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Abstract: We apply semidefinite programming to the symmetric traveling salesman
problem (TSP). The TSP 1s modeled as a problemm of discrete semidefinite
programming. In order to estimate the optimal objective value, a class of semidefinite
relaxations of the TSP model i1s defined. Experimental results with randomly
generated examples show that the proposed relaxation gives considerably better
bounds than 2-matching and 1-tree relaxations.
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1. INTRODUCTION

Semidefinite programming (SDP) has wide applications in different classes of
optimization problems (see e.g. [12]). Especially, there is growing interest in the use of
SDP in combinatorial optimization, where suitable semidefinite relaxations have been
developed for a number of NP-hard problems. Some examples are the recently
introduced semidefinite relaxation for the max-cut problem, the well-known
semidefinite relaxation for the stable set problem, semidefinite relaxations for graph
colouring problems, etc. (see |7], [11] for a survey). The purpose of this paper is to
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investigate the applications of SDP to the traveling salesman problem. Some
preliminary results in this direction have been obtained in [3].

The symmetric traveling salesman problem (TSP) is one of the best known
NP-hard combinatorial optimization problems. There is extensive literature on both
the theoretical and practical aspects of the TSP. The theory includes algorithms and
heuristics for solving the problem with the emphasis on complexity questions. A nice
collection of papers summarizing the most important theoretical results related to the
TSP can be found in [10] (see also [4], [9]). In this paper we develop a discrete
semidefinite programming model of the TSP which is based on the notion of the
Laplacian of a graph. A class of semidefinite relaxations for this model is defined and

its efficiency i1s examined.

The paper is organized as follows: In Section 2 we briefly review the results of
Fiedler [6] related to the algebraic connectivity of graphs and extensions to edge-
weighted graphs. We show that algebraic connectivity can be characterized in terms of
the positive semidefiniteness of a suitably chosen linear transformation of the
Laplacian. Section 3 presents a discrete semidefinite programming TSP model and a
class of its semidefinite relaxations which give lower bounds to the objective function
value.

Section 4 summarizes. experimental results with randomly generated
examples which show that the proposed semidefinite relaxation gives considerably
better bounds than 2-matching and 1-tree relaxations.

2. LAPLACIAN OF GRAPHS AND ALGEBRAIC
CONNECTIVITY

Let G = (V.E) be an undirected simple graph, where V = {1.....n} is the set of
vertices and E is the set of edges. The Laplacian L(G) of graph G 1is defined as
L(G) = D(G)- A(G) , where D(G) 1is the diagonal matrix with vertex degrees on the
diagonal and A(G) is the adjacency matrix of G'. One may also describe L(G) by
means of its quadratic form

(L(G)x, x)= > (x; - % ; J¥

:fj}‘E
LY )

where x =(x,....x,)€ R" . The matrix L(G) is symmetric and positive semidefinite. If
Ay <+ < A, are eigenvalues of L((G) then A, =0 with the corresponding eigenvector

e=(1..... 1) . All other eigenvalues have eigenvectors which belong to the set
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The second smallest eigenvalue A, of L(G), according to M. Fiedler (6], is
called the algebraic connectivity of G and denoted by a(G). In |6] the following

theorem is proved:

Theorem 1. The algebraic connectivity a(G) satisfies the following properties:
(1) a(G)20.a(G)>0 tf and only tf (G is connected.

(1) If Gy =(V.E,).Gy =(V.Ey) and E;, c Ey then a(Gy) < a(Gy). °

The next theorem shows that the level of the algebraic connectivity of (G can
be characterized in terms of the positive semidefiniteness of a suitably chosen matrix:

Theorem 2. Let L(G) be the Laplacian of graph G, and lel a and [ be real
parameters such that f>0.na-f20. Then a(G)z f if and only if the matrix

X =L(G)+ad - I is positive semidefinite, where J is the nxn matrix with all

entries equal lo one and 1 is the unit matrix of order n.

Proof: Let 0=4, <A, <---< A, be the eigenvalues of L(G) and let x' =¢ and

x' €8S.i=2....n be the corresponding eigenvectors which form a basis for R” . It is
well-known that J has two eigenvalues: 0, with multiplicity n-1 and S as its
eigenspace, and n with e as its eigenvector. Therefore

Xe=(L+ad - ple =(an-fl)e

Xx'=(L+ad - pl)x' = (A, -MH)x'. i=2...n

which means that an-fg and A4, -f.1=2.....n are ecigenvalues of X with

eigenvectors e.x“..... x" , respectively.

If X is positive semidefinite then A, - 20, 1e. a(G)z /. Suppose that
a(G)= Ay 2 f.If na < Ay then the smallest eigenvalue of X 1s equal to na - /. As
na - f 20 1t follows that X 1is positive semidefinite. In the case when A, < na the
smallest eigenvalue of X i1s 4, -/ and from the assumption A, - 7 =0 it follows

that X 1s positive semidefinite. B
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The concept of the Laplacian and algebraic connectivity can be extended to
eraphs with positively weighted edges. A C -edge-weighted graph G, =(V.E.C) 1s

defined by a graph G =(V.E) and a symmetric nonnegative welght matrix C such
that ¢; >0 1f and only if li.jje E. Now the Laplacian L(G) 1s defined as
L(Gy) = diag(ry.....r;,,)—C , where r; is the sum of the i-th row of C. Another way to
describe L(G() 1s the following:

(L(Ge) x.x) = Z(:U(x,--—-xj)‘!
. JjE
28
The Laplacian L(G) has characteristies similar to those of L(G). Namely it
1s symmetric, positive semidefinite with the smallest eigenvalue 4, =0 and the
corresponding eigenvector e. As before, the algebraic connectivity a(G.) is the
second smallest eigenvalue of L(G,), which enjoys similar properties to those in

Theorems 1 and 2.

Theorem 3 6| The generalized algebraic connectivity a(G) has the following

properties: a(Ge) =z 0. a(Ge) >0 if and only if G is connectled. *

Theorem 4. Let L(G) be the Laplacian of weighted graph G and let a and [ be
real parameters such that f>0.na-p20. Then a(Gp)zpf if and only if
L(Ge)+ad = I is positive semidefinite.

] 7]

Proof: If /1, <---< 4, are eigenvalues and x'.... x* are the corresponding

cigenvectors of L(G.) we again have 4, =0.x' =¢. x*.... x" € S and the proof follows

the same lines as in Theorem 2. *

Further properties of the Laplacian matrices of graphs can be found in [8].

3. SEMIDEFINITE RELAXATIONS OF TSP

In this section we shall assume that G =(V.E) is a complete undirected
graph, where, as before, V ={l1....n} 1s the set of vertices and E is the set of edges.
Lo each edge 1.y} € E a distance (cost) d;, is associated such that the distance

matrix D =|d;; |, , 1ssymmetricand d;; =0.i=1....n.
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Now the symmetric traveling salesman problem (I'SP) can be formulated as
the problem of finding the Hamiltonian circuit of G with minimal cost.

It is easy to see that a spanning subgraph H of G is a Hamiltonian circuit if
and only if its Laplacian L(H)=[[;;], , satisfies the following conditions:

=28 =18 & n (1)

where A, =a(H) i1s the second smallest eigenvalue of L(H). Namely, if L(H)
satisfies (1) then H 1is a 2-matching, 1.e. it is either a Hamiltonian circuit or a
collection of at least two disjoint subcircuits meeting all of the vertices. According to
(1) of Theorem 1, condition (2) guarantees that H 1s connected, which implies that
H is a Hamiltonian circuit.

It 1s well-known in the theory of graph spectra (see [5]) that the Laplacian of
a circuit with n vertices has the spectrum

2—2C0S(27JIn)s J= L.l

The second smallest eigenvalue i1s obtained for =1 and Jj=n-1, 1lec.
Adg =Ag3=2-2cos(27/n). In the sequel this value will be denoted by #4,, 1e.
h, =2-2cos (27 /n).

The next theorem gives the basis for the discrete semidefinite programming
model of the TSP.

Theorem 5. Let H be a spanning subgraph ‘o/' Gl sueh thatydt) =2t =18. .11,

where d(i) is the degree of vertex i with respect to H , and let L(H)=[l;;], , be the |
corresponding Laplacian. Let a and [ be real parameters such thal « >h, n,
0<p<h,. Then H s a Hamiltonian circuit if and only if the matrix
X =LH)+ad - Bl is positive semidefinite, where J is the nxn matrix with all

entries equal to one and 1 is the unit matrix of order n.

Proof: The conditions of Theorem 5 guarantee that H 1s a 2-matching. Also, from
the given assumptions it follows that na — # > 0 and hence the conditions of Theorem

2 are satisfied. Suppose that H 1s a Hamiltonian circuit. Then a(H)=~h, = f and,
according to Theorem 2, the matrix X 1s positive semidefinite. Suppose now that X
1s positive semidefinite. By Theorem 2 it follows that a(H) = £ > 0 and consequently
(2) holds, which implies that H is a Hamiltonian circuit. *
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Remark 1: The conditions of Theorem 5 guarantee that the smallest eigenvalue of
X 1s always equal to a(H)- /.

It follows from Theorem 5 that a spanning subgraph H of G 1s a
Hamiltonian circuit if and only if its Laplacian L(H) satisfies condition (1) and

X =L(H)+ad - pI 1s positive semidefinite, where > h, n.0< f<h, (2)

Condition (2°) forbids 2-matchings with subcircuits since a(H) =0 obviously implies
that the smallest eigenvalue of X 1is negative. Starting from (1) and (2°) the following
discrete semidefinite programming model of the TSP can be defined:

‘ 1 n l o 1 /1

Imnin F(X) = E Z(——du)x” +‘—Z Z(i,j (3)
i—1j=1 2 2iT1j-1

subject to
X;; =2+a—-p. 1=1....n (4)
I
Zx,jzna—-ﬂ. y=lin (5)
J=1
x“e:a—l,a:, L_}=1o’l !‘-‘;_} (6)
X220 (7)

where X >0 denotes that the matrix X =|x;|, ,1s symmetric and positive
semidefinite and «a and f are chosen according to Theorem 5. Matrix
L =X+ pI-aJ represents the Laplacian of a Hamiltonian circuit if and only if X
satisfies (4)-(7). Indeed, constraints (4)-(6) provide that L has the form of a Laplacian
with diagonal entries equal to 2, while according to (2°) condition (7) guarantees that
L corresponds to the Hamiltonian circuit. Therefore, if X is the optimal solution of
problem (3)-(7) then L™ = X"+ il —aJ is the Laplacian of the optimal Hamiltonian

/l n
circuit of G with the objective function value > —i)-d i )Z,; =-F(X".
=in= & ‘

A matural semidefinite relaxation of the traveling salesman problem is
obtamed when discrete conditions (6) are replaced by inequality conditions:
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min F(X) (8)
subject to

X =2+a-[)’. e =Tl b oellls ¢} (9)
n

D xjj=na-p. i=l...n (10)
71

a—lix,:,- s gl =S VR (11)
X220 (12)

It 1s easy to see that the relaxation (8)-(12) can be expressed in the form of an SDP
problem. Indeed, constraint (9) can be represented as A, o X =2+ a - /7, where A

;18
a symmetric nxn matrix with 1 at the position (:.7) and all other entries are equal to

0. Similarly, condition (10) 1s equivalent to B, c X = 2(na - f7) , where B,

/

has 2 at the
position (z.z) while all the remaining elements of the 7 -th row and the 7 -th column
are equal to 1, and all the other entries are zero. Finally, condition (11) can be
expressed as 2(a—-1)<C;; o X <2a, where C;; has 1 at the positions (i.j) and (/.1
and zero otherwise. Since SDP problem (8)-(12) depends on parameters « and / it
represents a class of semidefinite relaxations of TSP. In the sequel, members of this
class will be refered to as SDP relaxations.

Let us denote by D and D° the feasible set of problem (8)-(12) and its
relative interior. For each X € D the corresponding Laplacian L = X + I - aJ can be

interpreted as the Laplacian of the weighted graph G; =(V.E;.C;), where
E; ={ii. jie E|l; <0} and C =2I-L . According to Theorem 4, if @ and f satisfy
the conditions of Theorem 5 then X >0 is equivalent to a(G; )z /. Hence, by
Theorem 3 graph G; 1is connected. It immediately follows that 2-matchings with

disjoint subcircuits cannot correspond to any X in D .

gy 2

n-1 n-1

It is easy to see that D" #0. Indeed, if e.g. L=(2+ J then

.

X=L+ad-pI=(2+ -P)I +(a- )J has the eigenvalues 2 + - f with

n—1 n-1 n-1
the multiplicity n-1 and na -/ with the multiplicity 1. Since na- />0 and

2+ -f22+ ~h, >0 for n=4 it follows that XeD' ned.

n-1 n-1
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According to Remark 1 for g <h, matrices X which correspond to the
Laplacians of Hamiltonian circuits are in D" | while for g =h, these matrices belong
to D\ D" Itis clear that the best relaxation is obtained for = A, . For that reason in

the numerical experiments reported in Section 4 parameter / 1s always chosen to be

equal to h, . Concerning the parameter « , it 1s always sufficient to choose o =1.

4. NUMERICAL EXPERIMENTS

The semidefinite relaxation proposed in this paper 1s substantially different
from existing T'SP relaxations. In this section we will compare 1t with the well-known
2-matching and 1-tree relaxations (see e.g. [2], [10]). It should first be noted that SDP
relaxation (8)-(12) cannot be theoretically compared either with 2-matching or with 1-
tree. Indeed, if we consider TSP model (3)-(7) 1t 1s easy to see that X which
corresponds to the Laplacian of a 2-matching satisfies (4)-(6) but need not satisfy (7).
In the case of a 1-tree, the condition (4) is relaxed, (5) and (6) hold trivially, while (7)
holds due to the following argument: A 1-tree 7' represents a spanning subgraph of
(7 which contains only one circuit C',, with m vertices, where 3 < m < n . According

to (21) of Theorem 1,a(T)z2a(C,,).As a(C,,)=h,, 2 h, it follows that a(T)z2h, = .

Preliminary numerical experiments with 55 randomly generated TSP models
of dimension 10 < n <20 indicate that SDP relaxation (8)-(12) with f=h, and « =1

mives considerably better lower bounds than 1-tree and 2-matching relaxations.
Namely, 1-tree was worse 1n all 55 cases, while 2-matching was worse in 23 cases and
better only in one case. The experiments were performed on a 486 PC using CSDP 2.2

software package developed by B. Borchers [1]. The mmequality conditions (11) were

- Z : - . . .
handled by adding n° -n slack variables which increased the dimensions of the

e : 9 ) R : iy
unknown matrix in SDP relaxation to n° xn® . This was the main reason for limiting
the dimensions of TSP test examples to 20. It should be pointed out that CSDP 2.2
software package showed very good perfomance and it never needed more than 30

iterations in order to get the solution accurate to 6-8 significant digits.

Table 1 contains details of the numerical experiments. Column 1 indicates the
dimension of the problem, column 2 contains the ordinal numbers of randomly
generated problems for the given dimension, columns 3, 4 and 5 contain the optimal
objective function value of 2-matching, 1-tree and SDP relaxations, respectively. An
asterisk denotes that the function value corresponds to the integral Laplacian matrix,
1.¢. the optinal solution of the T'SP 1s obtained.
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Table 1.

10

11

12

13

14

15

16

Dimension of TSP | Problem No.

2-matching | 1-tree SDP
1 1681* 1275 |1680.9950*
2 2778* | 2185 |2777.9920*
3 1594 | 1164 | 1626.1300
4 2059* | 1924 |2058.9950*
5 2682 2143 | 2672.4910
1 2884* | 2605 | 2884.0000*
2 2231 1684 | 2258.4940
3 1565* 1270 | 1565.0000*
Lt 1222 936 | 1226.8920
5 1999 1431 | 1999.0000
1 2962* 1724 |2962.0000*
2 2416* 1824 |2416.0000*
3 1267* 970 |1267.0010*
4 | 2434* 1664 | 2434.0000*
5 1936 1393 | 1981.7260
1 | 1742* | 1330 [1742.0000*
2 2042 1671 | 2064.4350
3 1786* | 1141 |1786.0010*
4 2616 2000 | 2650.3250
5 2458* | 1635 |2458.0000*
1 1503* | 1047 |1503.0000*
2 2269* 1839 |2269.0000*
3 1955 | 1241 | 1985.5090
4 2153 1663 | 2170.5680
5 2000* 1212 |2000.0000*
1 1548* 811 |1548.0010*
2 1415* | 759 |1415.0000*
3 1813 | 1532 | 1813.0000
4 | 2438 | 1726 | 2455.6730
| 5 1749* 1271 |1749.0000*
1 2579* | 1989 |2579.0000*
2 2189* | 1201 |2189.0000*
3 2130 | 1458 | 2147.9210
4 1435 | 850 | 1447.7110
5 2595* | 1616 [2595.0010*

- — —  — — —  ——— ——— ———  —— ————— — ~——  — — —— -~ — ——— —— — — —
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Table 1. (Continued)

Dimension of TSP | Problem No. | 2-matching | 1-tree SDP

ST 911 |1183.9970*

2 2607* 2001 | 2606.9930*

17 3 1665* 1300 [1664.9950*
4 1564 1064 | 1568.4940
5) 2182 1:_113 2192.2420 |

1 2586 | 2008 | 2606.5870

2 220 10318 E2273:2220

18 3 1562* 925 |1562.0080*
4 2490* 1733 | 2490.0000*

5) 1805 1281 | 1815.9110

1 1224* 782 |1223.9960*

2 2040 1269 | 2039.9930

19 3 1418* 1046 |[1417.9960*
4 1895 1531 | 1897.4480

5) 2006 1641 | 2015.5880

1 1937 1295 | 1953.2990

2 2410 1440 | 2410.2790

20 3 2084 1744 | 2585.1740
4 1754 1369 | 1758.4360

5 1812 | 1029 [ 1817.7610

Although the average behavior of SDP relaxation is better than 1-tree, it is
possible to construct TSP instances with a special structure for which the contrary
holds. This is illustrated by the following example.

Example 1. Let for n =20 a spanning subgraph W of a complete gral_:)h = (VR
be given by Figure 1. Note that W does not contain any Hamiltonian circuit. Consider
the TSP with distance 1 associated to each edge of W , and all other distances equal to

100. In this case both 2-matching and SDP relaxations give lower bound 20, while 1-
tree gives 515, which is the optimal value of the TSP. Such a behavior can be
explained as follows.

Due to the special structure of the TSP here the weighted graph
corresponding to the optimal solution of the SDP relaxation has the same structure as

W. Namely, if X 1is the optimal solution of (8)-(12), E=)?+h”1—J and

EL = {{i. ]} € E‘ Li; < 0) then W = (V.,EL). Therefore, although G[ 15 connected it
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does not contain a Hamiltonian circuit. That is the principal reason for a bad lower
estimation of the optimal value of the TSP obtained by SDP and 2-matching
relaxations. On the other hand, if node 1 i1s removed W decomposes to a collection of
6 subtours and hence any 1-tree has to contain the "expensive” edges of (G, 1.e. edges
which are not in W . Therefore, 1-tree relaxation in this case gives a better lower
bound. B

Figure 1

Example 1 shows that the weighted graph which corresponds to the optimal
solution of the SDP relaxation need not contain any Hamiltonian circuit. However, if
A in SDP problem (8)-(12) is increased over h, the edge connectivity of the

corresponding weighted graph will also be mncreased (see [6]), together with the
probability that it contains a Hamiltonian circuit. Unfortunatelly, for /g > h, matrices

which correspond to Hamiltonian circuits are no longer in the feasible set of (8)-(12),
which means that the optimal value of SDP relaxation need not be a lower bound for
the optimal value of the TSP. Nevertheless, this observation could be the basis for
some heuristics for constructing suboptimal Hamiltonian circuits,
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5. CONCLUSIONS

In this paper we define a class of semidefinite relaxations of a classical NP-
hard combinatorial optimization problem - the symmetric traveling salesman problem.
The efficiency of the proposed SDP relaxation is discussed and some preliminary
numerical experiments are reported, showing that the SDP relaxation gives better
bounds than the well-known 2-matching and 1-tree relaxations.

The proposed relaxation could be used as the basis for developing new exact
algorithms for the TSP applying either a traditional branch-and-bound approach or a
polyhedral approach, as well as for new heuristics. Since the SDP relaxation has a
special structure it would also be interesting to investigate whether existing SDP
methods could be adapted and improved in order to solve this particular problem more
efficiently.
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