 Integer program:

max > > 3 Zwijerjknr (1)

1@ meV ke() 1D,

st. D> DXijkm=1 i€e®. ke (2)
j‘- (Dk me'y
D k= hxere =), Sk kikikiéQ ie@imiey (3)
ji—q)k J“:?(Dk*
I,jkm +x!:j'km <fl. Spis j’ > J 1.1 €@ j,j' - (-I)k'- ke (bmeVY (4)
Xiitm €101}, 1€0, jeDp, ke Q meVY (5)

Constraints (2)-(4) force each buyer to be assigned to one of the items of the
product line. The objective function (1) selects the items of the product line to
maximize the total buyers' welfare and ensures that each buyer is assigned to an item
from which he obtains the maximum utility.

3. EXISTING HEURISTIC METHODS FOR THE PRODUCT
LINE DESIGN PROBLEM

Because the Buyers' Welfare Problem of a Product Line Design is NP-Hard,
many researchers have proposed heuristic methods. Kohli and Sukumar [11] proposed
a heuristic solution procedure that mimics a dynamic programming method using
attributes as stages and attribute levels as states. Therefore, this solution procedure is
called a dynamic-programming heuristic.

Nair, Thakur and Wen [14] proposed a Beam Search (BS) heuristic for the
solution of the product line design problem. Their computational study showed that the
BS method finds better solutions and takes less computation time than the dynamic
programming heuristic. BS methods were developed in the 1970s for artificial
intelligence search problems. BS is a breadth-first search process with no backtracking.
At any level of BS, the b most promising nodes are explored further in the search tree,
where b is called the beam width. Nair, Thakur and Wen [14] suggest a way to compute
a good value of b. In our computational study we have followed this suggestion.

We must note that these heuristic methods work with 'partial’ product profiles
in the sense that they are described by the levels of only some attributes, which are
considered in a concrete step. That's the reason why the first method can't use the
solution of the second as a starting point and vice versa. This restriction doesn't exist
for the Genetic Algorithms (GAs) and 1n our computational study we make use of this
advantage. We initialize the GA in two different ways. In the first way we initialize the
GA with a random first population. In the second way we include the solutions of the
BS heuristic in the first population.
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4. GENETIC ALGORITHMS

The GA is an approach that arose with computer science. They were first
invented by John Holland in the 1960s and were developed by Holland and his students
and colleagues at the University of Michigan in the 1960s and 1970s. GAs are

intelligent probabilistic search techniques that mimic some of the processes of natural
evolution and selection [13, 1, 9, 4]. All GAs consist of the following main components:

1. Chromosomal representation: GAs work with an encoding of the variables as
strings of genes, which can take on some values from a specific finite range or
alphabet. This string of genes, which represents a solution, is called a
chromosome. It works with a population of solutions rather than a single
solution.

2. Initial population: The initial population can be created randomly or using
problem-specific information.

3. Fitness evaluation: Each solution in the population is evaluated according to
some fitness measure.

4. Reproduction: This operator selects chromosomes from the current generation
based on their fitness values.

5. Crossover: This operator creates new chromosomes by mating current
chromosomes. There are different types of crossover, like one-point crossover,
two-point crossover and uniform crossover.

6. Mutation: This operator is the occasional random alteration of the value at a
string position.

A generic form of GAs can be stated as follows:

e (Generate an initial population
e Repeat

Fitness evaluation of current population
Reproduction

Crossover

Mutation

e Until the stopping condition is satisfied.

Correctly applied GAs can provide good heuristic solution approaches for many
integer programming problems |3, 8]. In recent years many researchers have dealt with
solving marketing optimization problems using genetic algorithms (see [9] for a
review). Balakrishnan and Jacob [1] have developed a GA for the single product design
problem. Our method 1s an extension of this approach to the product line design
problem.
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5. A GENETIC ALGORITHM FOR PRODUCT LINE DESIGN

We present a GA for the product line design problem. We 1nitialize the GA in
two different ways. In the first way we initialize the GA with a random population.
This algorithm 1s called GA1. In the second way we include the solutions of the BS
heuristic in the first population of the GA. This algorithm is called GA2. We have used
the Buyers' Welfare Criterion for the fitness evaluation of each population. In each
iteration 40% of the new population is produced using the reproduction operator,
another 40% using the uniform crossover operator and 20% using the mutation
operator. If the best candidate solution does not improve in the last 10 iterations, the
(GA terminates.

The algorithm can formally be described as follows. In this description L is the
set of candidate product lines and M =| L | is the population size. The population is
maintained in matrix POPypn+x. The elements POP,,,;, where e L, me'l’ and
k e O, denote the selected level of each attribute. That 1s, if level ;€ ®, of attribute
k e Q 1s assigned to product m e ¥ of product line /e L, then POPF,, , = j, otherwise
0. Let w;;, denote the part worth of level ;e ®, of attribute ke (2 for consumer
i e ® . The utilities of the PN different products of each product line which are
obtained by each buyer are maintained in the matrix PRODUTILp+;+pn. The buyers'
welfare for each product line is stored in the matrix WELFARE ;.

STEP 1: (Initialization) Generate an initial population of candidate product lines.
Store the population in matrix POPy+pn+k.

STEP 2: (Fitness Evaluation). Compute matrices PRODUTILpy+py and
WELFARE), as follows:

set PRODUTILH,” = Zw,'(p()}:;mk e leLiiec®, meYV
ke

and

set WELFARE, = S max PRODUTIL,;,,, le L.

jeEmet
STEP 3: (Reproduction) Choose the (2/5)M best product lines.

STEP 4: (Crossover) Create randomly M/5 pairs of product lines chosen among the
ones created in Step 3. Perform the uniform crossover operator on these pairs to
generate (2/5)M new candidate product lines.

STEP 5: (Mutation) Pick randomly M/5 product lines from the set of the (4/5)M
product lines which were created in Steps 3 and 4 and perform the mutation operator
on them.

STEP 6: (Stopping Rule) If the best candidate solution does not improve in the last
10 iterations STOP. Otherwise, go to STEP 2.
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6. COMPUTATIONAL RESULTS

In order to see whether the GA has any computational advantage, we
compared it with the BS heuristic. We randomly generated 360 different problems. The
problems are divided into two groups. In the first group the number of consumers is
100, and in the second 150. We considered 18 different problem sizes for each group.
For each different problem size 10 problems were randomly generated. In order to
generate 18 different problem sizes we gave different values to the number of
attributes (K=5,6,7), the number of attribute levels (J=4,5,6) and the number of
products (PN=2,3). The parts-worth were generated randomly from a uniform
distribution and normalized within respondent. The normalized parts-worth are
assumed mutually comparable for the buyers' problem.

In the implementation of the GAs the population size was set equal to 150.
The algorithms terminate when in 10 consecutive iterations the best candidate solution
doesn't improve. We must indicate that in some cases the results of the GAs can be
improved, if we increase the population size or if we set a more strict stopping
condition. However, according to our experience, the population size and the stopping

condition we used in our implementation, are in general good for the problem sizes we
studied.

For each class of 10 problems we computed the average CPU time of the
algorithms GA1, BS and GA2. The CPU time needed to find the initial solution by the
BS method is not included in the CPU time of GA2. For the algorithms GA1 and GA2
we computed the average number of iterations. Furthermore, for the cases where
algorithm GA1 finds a better or an equivalent solution compared to that found by the
BS method, we computed the average CPU time and the average number of iterations
needed by algorithm GA1 to reach or to better the solution found by the BS method.
These computational results are presented in Tables 1a and 1b. In all cases algorithm
GA1l requires less CPU time than the BS method. This is more obvious for big
problems. In almost all cases GA2 needs less iterations and CPU time than GA1l. There
is only one exception for PN=3, K=5, J=4 and /=100. For the cases where algorithm
(GA1 finds a better or equivalent solution compared to that found by the BS method,
algorithm GA1 needs in the most cases about 50% of the number of iterations and CPU
time to reach or to better the solution found by the BS method.

It 1s very interesting to compare the solutions of the heuristic methods. We
compared the solutions of GA1, GA2 and BS. The comparative results are presented in
Tables 2a and 2b. In all 36 problem sizes GA1 more often finds a better solution than
BS. In 81.39% of the cases we examined, (GA1l finds a better solution than BS, while in
only 12.22% BS finds a better solution than GA1l. In 62.22% of the problems GAZ2
improves the solution of BS. Also we compared the solutions of GA1 and GA2. In
43.89% of the problems GAI1 finds a better solution than GAZ, while in 31.94% of the
problems GA2 finds a better solution than GAl. In each iteration of the GA2 the b
product lines generated by the BS heuristic have a high possibility of being reproduced.
A consequence of this fact 1s insufficient changes to the population. That is perhaps a
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possible explanation for the superiority of GA1 over GA2. These results are presented
separately for /=100 and /=150 at the end of Tables 2a and 2b.

The implementation was done using the programming language Borland C+ +

4.5. The computational tests were conducted on a PC with a Pentium Processor (16 MB
RAM, 150 MHz, using Windows 95).

Table 1a: Computational results of GA1, BS and GA2 for /=100

——

—

k GAl ‘I BS 1 GA2
CPU CPU CPU CPU
PN | K | J | time time* | Iterations |Iterations*| time time |Iterations
(secs)ﬁ (secs) | | | (secs) ‘ (secs) |
2 |5 | 4 | 12.47 5.44 21.20 9.00 21.86 8.12 14.20
2 Lol 1451 6.29 23.60 10.22 22.63 8.94 15.20
2 |5 |6 | 1596 6.28 26.70 10.33 24.04 10.38 17.30
2 P65 1619 5.99 24.60 9.63 43.89 8.87 14.60
2y 116.3] 167 | "1 7:59 1519 28.30 12.57 43.71 11.10 17.60
2 16 i16 172191 11.89 34.00 18.13 44.00 9.53 15.10
2 W7o L8a9 8.79 29.50 13.75 45.58 11.86 18.90
2" [T 1908 | 8.64 28.40 12.78 41.83 13.25 20.80
2 (R ™ LR ) 8.59 32.30 12.78 46.07 12:17 18.60
3 |5 |4] 16.79 8.08 25.30 12.00 41.78 LY19 25.40
3 |5 | 5] 25.65 14.01 36.50 19.80 45.55 15.46 21.60
3 |5 | 6| 23.04 11.05 33.50 16.00 45.44 21.49 31.30
3 |6 | 4| 24.66 12.28 34.50 17.00 84.72 13.17 18.40
S G ol o1l (0 B 13.64 39.40 18.29 85.37 20.01 26.50
3 |6 |6 | 31.54 16.78 41.40 21.86 85.54 20.46 27.40
3 |7 |4 2840 13.16 37.00 16.90 84.32 13.66 17.50
3 |7 |5 | 3697 19.63 46.00 24.25 85.95 20.46 25.90
3 |7 |6 3593 , 15.75 46.20 20.10 88.57 | 15.49 19.70

e

*needed by GA1 to reach or to better the solution of the Beam Search heuristic only for
the cases where GA1 finds a better or equivalent solution compared to those found by
the BS method.
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Table 1b: Computational results of GA1, BS and GAZ2 for /=150
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GAl BS GA2
CPU | cPU CPU | CcPU |
PN | K |J | time time* | Iterations |Iterations®| time time | Iterations
(secs) (secs) (secs) (secs)
2 i 5 T 15.69 | 7.53 ' 21.90 10.38 23.39 | 10.46 | 14.70
Z G w6 18.06 8.68 23.70 11.13 24.75 | 1141 15.60
20 IFGSI6 19.25 8.45 26.10 11.40 25.74 | 11.29 15.50
7/ (B O 87 20.21 10.35 26.60 13.40 46.69 | 13.34 17.80
2 116 21D 23.56 9.75 26.70 11.00 49.17 | 13.49 15.80
ARG R0 25.55 14.23 32.00 17.89 49.26 | 12.83 16.20
; 2§ 19 4t 23.11 11.31 29.20 14.13 4794 | 11.43 14.50
[02al 7 1149 27.40 12.57 33.00 15.40 48.35 | 14.64 17.40
la2ia ) 7. 1126 26.21 12.49 31.90 15.11 50.98 | 17.91 22.20
3 15 |4 29.77 15.66 33.20 17.22 43.24 | 16.15 18.20
3| 5. ilab 26.77 14.07 30.50 16.00 46.02 | 20.11 22.70
Sulnbr 1146 29.93 14.43 34.00 16.33 48.94 | 22.71 23.60
S M6 ¥4 32.41 15.63 36.30 16.30 88.40 | 19.25 21.10
Saele b fl6 39.73 17.96 40.90 18.30 89.81 | 26.48 27.70
Suli6 . 116 40.78 23.26 42.90 24.22 90.52 | 18.37 19.30
3 |7 | 4 35.94 16.07 37.10 16.33 | 92.09 | 20.33 20.20
Bu 4 1|ab 44 .68 24.03 43.10 22.89 93.67 | 19.94 19.30
3 | 7 | 6 42.04 _ 20.73 41.30 _ 20.20 96.64 | 31.86 | 30.50

*needed by GA1 to reach or to better the solution of the Beam Search heuristic only for
the cases where GA1l finds a better or equivalent solution compared to those found by

the BS method.
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Table 2a: Comparative results of the solutions of GA1, BS and GA2 for /=100

—

!

PN| K| J [GAlbetter] BSbetter | GA2better | GAL better | GAZ better
j | than BS | than GA1 | than BS than GA2 A than G_{&l
2|5 | 4 5 0 AN T 0
2> | 5| 5 7 1 5 2 3
I 8 1 6 4 2
2 | 6 | 4 8 2 5 5 2
2> | 6| 5 7 3 6 5 4
2|6 |6 6 1 4 3 2
2 | 7| 4 8 2 6 3 5
2o | 7|5 9 1 9 4 1
2| 7|6 9 1 6 4 3
3|54 10 0 9 5 4
3|55 10 0 : 6 3
3|56 9 1 : 4 3
3|6|4a| 10 0 5 6 4
3|65 7 2 9 4 4
3|66 7 3 6 4 6
3| 7]a| 10 0 5 6 2
3 |76 : 2 7 2 5
3 lnl6| ‘10 0 U 3
% 82.22% | 11.11% 63.89% 41.67% | 31.11%

—
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Table 2b: Comparative results of the solutions of GA1, BS and GA2 for =150

PN| K| J
215 |4
2 | 5 1.6
2 | 5] 6
2 | 6| 4
2161|656
| 2| 6. -8
T T A
2} TaFS
2 b4
3|5 ]| 4
3|66
3|5 |8
3 | 6 i
316|656
31616
3 b7 14
I R
3 =74
%

A Genetic Algorithin (GA) for the Buyers' Welfare Problem of a Product Line
Design was presented. In the implementation the GA was initialized in two different
ways. In the first way the GA was initialized with a random first population. This
algorithm is called GAl. In the second way the solutions of the Beam Search (BS)
method were included in the first population of the GA. This algorithm is called GA2.
The genetic algorithms GAl, GA2 and the BS method were compared on 36 different
classes of problems each one containing 10 randomly generated problems. Algorithm
(+Al seems to be substantially better than the BS method in terms of CPU time. Also
the solutions found by GA1l are better than those found by the BS method.
Furthermore, in many cases algorithm GAZ2 improves the solution of the BS method.

— R

GAl better | BS better | GA2 better
thah BS than GA1l than BS

5 2 5
7 2 7
9 0 6
7 0 5
7 2 4
9 1 6
4 2 4
s 5 A
‘8 1 6
8 1 7
6 4 6
9 1 9
10 0 7
10 - | 0 ' 6
9 1 6
9 1 8
9 1 4

7. CONCLUSIONS

(GA1l better
than GA2

3 O 0 -3 O W W RO W -

However, in most cases (GA1 finds a better solution than GAZ2.

GA2 better
than GA1l

(W&

W W N W O g WOt = = W

10 0 - 8L | 3
80.56% | 13.33% 32.78%
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