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A CONTINUOUS CONDITIONAL GRADIENT METHOD?
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Abstract: In this paper we study the continuous conditional gradient method to solve
convex minimization problems in Hilbert space. First, sufficient conditions for
convergence are provided and the convergence rate is found for a minimization
problem with a strong convex function. Then, the regularized method is considered for
a minimization problem with inaccurate initial data. Regularization is based on the
continuous conditional gradient method in conjunction with the penalty function
method. The sufficient conditions for the convergence of the regularized method are
presented, the regularizing operator 1s constructed, and a stopping rule for the
continuous process 1s proposed.
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1. INTRODUCTION

Observe the following minimization problem:

Jw)—>nfuelU (1.1)

where U is a closed bounded convex set in a real Hilbert space H, function J 1s
continuously Fréchet differentiable and convex on U. For solving problem (1.1) we will
observe the continuous conditional gradient method described by differential inclusion

w'(t)+ f(tu(t) € p(L)e(t) - Argmin{(J ' (u(t).z-u(t)): z € U}). (1.2)
t20.u0)=uyeU. |

where u, 1s the given initial point, £ 20.£(f) 20, #(t) 2 0. Here u'(t) = %’;—‘—.J'(u) 1s the

gradient of JJ at the point «, and
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e-Argmm{f(u). ueU}={welU: f(w)=< in{f f(u)+ €} (1.3)
U=

The method (1.2), (1.3) is a continuous version of the well-known iterative conditional
gradient method [10, p. 291]:

Up.y —(1=Bruy € Pr(e —Argmin{(J ' (uy ) u—uy ) ucU})

with £, 20.220. m &, =0.uy € U 1s the given initial point.
ke—s a0

We will assume the global existence of a solution to differential inclusion (1.2).
Some results related to the existence of a solution can be obtained from the general
results of the viability theory [4].

The continuous methods are of some interest for research because they give a
large choice of numerical integration methods to solve the corresponding differential
equations, and in that way they provide new iterative processes. In [3] one such
approach to minimization was presented coupling approximation with the descent
method. Continuous methods based on the gradient projection method, proximal point
method, Newton method and linearization method were studied in (2], [7], [8] and [12].
All these results are based on studying the trajectories of the corresponding differential
equations that describe the continuous method. Let us remark that a general approach
to the investigation of the stabilization of trajectories of nonlinear evolution equations
in Banach space was given in |1].

2. THE CONDITIONS FOR CONVERGENCE AND
CONVERGENCE RATE

In this section we study the convergence of trajectories wu(t).t>0 of the
system (1.2), (1.3). We will begin with the following lemma.

Lemma 2.1. Let U c H be a convex closed set in a real Hilbert space; then any
trajectory u(t), t 20 of the system (1.2), (1.3) is in the set U, i.e. u(t)eU.t >0

Proof: The solution to differential equation (1.2), (1.3) is given by

WUE)'=

”0 1 ¢
e (s Yh(sw(s)ds. t >0
h(t) h(t) ({’“

where

w(t)e e(t)— Arg min{(J(u(t)).2—u(t)): 2 U}, t 2 0.

4
h(t) = exp(| f(s)ds).t 2 0. (2.1)
0
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It 1s well known [11, p. 177, Corollary 1|, that every closed convex set U in a
Hilbert space H can be represented in the following way |

ESmy vy i o ey o £ ={er:(cr,.x)5dﬂ},ael

with ¢, e H.d, € R.a € I. I is the set of index a . Scalar products of the elements w(?)
and ¢, give

¢
: (c,, A > +—1—jﬁ(s)h(s)(ca .w(s_))ds. t20.ael

(Crz-u(t)>=h(t) h(f)u

Since ugeU.w(s)eU.s20.h'(s) = f(s)h(s). we conclude that (ca u(t )) <d,. for all
t >20.a el Therefore u(t)e U for every t>0. This completes the proof of Lemma 2.1.

In the following theorem we establish some sufficient conditions for the
convergence of the method (1.2), (1.3).

Theorem 2.1. Let the following conditions be salisfied:

a) U is a closed bounded convex set in a Hilbert space H, function J is continuously
differentiable and convex on U,

b) the parameters [(t).(t) of method (1.2), (1.3) satisfy

g(t), B(t)e Cl0.4x). £(£) 2 0, f(L)>0,t >0,

e 2.2
lim &(2) =0, jﬂ(s)ds=+oo. Vo)

t—Hw 0

Then, any trajectory of the system (1.2), (1.3) has the properties
lim J(u(t)) =Jw. im p(u(t).Us)=0.

L—u Ly

where

= in{}J(u). Us={uelU:J)=dJd«}. p(u.Us) = inllj'r lu-vll.

e/,

Proof: The given assumptions imply that J. > - and U, #0 . Let us consider the

function

a(t)=J(w(t))—Ja. (2.3)

According to Lemma 2.1, w(t)eU. so a(t)=0.t20. Differentiating and using the
relations (1.2), (1.3) lead to inequality

a'(t)=(J (u(t).u'(t)) < S (w(l)).us —u(t))+ B(L)e(t). L 20, (2.4)
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where . € U,.. Taking into account the convexity of function J and (2.3), we get
(J"(w(t)),us —u(t)) < J (ux ) = J (u(t)) = —a(t).t 2 0.
Combining this inequality with (2.4), we obtain
a'(t)+ f(t)a(t) < pt)e(t).t 20.a(0) =ay. (2.5)
where a(0) =J(uy)—J«.

Note that function A defined in (2.1) satisfies the equation A'(t) = f(t)h(t).
Now, multiplying the inequality (2.5) by A(f), and integrating on the segment [0.7] we
are led to the inequality

t
Iﬁ(s)h(s)g(s)ds. t 2> 0. (2.6)
0

(10 1
L) <
T T

From (2.1) and (2.2), it is obvious that lim, ,, A(f) =«. If Iﬂ(s)h(s)s(s)ds < 40, then
0

lim, ., a(t)=0. Otherwise, according to Lemma 2.1, the limit value of the second term
on the right-hand side in (2.6) can be obtained using the L' Hospital rule. So, we obtain

e o A8

This and (2.3) give lim, ., J(u(t))=J+. Suppose limsup p(u(t),Us)=a. Since U is a

[ —u
weak compact set 1n H, there exists a point u, €e U and a sequence {u(t;).t1e N}c
lu(t):t 20} c U such that ’
limsup p(u(t),Us)= lhim p(u(t;),Us), hm |[(u(t; )-u,, ||=0.

L e ] —>00 [ >0
The functions J and p = p(u.U.) are weak lower semicontinuous, therefore

hm J(u(t;)) = J(u, ). lim p(u(t;).Us) = p(u, . Us)=a.

I —» 00 [ —»a0

Since {u(t;).iz1lyc{u(t).t=0} and lim,  , Jut)=J.. it is easy to see that
Ju,)=Ja«. 1e. u, €U, Consequently, a=0, 1.e. limsup p(w(t),U+)=0. This and

L =)0

p(u.Us)z0 provide lim, ., p(u(t),Us)=0. This proves Theorem 2.1.

Further, for a strongly convex function o we will derive an estimate of the convergence
rate of the method (1.2), (1.3).
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Definition 2.1. A function J:U — R s strongly convex on a convex set U if there
exists k>0 such that

Ja+(1-a)y)<a)(x)+(1-a)(y)-ka(l-a)|x-y]|*.

forall x.yeU.0<a<l.

Corollary 2.1. Let J:U — R be a strongly convex function on a convex set U and let all
the other conditions of Theorem 2.1 be satisfied. Then

¢
r-2 1 - )
| w(t)—us||” < [J (1) =Ju + | e(s) (8 h(s)ds]. t = 0. (2.7)
khit) " {I,

where us is the unique solutton to the problem (1.1), and h ts the function defined in
(2.1).

Proof: As it is known [10, p. 5, Theorem 8|, under the given assumption the problem
(1.1) has the unique solution w«., and

Rllw—ue ||*<d@)=-J (). uel

The estimate (2.7) follows from this inequality, (2.3) and (2.6). This ends the
proof of Corollary 2.1.

3. REGULARIZATION

This section deals with problem (1.1) where objective function J and set U are
known only approximately.

Consider the following problem:

Jw)y->mt.uel (3.1)

U={uelU):g;(u)=<0,1=1,...m,g;(n)=0, y=m+1,....s}, (3.2)

where U, is the given closed bounded convex set of a real Hilbert space H, the

functions J. g, are defined and Fréchet differentiable on U, . Suppose that

- = in{fJ(u) >=0. U =tuel:Ju)=JW.)} 0. (3.3)
{1+

It is well known [9], [11] that, generally speaking, problem (3.1), (3.2) 1s
unstable with respect to perturbations of the initial data J andg,.i=1...s Hence

some methods of regularization must be applied. Below we describe and study a
regularization based on the continuous conditional gradient method (1.2), (1.3),
combined with a penalty function method which incorporates the constraints into the
objective function. We will use the simplest penalty function
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It S
P(u)=Y |max{g;(w).0}|” + Y |g;(w)|" . ueUy.p>1

=1 1=m-+1

Under the given assumptions, the function P is Fréchet differentiable on U, .
Suppose that instead of the exact gradients J'(u).P'(x). only thewr approximations

1E :
J! (u.t).P)(u.t) are known. Note that J'(u)= adJ () AR = : dE:U - Consider the
7 ,

following method:

w'(H)+ L u(t)e p(t)e(t)— Arg min{(i}(u(t).,t)..z—u(t)): zeUy}) (3.4)

u0)=uyclUy,.
where £(¢)20.lim, ., £(f) =0, and the function

T (u,t)=dJ., (u,t)+Al)P, (u.t)+a(t)u,ucUy, t 20, (3.5)
is an approximation to gradient

T,(u,t)=J (u)+A)P' (u)+a(t)u,ucUy,t =20, (3.6)
of the Tikhonov function

T(u.t):J(:z)+A(t)P(u)+—;—a(t)u|2. (3.7)

The functions a(t). A(t). f(t).«(t) are parameters of the method (3.4), (3.5).

Note that the regularized continuous methods of the gradient type have been
studied in [6],[7],[8], while the regularized iterative conditional gradient method was
considered in [13].

We will need the following lemma to prove the main result of this section.

Lemma 3.1. Suppose the functions a. e C’ [O+oo) are positive and

|— ! ! i
[1m 2 ()| +|/}(£)| =) (3.8)
too| A)P(L)  p=(1)
Then
lim A(t) = im A(t)h(t) = lim a(t)h(t)= lim A(t)a(t)h(t)= +o . (3.9)
L —x [ —yu [ l —un

Proof: Let n=3.k =2 be integers. From (3.8) 1t follows that there exists ¢, >0 such
that
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- p'(t) " L el " k—n
B2() n at)pt) n

L2y, (3.10)

Integrating the first inequality of (3.10), we have

I

(£)= t2la Cp = : (3.11)
ﬂ t—to +C0 B ? /),(t())
Using (2.1) and (3.11) one can find
K \ s e I S e
h(t) 2 exp _[,B(s)ds > exp| nln Uﬁ L =[ 0‘ 0 J ety (3.12)
;i J | Cy Cy

This gives the first relation in (3.9). Combining (3.11) and the second inequality in
(3.10), we get

a'(l) 1
>(k—n L2t
a(t) ( )t—to £E -

a(l)> a'(tu)( R o (3.13)

Multiplying A(f) with A(t). a(t) and «(t)/(t). and using (3.11)-(3.13), we obtain

Bh(t)2——(t-ty +Cy)" ' 121y,
0

{
a(t)h(t) > aéf’-(z—zu O S VR,

0

[ 8
PB(t)a(t)h(t) = na(ko)_“ ~t5+Co)* 21y,

()

This implies the remaining relations in (3.9). The proof of Lemma 3.1 1s completed.

Definition 3.1. A point u. € U, is called the normal solution to problem (3.1), (3.2) if

s ll=1n1{|| 2 ||: u € U*} -

Theorem 3.1. Assume that

a)U, is a closed bounded convex sel in a real Hilbert space H, the functions
J(u), g, (w).i=1....s are convex and continuwously Fréchet differentiable on U, the
functions g;(w).i=1....s are bounded on U,; Lagrange function
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S
L(u,/‘i.)=J(U)+Z/Lg,‘(U),UEUU,/16 ;"\0,
=1

1\0 ={;L =(/11 .,..,,AS)EES Z/‘{.] >()ise s ).m ZO}

of the problem (3.1), (3.2) has a saddle point (z«. A°), that is
L(ze,A)< L(zs. A )S L(2,2 ),2€ Uy, A€ Ay

b) the approximations J!, (u.t).P)(u.t) to gradients J'(u).P'(w) are such that

max{|| J,, (w.t)—J'(w)|.|| P, (w.t)-P'(w) |} <o().uelU;y.t 2 0.

¢) the parameters a(t).f(t).o(t).(t). A(t) of the method (3.4), (3.5) satisfy

a(t).At). f(t)e C[0.4x). 5(1),&(t) € C|0.+x)
a(t)>0.4(t)>0.A(t)=20.0(t)20.£(t)=20.t 20, (3.15)

a(t) convex, A(t) concave and a'(t)<0.A'(t)=0 on [0+oo)

| | 1 . &(t)+A(L)o(t)
- t s t e e =01 l i
th?r][é( )+o(l)+ A(t )] t}lplr} altl)

1
lim a(t)A P (1)=0, lim (O] +4.() =0. lim l/{(“l =
L >0 t>o a(t)f(L) > ﬂl(g)

0, (3.16)

0. (3.17)

Then any solution u(t).t=ty. of the system (3.4), (3.5) converges as t—>x to the
normal solution w. of (3.1), (3.2). Moreover, this convergence ts uniform with respect to

the choice of the approxtmations J,, (w.t), P, (u.t).

Proof: First, note that under the given assumptions, conditions (3.3) are satisfied. It
can be proved in the same way as in Lemma 2.1, that w(t)e U, for £>0. Since U, and

g,.i=1..s are bounded, we can introduce

C =max{ sup || w]|, sup P(u)} < +w. (3.18)
u-U, ul,
Let
v(it)eUgy.v(t)=argmn{T(w.t): uely}.t20 (3.19)

where T'(u.t) is the Tikhonov function defined in (3.7). Since function w— T(u.t) is

strongly convex for every ¢=0, the points v(f), t>0 are well defined [11, p. 232,
Theorem 2|, and

lim |[v(t)—u« || = 0. (3.20)

I Lt
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Further, we consider the following function:
a(t.o)=T(u(@).t)—T(v(z), 7r).t.t 20\ (3.21)
Differentiating with respect to £ and using (3.4), (3.7), (3.18) leads to the inequality

ay(t.7) = (T, (u(t).t).u'(t))+ T/ (u(t).t) <
BT, (u(t).t).w(t)-u(t))+C(A" (t)+|a'(t)]).t 20.720

where
w(t)e g(t)—Argmin{(f‘,j (te(l).t),z —u(t)> 2elU},t=20. (3.22)

Adding and substracting <ﬁ;(u(t),t), w(t)—u(t)) from the right-hand side of the last
inequality, and using the relations (3.5), (3.14), (3.18), (3.19) and (3.22) we can obtain

a,(t.7)< BT, (w(t),t) =T, (w(t), )| || w(t) - u(t)| +
BANT, (w(t).0),o(x) - u(t)) + C(A'()+] a'() ) <
2CA(1)(1+A())S(L)+ B(b)e(t)+CA'(L)+ | a'(L)[)+
,B(t)(i; (u(t).t),u(7) -u(t))._ (20,720

Now, adding and subtracting <ﬁ(u(i ).L), 0( r)—u(t)) and taking into account (3.5),
(3.6), (3.14), (3.18), we have

a,(t.7)<4CHAUYL+A)o()+ p()et)+C(A'(H)+ | a'(t)])+

BT, (u(t).t).v(r)-u(t)). t20.720.

The relation (3.16) implies that there exists ¢, 2 0 such that A(f)=1, for ¢ >¢, . This,
(3.21) and convexity of the function u — T'(u.t) give

a;(t.7)<Ci[BUNAWL)O(L)+e(L)+A'(L)+|a'(L) ||+

3.2
BT ((r).t)-T(v(r).7)]-pt)alt.t). t.720. (3.23)

where C, = max{1.8C} .
From (3.7) and (3.18), it follows that

2
Tw(n).t)-T(w(r).7) | < A(t)- A7) | P(u(1)) + | a(7) - ax(L) | - v | <

2
|nax{C.C—2-}[| A)-A(7) |+ | alt)-al(1)|]. { ;O.. 72 0.
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Combining this estimate with (3.23), we obtain the inequality

a,(t.7)+B)ait.t)<Cqo(f(t)+g(t.7)). t2ty.720, (3.24)
C2
Whel'e CQ = l'l'l{lX{].,T.,Cl} .
(&)= BUNAR)I(E)+e(@)+A'(t)+|a' (). t=t (3.25)
gt.7)= AN AR)-A(7) | +|a(t)—a(r)|. t2ty.720 (3.26)

Multiplying (3.24) by A(¢) defined in (2.1), and integrating with respect to £ over [t.7]

for 7>t¢,, we get

[1£(s)+g(s.0lh(s)ds. T2t (3.27)
0

a(tU.r)+ Cy
h(r)  h(7)

a(r.7) <

Since J and P are continuous, taking into account A(r)=1.72>¢,, (3.18) and (3.20),
(3.21), it 1s not difficult to show that

a(ty.7) <| T(u(ty).ty) | +C3(A(T)+a(r)). 72t, (3.28)

2
where C; == max{%,C +sup, o |J(v(7))|}. Further, the strong convexity of the

function v — T'(w.t) and (3.21) with ¢ = 7, provide

a(r.7) 2 ) lu(r)-v(D)||*. 720. (3.29)

Finally, from (3.15), (3.26), taking into account the properties of «'(t) and A'(t) we
have

g(s.71)SG(s.7)= B(s)|A'(s)|+|a&'(s)|)(7—8). se€[0.7].720. (3.30)

Combining (3.28) - (3.30) with (3.27), we derive

| T'(u(ly,ty)) | +A(7) + a(T) ”

u(r)-v(r)|f<C
| u(r ) || 4 (D7)

C. (3.31)

hit)a(t)

r
I(f(s) +G(s,7)h(s)ds, 21,
0

where C4=2max{l.Cy.C3}. According to Lemma 3.1: lim_ , a(r)h(r)=wx,
im, . a(r)f(r)h(r) =« . Using L'Hospital's rule and the conditions (3.17), by simple

calculations, we obtain
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| T'(u(ty.tg)) | +A(7) +a(r) .

him

r—0 a(r)h(r)
lim A7) = him — sk = (3.32)
r>o d(T)h(1r) row (a'(7)+a(r)f(1))h(7)
e A0 s, - TR ool
r—o a(7) (1) 150 h(T) r1H® l+-—a (7)

a(7)p(7)

I imie: § o j (f(s)+G(s.7))h(s)ds < +o then the second term on the right-hand side of
0

(3.31) tends to 0 as 7 —> o . Otherwise, we can use L'Hospital's rule again. This
together with G(7.7)=0, the conditions (3.16), (3.17) and the relations (3.25), (3.30)

give

[(f(s)+G(s.T)h(s)ds

lim 2 =
r—3c0 a(t)h(7r)
f(r)h(r)+_[G', (s,7)h(s)ds IG', (s.7)h(s)ds
lim D - lim 1, = lim 2 .
esar) a(7)B()h(7) r>0 ., @(7) ro«  al(t)f(r)h(7)
a(7)p(7)

The last inequality in (3.10) shows that we can use L'Hospital's rule to calculate this
limit. Hence

[(f(s)+G(s.7)h(s)ds

I 0
e a(0h(7)

i G(7.7) — lim G.(7.7) . 1

e (@@BE) +a@pHD) e a@BAE) i a4 @ OLO) )
T a(r)f°(7)

This equality and (3.17), imply

I(f(s)+G(s,r))h(s)ds

lim 2 =0. 3.33
T —»0 a(r)k(r) ( :

Relations (3.31) - (3.33) lead us to Iim || ufr)—v(7)||=0. This and (3.20) give

r—0

lim ||w(7)—u« || =0. (3.34)

T —»an
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The convergence in (3.20) does not depend on the choice of
J! (u.t). P} (u.t)[11, p. 232, Theorem 2|. From (3.27) it is obvious that the convergence

lim lu(r)-v(r)||=0 also does not depend on the choice of o, (u.t), P, (u.t)

>0

Therefore, the convergence (3.34) is uniform with respect to the choice of
approximations o/ (u.t). P, (u.t). This completes the proof.

4. STOPPING RULE

In Theorem 3.1 it was assumed that the value of gradients J'(u). P'(z) at any
fixed point « e U, can be computed with any prescribed accuracy o(t).lim,_ ., o(£) =0

in the sense of (3.14). However, in practice the initial data are usually given with an
error which remains less than some fixed positive number ¢. In particular, for problem

(3.1), (3.2), the following condition is more realistic than (3.14):
max{||Js —J' (w)|.|| Ps - P'(w)||< 5, ue U, (4.1)

where ¢ >0 is known. Then, we can attempt to solve problem (3.1), (3.2) by the
method

W)+ Bu(t) e BtXe(t) - Arg min{('i; (u.1).2 —u(t)>: zeUp}).
{ >O,U(0)EUO,

(4.2)

obtained from (3.4), (3.5) by replacing ﬁ:(u,t)=J;(u,t)+P[;(u,t)+a(t)u with

Th(u,t)=dJ s (u)+Ph(u)+a(t)u . However, it is easily seen that the conditions (3.16) for
the compatibility of the parameters a(t), f(t).&(t). A(t) with error parameter
o(t)y=0>0.t 20, will be obviously destroyed, and so process (4.2) can diverge and its

use for large { can become absurd. The question arises, to which reasonable moment
ts =t(0) should the process (4.2) be continued so that the resulting point w; =u(t )

can be taken as an approximation to ., corresponding to the given error level ¢ >0 . -

It turns out that this question, of practical importance, can be answered on the basis of
Theorem 3.1. For that purpose, we can fix any initial point u, € U, and the functions

o(t). a(t), f(t). e(t). A(t) satisfying conditions ¢) of Theorem 3.1. It can be assumed that
o(0) > o . Since, 1t 1s not assumed here that conditions (3.14) are satisfied, it must be
emphasized that the function o(f) now is a parameter of the process (4.2) in no way
associated with conditions (3.14) or (4.1). For each fixed 6.0<0 <o(0), we will

continue the process (4.2) up to the moment ¢ =£(0) for which
ts =sup{t20:0(8)20,8€(0.t]}. (4.3)

Since lim, ,, o(t)=0.0(0)2 0, such a moment ¢4 will certainly be found. The rule

(4.3) for terminating the process (4.2) is called the stopping rule and it can be justified
on the basis of the following theorem.
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Theorem 4.1. Let the conditions of Theorem 3.1, apart from (3.14), be satisfied; the
approximations J5. P§ to gradients J'. P' satisfy the condition (4.1). Let u(t).0<t <t

be obtained by the method (4.2), where the moment t; is determined in accordance with

stopping rule (4.3). Then

hm ||u(ts —us)||=0.
O —0)

The proof of this theorem is exactly the same as the proof of similar Theorem
2 from [8].

It follows from Theorem 4.1 that the operator R, which puts each set
(J5.P5.0) of (4.1) in correspondence with the point s =u(f5;) determined by the

method (4.2), (4.3), is a regularizing operator [6]. An Interesting, but as yet
uninvestigated problem that arises 1s how to choose the functions
A(t). a(t). p(t). e(t). o(t) which will give an operator R that is optimal in some sense.
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