
•

Yugoslav J ournal o f Operations Resea rch
9 ( 999), Nu mber 2, 169-181

A CONTINUOUS CONDITIONAL GRADIENT METHOD-
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Abstract: In this paper we stu dy the continuous conditional gr adient method to solv
convex minimization problems in Hilbert space. First , su ffic ient condit ions for
convergence are provided and the convergence rate is found for a minimization
problem with a st rong convex function. Then , the regularized method is cons ide red for
a minimization problem with inaccurate initial data. Regulariza tion is based on the
continuous conditional gradient method in conju nction with the penalty function
method. The su fficien t conditions for the convergence of the regularized m thod are
presented, the regularizing operator is constructed, and a stopping rule for the
continuous process is proposed.
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1. INTRODUCTION

Observe the following minimization problem:

J (Il )~ inf. rz E U ( Ll )

where U is a closed bounded convex set in a real Hilbert space H , funct ion J is
continuously Frechet differentiable and convex on U. For solving problem (1.1) we will
observe the continuous conditional gradient method described by differential inclusion

u '(t ) + {J( t )u (t) E {J(t )(c(t) - Arg mi' ll (J '(U(t ». Z - Il(t ») : Z E U l ).

t > O. Il (O ) = Ilo E U .
( 1.2)

where Il o is the given initial point, t ~ O. l-'( t) ~ O. {J(t ) ~ O. Here

gradient of J at the point u , and

• AMS Subject Classificat ions, (1 99 1) 49M09, 90C.

, d u J ' ' Iu (t ) = . ( II) IS t re
d t
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€ - A rg min {{ (Il) : lle U I = {w e U : { (w ) < inf ( (ll ) + €l
u"ll

(1.3)

The method (1.2), (1.3) is a continuous version of the well-known iterative conditional
gradient method 110, p. 2911:

with I.'" ~ O. k ~ O. lim l.·k = O.IlO e U is the given initial point.
k_~Ul

We will assume the global existence of a solution to differential inclusion (1.2).
Some results related to the existence of a solu tion can be obtained from the general
results of the viability theory [41 .

The continuous methods are of some interest for research because they give a
large choice of numerical integration methods to solve the corresponding differential
equat ions, and in that .way they provide new iterative processes. In 131 one such
approach to minimization was presented coupling approximation with the descent
method. Continuous methods based on the gradient projection method, proximal point
method, Newton method and linearization method were studied in 121, [71, [81 and 1121.
All these results are based on studying the trajectories of the corresponding differential
equat ions that describe the cont inuous method. Let us remark that a general approach
to the investigation of the stabiliza t ion of trajectories of nonlinear evolu tion equ ations
in Banach space was given in 111.

2. THE CONDITIONS FOR CONVERGENCE AND
CONVERGENCE RATE

•

In this sect ion we study the convergence of trajector ies ll (t ). t ~ 0 of the

system (1.2), (1.3>. We will begin with the following lemma.

•
Lemma 2.1. Let U ~ H be a con vex closed set in a real Hilbert space; then any

trajectory uu ), t ~ 0 of the system (1 .2), (1.3) is in the set U , i.e. ll (t ) e U . t ~ O.

Proof: The solution to differential equat ion (1.2), (1.3) is given by

IlO 1 I
Il( t) = + fP(s)h(s)w(s)ds . t ~ 0

h (t ) h (t ) 0

where

w( t ) E &(t) - Arg min l(J '(ui]». z - u(l ») : Z E Ul. t ~ O.

•

I

h (t ) = CX p( f P(s)c!s ). t ~ O.
o

( 2 . 1)
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It is well known Ill , p. 177, Corollary II, that every closed convex set V in II

Hilbert space H can be represented in the following way

V = rla ./Ha ,Ha = lx e H : (c", x ) s d " l , a e l

with Cfl E H . d fl e R. a E I : I is the set of index a. Scala r products of the elements td l)

and c" give

Since Ilo e V .lU(S) E V . s z O. h '(s) = {J(s)h(s ). we conclude that (c" , Il(t ») 5. d " . for all

t > O. a E I . Therefore u(t ) E V for every 1 ? 0. This completes the proof of Lemma 2.1.

In the following theorem we establish some sufficient conditions for the
convergence of the method (1.2), (1.3),

Theorem 2.1. Let the follow ing condi tions be satisfied:

aJ V is a closed bounded convex set i ll a H ilbert sp ace H , [unction J is cont inuously
d i fferentiable and COIIVex on V ;

b) the parameters {J(l ). I:(l) of melhod (1.2), (1.3) sal isfy

c(i),p( l) e c[o,+oo),c:(l ) ? 0, f}(t ) > O.l ? 0.
+ Cfl

lim 1:(/ ) = 0, f f}(s )ds = +00.
l -)o U l 0

Then, any trajectory of the system. (1 .2), (1 .3) has tlie propert ies

(2.2)

where

lim J (Il (t )) = J •. lim p( Il(t). V . ) = O.
t -)ofl ' t -.I/ '

•

J. = inf J (Il ).V. = IIl E V : J (Il) = J.I.p( Il .V. ) = inf II Il - vll .
11 1-; U IJ... /T .

Proof: The given assumptions imply that J . > - (fJ and V. ;t; 0 . Let us consider the

function

a(t ) = J (Il(t » - J . . (2.3)

According to Lemma 2.1, utt ve U: so a(t ) ?O.t >O. Differentiating and using the

relations (1.2), (1.3) lead to inequality

•

,

a'(/ ) = (J '(u(l ),u'(/ ))) ::; f}(l )(J'( Il( i)). u . - u(i)) + f}(l )6(/), / 2: 0, (2.4)
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where ll. E U • . Taking into account the convexity of function J and (2.3) , we get

(J '( ll( t )), ll . - ll (l)) < J (ll. ) - J (u(l )) = - a(l), t > O.

Combining this inequality with (2.4), we obtain

a /(t ) + p( t)a( t) < P(t)l:(t). t > O.a(O ) = ao .

where a(O) = J( llo) - J • .

(2.5)

Note that function h defined in (2.1) satisfies the equat ion h '(t ) = p(t )h(t).

Now, multiplying the inequality (2.5) by hit), and integrating on the segment [0. t I we

ar e led to the inequality

a 1 I
act ) ~ 0 + fP (s )h (s)c(s )ds. t > O.

h (t ) h (t) 0
(2.6)

From (2.1) and (2.2), it is obvious that lim I - >u' h (t ) = 00. If fP (S )h(S)l: (s)ds < +00 . then
o

li m I -,u , aCt ) = O. Otherwise , according to Lemma 2.1 , the limit value of the second term

on the righ t -hand side in (2.6) can be obtained u sing the L' Hospital rule. So, we obtain

. . P(l )&(l )h( t ) .
hm supa(t ) ~ lim = lim &(l ) = 0.

I of> I - ,of> P(l )h (l) 1-,,,,

This and (2.3) give li m I _, ,,, J (ll (t)) = J . . Su ppose lim sup p elleI ), U. ) = a . Since U is a
l -)o tt l

\

•

weak cumpact set in H , there exists a puint
•

{ll(t) : t ~ O} ~ U such that

u .; E U and a sequence :ll(t i ). i E N : c
•

l im sup p (u(l ),U . ) = lim p (ll(l i ),U. ). li m ll (u(l i ) - U" , 11= 0.
• •I _ ) (fl I - ) C;L ' 1 _)(/1

The functions J and p = p tu ,U. ) are weak lower semicont inuuus, therefore

Since {ll (t i) ' i ~ I I~ {Il(t). t > 01 and lim 1-,,,, J (u(t » = J . . it is easy to see that

J (u ,,, ) =J• . i.e. ti .; E U • . Cunsequent ly, a =O, i.e , lim suP P(Il(I ),U. ) =O. This and

pelt . U. ) ~ 0 provide lim 1-,'" p (lt ( t ). U . ) = O. This proves Theorem 2.1.

Further, fur a strongly convex function J we will derive an estim ate of t he convergence
ra te of t he method (1.2), (1.3>'
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Definition 2.1. A (unction J :V
exists h > 0 such tluu

H is strongly convex 01/ a CO/ lVl'X set U If thcrv

J (ax +(1 - a)y) ::; al(x) +(1 - a vl (y ) - h a O - a) II x - Y II:.! •

(or all x .Y E V . 0 < a < 1.

Cor o llary 2.1. Lei J :V H be a strongly convex [unction 0 11 (I ('o ll ve)' sc! {j (lilt! let all
the other conditions of Th eorem 2. 1 be satisfied. Then

j ll (t ) - II .
1 t

I:.! < \J (II U )-J . + f,:(S)/J(Slh(s)c!sl . 1 _ 0 .
kh{l l II

(2.71

where II . is the unique solution 10 the problem ( lJ ), and h is the [unction defined III

(2 .1J.

Proof: As it is known 110. p. 5, Th so rem 8 1. und ' I' the given a .su mpuon the pruhlem
( 1. 1) has the unique solu tion II • • and

:.!Il ilu - tl . II s J (u )-J(u. ). u E V

The est im a te (2.7) fo llows from this inequality . (2.3 ) and (2.G). T his ends the
proof of Corollary 2.1.

3. REGULARIZATION

This sect ion deals with problem ( 1. 1) where objective function J a mi set U ur«
known only approximately.

Conside r the following problem:

J (ll ) inf, u E U

V = III E V u : g , (u ) < O. i = 1..... 111 . gJ( II/ = 0. j = In + 1.. .s },

\3. 1)

13.2 )

where U u is the given closed bou nded convex se t of a rea I Hilbert space J-/ . tho

fu nctions J .g, are de fined and Frechet differentiable on VII ' uppose t hat

J. = inf J ( II » - oc; . V . = !IIE U : J ( Il )= J (Il . ) : :;c o.
IJ ~ U

(3.3)

It is well known 191. 111 1 that. generally speaking. problem (3. 1), (3.2) I ;;

unstable with respect to perturba t ions of the initial data J and g f • i = 1... . s. "fence

some methods of regularization must be applied. Below we describe and study a
regulariza tion based on the continuou s conditional gradient method (] .2/, ( 1.31 .

com bined wit h a penalty funct ion method which incorporates t he constraints in to the
objective function . We will use the sim plest pena lty fu nction

1 _
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m S

P (u ) =L lmax {g ; (u ):Ol IP + L l g ; (u ) IP , U E U O, P > 1.
;=1 ;=nl +1

Under the given assum ptions, t he function P is Frechet differentiable on U 0 .

Suppose that instead of the exact gradients J '(u ). P'(u ). only their approximations

J ' ( ) P '() kn N t th t J '(u ) = dJ(u) . P'(uy = dP(Il) . Conside r theu u. t . u u , t are own. 0 e a d
du /I.

following method:

u '(t )+ (J( t )u(t) E (J( t )(&(t) - Arg min {\T~ (u(t ). t), z - u(t)): Z E U 0:)

u (O ) = 11.0 E U o

where c(t) 2: 0, lim 1-><0 c(t) = O. and the function

-r,; ( II., t) = J;,(u. ] )+ A(t )P,; ( rz, t )+a( t )u, u E U 0 , t > 0,

is an approximation to gradient
•

T~ ( II., t ) = J ' (u) + A (t )P' (zz) +at ] )11., u. E U0, t > 0,

of the Tikhonov function

1'(11. . t ) = J ( ll ) + A (t)P(Il) +~a(t ) II ll 11
2 .

2

The functions a (t ). A ( t ). {J( t ). l: ( t ) are parameters of the method (3.4), (3.5).

(3 .4)

(3.5)

(3 .6)

(3 .7)

Note that the regu lar ized continuous methods of the gradient type have been
studied in 161,[71 ,[ 8 1, while the regularized iterative conditional gradient method was
considered in 1131.

We will need the following lemma to prove the main result of this sect ion.

Lemma 3.1. Suppose the (unct ions a, (J E e l [0,+00) arep osit i ve and

Then

lim h (t ) = lim (J(t)h(t) = li m a(t)h( t) = lim (J(t)a(t)h(t) =-t-co .
1- ) '" t _ ) (fl I 1> {/" 1 t - ><J"

•

(3.8)

(3.9)

Proof: Let n > 3.1l > 2 be in tegers. From (3.8) it follows that t here exists to > 0 such

that
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f]'(I) 1 a '(I ) h -II
""""'---'---'- ::; - , ~ . I ~ I0
fJ'l.(I) II a(l )fJ(t) II

(3.10)

In tegrating the first inequality uf (3. 10), we have

II
fJ( I ) > . I ~ 10

1 -1 0 + Co

C _ II

'o- fJ(l o )
(3. 111

Using (2. 1) and (3.11) one a m find

,
f fJ(s )ds

'0

l -tO +COn In -----"---"'-
Co

_ 1-lo + Co-
Co

"
1 2. 10 , (3.12)

This gives the first relation in (3.9). Combining (3. 11) and the second inequality in
(3.10), we get

a'(I ) 1
-~ >(h - n) 1 _1 0
aU ) 1 -1 0 + Co

After in tegration and simple ca lcu lat ion, it is easy to find

(3. 13). 1 > 10 ,

k "
oI - to

Co
a(l ) > a ( I 0 ) -.....;;...--=--

Multiplying h (l) with fJ(t ). a Ct) and (l(t )fJ(t ). and using (3.11H 3. 13), we ubtain

I I I
fJ (t )h (l » .(t - 10 Co )" . I ~ to .

C"o

I a(lo ) C k
a( t ) I ( I ) ~ c: (I -to 0 ) . 1~ l o,

o
n a(l 0 ) k I

fJ(I )a(t )h(t ) > k ·(I - to + Co) . t z t;
Co'

This implies the remaining relations in (3.9). The pruof of L sm m a 3.1 is completed.

Definition 3.1. A p oint II. E V. is called the normal SOI Il /WII to p roblem (.'3. 1 ), (,'3. 2) If

I II . 11=lil t'{ 11 11 II: II E V. l .

Theorem a.1. Assume that

a ) V 0 is a dosed bounded convex set i ll a real H ilbert space H . the [uncttons

J (II ). g ; (rz), i = 1.. .. . s are con vex and continuously Frechet d if'[erentioblc on V o , the

[unctions g ;(Il ). i = 1.. ... s are bounded on V o; Lagrang e [u nct ion
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s

L (u , A) = J (u.) + L. Ai g i (u.), U. E U 0, A E i\ 0 '
i= ]

of the problem (3.1), (3.2) has a sadd le point (z., A·), that is

b) the app roximations J ;, ( II. t). p~ (II. t) to gradien ts J '(Il ). P '(Il ) are such that

cJ the parameters a(t ). p et ). C)"(t ).l;(t ). A (t ) of the m ethod (3.4), (3.5) satisfy

a(t ). A (t )./J( t) Ee l [O.+co). l>(t), t:(l) E C[O.+co).
aCt) > O. p(t) > O. A (t ) ~ O. ()'(t) > O....·(t) > O. t ~ 0 ,

aCt) conoex. Aiu concaue and a '(t) $ O. A'(t» O on [0 .+00)

. 1 . ...·( l)+ A (l)J( l)
hm[ t-(t ) + li (t ) + 1=0,11111 = 0 ,
/-.", A (t ) /-,,,, aC t)

'1

. . Ia'( t) I+A'(l) . IP'(l) I
IlIll a (t )A P-I(t ) =O.hm = 0. 11111 2 = 0.
/ -)Cf' / _)w a(t )/J(t ) / - )'" fJ (l )

l3.15)

l3.16)

(3.17)

Then any solu tion lI (t ). t > to . of the system (3.4), (3.5) converges as t ---+ 00 to the

normal solution u ; of (3. 1), (3.2). M oreover, th is convergence is uniform w ith respect to

the choice of the approxiinat ions J ;, t uJ), P,; ( It. t ).

Proof: First , note that under the given assumptions, conditions (3.3) are sat isfied. It
can be proved in the same way as in Lenuna 2.1 , that Il (t ) E Uo for l ~ 0 . Since U u and

•

g i : i = 1.. .. . s are bounded, we can introduce

Let

C = max{Sli p II /I II. Sli p P (1t l: < +co.
"'''Un ''''Un

v(t) E U o. v(t) = arg min IT (Il . t) : Il E U 0 l. t _ 0

l3. 18l

(3.19)

where T (Il . t ) is the 'l'ikhonov function defined in l3.7l. Since function Il---+ T tu .t ; is

strongly convex for every t ~ O. the poi.nts vel), t ~ 0 are well defined Ill , p. 232,
Theorem 21. and

lim II v(t) - II . II = O.
t - .rr .

l3.20)
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Further, we consider the fo llowing function:

a(t . r) = T (u(t ). t ) - T (v( r ). r). t . t ~ o. (3.21)

Differentiating with respect to t and using (3.4), (3.7), (3.18) leads to the inequality

a; (t. r) = (1',; (u(t), t ). II '(t») +1'; (u(t ). t) <

p(t)(T ,; (u( t). f ).w(t ) - u(t») + C( A ' (t)+ Ia '(t ) I). t ~ O. r > 0

where

w (t ) E ",.(t) - Arg lIlill l(i; (u(t), t ),Z - U(t)) : Z E U: , t > O. (3.22)

Adding and substract ing (r,;(u(t), t), W(l)- u(t») from the right-hand side of the las t

inequality , and using the relations (3.5), (3.14), (3.18), (3. 19) and (3.22) we can obtain

-
a; (t, r ) :::; P{l) 11 1~; (u(t) , l) - 1~; (u( t), l) 11·11 w(t ) - u (t) II +

p el )(r,; (u(l ), l), v( r ) - U(t)) + C(A '( t)+ Ia '(t ) 1) :5

2CP(t )(1 + A (t »)l5"(t) +P( l)""( l) + C( A '(l )+ Ia'(t) I)+

P(l)(r,; (U(t ),t ),v(r ) -u(t ») , t ~ O , r >O.

Now, adding and subtracting ( r,;( Il(t) , l), V( r)- Il(t)) and taking into account (3.5),

(3.6) , (3.14), (3.18) , we have

a; u.r ) :::; 4CP (l )(1 + A (l »()'( l) + p(l )l:( l) + C(A'(t )+ 1a '( t) I) +

P(l)(1~; ( ll(l), l), v( r ) - ll(l»). l ~ O. r ~ O.

The relat ion (3.16) implies that there exists to ~ 0 such that A (t) > 1 , for t ~ t o . This ,

(3.21) and convexity of the function u--+ T (u .t ) give

•

a;(t . r ) :::; C\ I jJ(l )(A(t )b'(t ) +t;"(t » + A'(t )+ 1a'(t)I I+

p et )l l'(v( r ), t ) - l'(v( r ), r )l - !J(t )a( t , r ), t , r ~ O.

where C I = max!l.SCI .

From (3.7) and (3.18), it fo llows that

, l'(v( r ), t) - T (v( r ). r ) I :::; IA (t) - A (r ) I P (v( r » + Ia(r)-a(t) III vCr) II :.! :5
2

(3.23 )

C 2
max IC. II I A (t ) - A (r ) I+ Ia(t ) - a (r ) II.

2
t > O. r > O.

•
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Combining this estimate with (3.23), we obtain the inequality

a;(t.r)+,B(t)a(t.r) <C'2 ({(t) +g(t.r ». t > t o · r> O ,

( ( t) = ,B(t)( A( t)c)"(t) H ·( t» + A'(t )+ Ia'(t ) I. t > to

g(t. r) = ,B(t)(1A (t ) - A(T) I + 1a (t) -a(r ) I· t > to ' t ~ 0

(3.24)

(3.25)

(3.26)

Multiplying (3.24) by h (t ) defined in (2.1), and integrating with respect to t over It o ' r l

for r > to , we get

a(to ·r) C'2 fT .
a ( r.r ) < + If (s ) + g (s. r )lh(s)ds.

h er ) . h er ) 0
r > to . (3.27)

Since J and P are continuous , taking into account A ( r ) > L t > to, (3. 18) and (3.20) ,

(3.21), it is not difficult to show that

a(to·r) < IT(Il(to).to ) I +C3 (A(r )+a(r »). r >to, (3.28)

C2

where C 3 == mux { 2 , C + SUP T":O I J(v( r»l l . Further, the strong convexity of the

function u ~ T (Il . t) and (3.21) with t = r , provide

a (r ) '2
a(r.r» lI u ( r ) - u( r ) lI . r ~ O. (3.29)

2

Finally , from (3. 15), (3.26), ta king into account the properties of a'(t ) and A '(t) we

have

•
g(s.r) 5. G(s.r) =,B(s)(I A'(s) I+ la'(s) I)(r -s ). s e IO.r l.r > O. (3.30)

•

Combining (3.28) . (3.30) with (3.27), we derive

" Il(r) -v(r) 112 5. C
4

' T (ll (l o, l o» I +A(r)+a(r) +
a(r)h (r)

C T

-~4-f ( {( s ) + G( s. r » h ( s )ds. i e [0 '
h( r )a( r) 0

(3.3 1)

where C4 =2 max{LC'2,C3} ' According to Lemma 3.1: l im T- " " a(r)h(r) =00 ,

l im T ' u. a(r),B(r)h(r ) = 00. Using L'Hospital's rule and the conditions (3.17), by simple

calculations, we obta in
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, IT (u(to . t o » I+ A( r) + a( r)
11 111 ==
, -,,, a ( r )h( r )

, A ( r ) li A'(r)
11111 == 1111 ---------
, -,,,, a (r )h(T) ,- ,f' (a'(r)+a( r) j3( r» h (T)

, A '( r ) I' 1 I' 1 0lim . 1111 . 1111 , == .
,-,<.0 a ( r )j3( r ) , -,,,. h ( r) t - w» 1 + a ( r)

a( r) j3( r)

(3.32)

r

If lim , _,,, f (f( s) + G(s. r »h(s )ds < +00 then the second term on the right-hand side of

°(3.31) tends to 0 as t ~ CXJ. Otherwise , we can use L'Hospital's rule again. This
together with Gt;r. r) == 0 , the conditions (3.16), (3.17) anel the relations (3.25), (3.30)

•
give

t

I (f(s )+G(s , r » h (s )ds
lim ..:::0 ,-- -

t 00 a( r )h( r )

1

a'( r )

a (r )j3(r )

t t

f (r )h (r)+fG ~ ( s, r )h (s )ds fG ~ ( s. r )h (s )ds

lim ° . Iim--~;-:-- == lim ..::0 _

H<.O a ( r )j3( r )h ( r ) H'" 1+ t of' a ( r )j3( r)h( r )

The last inequality in (3.10) shows that we can use L'Hospital's rule to calculate this
limit. Hence

r

f(f(s ) + o».r ))h (s )ds
lim -"0'-- - •

1

I· (1 (a(r)j3( r»"
1111 + )

, -,,,, a (r)/32(r)

,-,00 a (r )h ( r )

\
. G~ ( r,i ) \ ' G~(r,i)

, 1111 == 1111 . -----;--;--:---=~;_
, -'UJ(a( r)j3(r»' +a(r)j32(r ) H'" a( r)j32(r)

This equality and (3.17), imply

r

f(f(s )+G(s, r » h (s )ds

limO == 0.
,--->'" a (r )h (r )

(3.33)

Rela tions (3.31) - (3.33) lead us to lim lI u(r ) - u( r ) II == O. This and (3.20) give
t if'

lim II u(r )-u. 1I == o. (3.34)
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The convergence in (3.20) does not depend on the choice of
J~ (u .t ). P~ (u.t ) 111 , p. 232, Theorem 21. From (3.27) it is obvious that the convergence

lim , ", lI u ( r ) - v( r ) II = O also does not depend on the choice of J~ (u.t).P~ (u.t ) .

Therefore , the convergence (3.34) is uniform with respect to the choice of
approximations J~ (u. t ). P,;(u . t ). This completes the proof.

4. STOPPING RULE

In Theorem 3.1 it was assumed that the value of gradients J '(u ), P '(u v at any

fixed point 11 E U0 can be computed with any prescribed accuracy ()·(t). lim r-,'" ()(t) = 0

in the sense of (3.14 ). However, in practice the initial data are usually given with an
er ro r which remains less than some fixed positive number 6. In particular, for problem
(3.1), (3.2), the following condition is more realistic than (3.14):

maxl ] J ;5- J' (uJII ,1I P'5- P '(Il ) 115 6, u E u. , (4. 1)

where (l' ~ 0 is known. Then, we can attempt to solve problem (3. 1), (3.2) by the

method

Il '(l ) + {J(L)u(t) E {J(t )(&(l) - Arg min I(T '5 (u. t ), Z - Il(t)) : Z E U0 I ),

t > 0, 1l(0 ) E U0 '

(4.2)

-
obtained from (3.4), (3.5>" by replacing 1~; (u,I ) =J:J (Il,t )+P,; (u,t ) +a(t)1l with
-
T,5(1l , 1) =J;" (Il )+ p .s(Il)+a( I)Il. However, it is easily seen that the conditions (3. 16) for

the com patibility of the parameters a(t) , {J(t) .l-'(t), A (t ) with error parameter

Se t) = S > 0, t ~ 0 , will be obviously destroyed, and so process (4.2) can diverge and its

use for large t can become absurd. The question arises , to which reasonable moment
t ,5 = t «() shou ld the process (4.2 ) be cont inued so that the resulting point 11 8 = u (t ,5)

can be taken as an approxim ation to It . , corresponding to the given er ror level () ~ 0 . •

It tu rns out that t his question , of practical importance, can be answered on the basis of
Theorem 3.1. For tha t purpose, we can fix any initial point Ito E U0 and the functions

()( t) , a (t) , {J(t ), l-'(t ), A ( t ) sa t isfying condit ions c) of Theorem 3. 1. It ca n be assumed that

()'(O) > () . Since, it is not assumed here that condit ions (3.14) are sat isfied, it must be

em phasized that the function Se t) now is a parameter of the process (4,2) in no way

associated with conditions (3 .14) or (4,1). For each fixed 6 , 0 < () 6(0) , we will

continue the process (4.2) up to the moment ts = t ( 6 ) for which

1,5 = slIp li ~ 0 :6(8) ~ s. 1/ E10,111 . (4.3)

Since lim t "" ()( t) = 0, ()( O) ~ 6 , such u moment t ,5 will ce rtain ly be found . The rule

(4.3) for term inat ing th ' process (4.2) is ca lled the stopping rule and it ca n be justified
on the basis of the following theorem.
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