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Abstract: Innovations in the field of microelectronics and micromechanies have
enhanced the involvement of "smart" robots in various technical applhcations.
Unfortunately, no robot is completely reliable. Therefore, up-to-date robots are often
connected with a (repairable) safety device. Such a device prevents possible damage,
caused by a robot failure, in the robot's neighbouring environment. However, the
random behaviour of the entire system (robot, safety device, repanr facility) could
jeopardize some prescribed safety requirements. Therefore, an appropriate statistical
analysis 1s quite indispensable to support the system designer in problems of risk
acceptance and safety assessments. We introduce a robot-safety device system
attended by two statistically different repairmen. Our system is characterized by the
natural assumption of cold standby and by an admissible "risky" state. In order to
desceribe the random behaviour of the system, we introduce a stochastic process
endowed with probability kernels satisfying Kolmogorov-type equations. 'I'he solution
procedure i1s based on advanced methods of renewal theory. Next, we derive the
imvariant measure of the I'-system and the long-run availability of the robot. Finally,
we consider the particular but important case of fast repair.
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1. INTRODUCTION

Innovations in the field of microelectronics and micromechanics have
enhanced the involvement of robots in all kind of manufacturing systems |2].

Nowadays, "smart" robots are used in various technical applications, such as
monitoring a complex standby system operating in remote areas.
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Unfortunately, no robot is completely reliable. In general, the failure-free
time of a robot is a random variable characterized by a survival function [9].
Therefore, up-to-date robots are often connected with a (repairable) safety device [4], |
5], [6]. Such a device prevents possible damage, caused by a robot failure, in the robot's
neighbouring environment. However, the stochastic behaviour of the entire system
(robot, safety unit, repair facility) could jeopardize some prescribed safety
requirements. For instance, if we allow the robot to operate during the repair time of
the failed safety device. Such a "risky" state is called admissible if the associated event:
"The robot is operative but the safety device is in repair", constitutes a rare event.
Therefore, an appropriate statistical analysis is quite indispensable to support the
system designer in problems of risk acceptance and safety assessments.

In order to avoid undesirable delays in repairing failed units, we introduce a
robot-safety device system attended by two statistically different repairmen. Each
repairman has his own particular task. Repairman S is skilled in repairing the safety
unit, whereas repairman R is an expert in repairing robots. The system satisfies the
usual conditions (independent identically distributed random variables and perfect
repair [8]). Both repairmen are jointly busy, if and only if, both units (robot + safety
device) are down. In the other case, at least one repairman is idle. In any case, the
safety device always waits, in cold standby [1], until the repair of the robot has been
completed.

In order to describe the random behaviour of the entire system (henceforth
called a T-system) we introduce a stochastic process endowed with probability kernels
satisfying Kolmogorov-type equations. We transform the basic equation into an
integro-differential equation of the (Stieltjes) convolution type. The solution
procedure is based on advanced methods of renewal theory.

Next, we derive the invariant measure of the T-system and the long-run
availability of the robot-safety device.

Finally, we consider the particular but important case of fast repair.

2. FORMULATION

Consider a T-system satisfying the usual conditions.

The robot has a constant failure rate 4 >0 but a general repair time
distribution R(-). R(0)=0 with finite mean p. Let R ()=1-R(-). The operative
safety system has a constant failure rate Ag -0 but a zero failure rate in standby (the
so-called cold standby state) and a general repair time distribution Rg().Rg(0)=0,

with finite mean pg .

-

Without loss of generality (see forthcoming remark), we may assume that

both distributions have density functions (in the Radon-Nikodym sense) defined on
IO‘ ?f) ‘
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In order to describe the random behaviour of the T-system, we introduce a
stochastic process {N,.t =0}, with arbitrary discrete state space |A. B.C. D} < |[0.%)

characterized by the following events:

N, = A} : "Both units are operating in parallel at time 7"

Note that A 1s a renewal state. Figure 1 shows a functional block-diagram of
the T-system operating in state A.

operative safety device idle repairman S

operative robot idle repairman K

Figure 1: Functional block-diagram of the T-system operating i state A

‘N, = B} "The robot is operative but the safety device 1s in repair at tune

Figure 2 shows a functional block-diagram of the T-system operating in
so-called "risky" state B.

busy repairman S

operative robot

idle repairman R

Figure 2: Functional block-diagram of the T-system operating in state B
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(N, =C}:"The safety device is in cold standby and the robot is i repanr at

time 1",

‘N, = D} "Both repairmen are jointly busy at time /",

A Markov characterization of the process [N, .t >0} is pilecewise and
conditionally defined by:

(N,}if N,=A.

(N,.X,)} if N, =B where X, denotes the elapsed repair time of the safety

device 1n progressive repair at tune /.

((N,.Y, )} if N, =C where Y, denotes the elapsed repair time of the robot in

progressive repair at time /.
(O, Xl )Y 20 N =D,
Note that the natural feature of cold standby implies P} X, - Y, =0 .

Therefore, the state space of the underlying Markov process is given by
(A U{(B.x).x2 0} U{(C.y).yZ20ui(D.x.y).x=2y 20} .

Finally, we consider the system in stationary state (the so-called ergodic state) with
invariant measure {P,.Py.P-.Pp). Py +Py +P. +P;, =1, where Py, : K=A.B.C. D

1s defined by

Pr = lim P{N, = K | N, = A}.

>
Furthermore, let

Pg(x)dx:= m P{N, =B. X, edx| N, = A}.

[—x
Fo(y)dy=Im PIN,=C.Y, edy| Ny = A}.
[
Pp(x.y)dxdy = lim P{N, =D.X,edx.Y, edy N, = A}.
f—u

Note that, for instance.

0 X
Ep = j J‘P[)(x.y)dyd,x.

x=0y=0
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3. INTEGRO-DIFFERENTIAL EQUATION

In order to construct a set of differential equations, we apply our usual
technical manipulations related to a version of the supplementary variable technique |
10].

For x - 0. y>0.we obtain the Kolmogorov-type equations

1 d !l % dR(y)
(A + RS(I)+*—*)I’H(I): I ]’1)(.1'._\"'—; ;
R (x) dx dx V-0 R (y)
| o (l ' dR g (x)
( R(y)+——)Pe(y)= | Pp (%: y)——.
R (y) dy Ly ey Rg(x)

A simple conditional probabilistic argument reveals that

[

Ry(x)R (y)
Pp(x—-y.0) dxz y2(),
Pplx.y)= Rg(x—y)

0. otherwise,

T'’he boundary conditions are,

I’H{'O) = JHI}_\ :
c(0)=AP,,

APy (x).if x 2 0.
I"“(I- 0) =5

0. otherwise.

In order to simplify our equations, let

Ppy(1.0) -
£ M w0
fﬁ“(u) —JiA )*SIJA R'u;f”)
(). otherwise,
and
1’(*(“)

M w20,

0. otherwise,

Invoking the boundary conditions and some technical manipulations reveals
that
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P[;(x)=/l.9PA¢1)(x)RS(x):
Pr(y)=APpdc ()R (¥),
Pp(x,y)=AdgPpadp(x —y)Rg(x)fX (¥).

Finally, inserting the above transforms into the corresponding Kolmogorov
equations yields the following preliminary result:

For y>0,

%c/ﬁc(y) = As jo?f'n(x - ¥)dRg(x),
x=y

(«’5(? (0)=1.

The function ¢, (x) satisfies the integro-differential equation
d : r

(A+—)pp(x) = A [fp(x—y)dR(y),
dx y-0

with boundary condition ¢, (0)=1.

4. SOLUTION PROCEDURE

Without ambiguity, we employ the notation

{
(F *u)(t) = Izt(t -7)dF (1),
0

for the convolution of a function wu(¢), bounded on compact intervals, with an
arbitrary probability distribution F(¢).t>0. Then the n-fold convolution of F is

denoted by F"*, where F"" denotes the Heaviside unit-step function with unit-jump
at v =0k

The following theorem, stated for direct reference, 1s a basic tool of advanced
renewal theory [3].

Theorem.

Suppose that a(t) is a bounded function.
T'hen the integral equation

At)=a(t)+(F*A)t),

has a unique solution, bounded on compact intervals, given by
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Al)=(XF" *axt).
n=0

Moreover, if a(t) is directly Riemann integrable on |0.2) and if F(t) is nonlattice,
then

lim A(t)=u ' [a(r)dr,
)

[0 :
!

where

= IrdF(r).
0

In order to determine the solution of our integro-differential equation

(A +i)¢n (x)=A(R*¢p)(x),
dx

we first transform the equation into an appropriate itegral equation.

Invoking the integrating factor ¢* and the boundary condition ¢, (0)=1,

reveals that ¢, (x). x = 0 satisfies the equation
dp(x)=e ™ +(F* ¢ )x),

where

X
F(x)=[(1-e ** “))dR(u) .
()
Note that
[xdF = p+4".
0
Consequently, a straightforward application of our theorem reveals that

bp(x)= T F" (x)re ™

n =)
Observe that

im ¢p(x)=(1+pA) i

X —rU
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Therefore, ¢, is bounded in [0.2). Moreover, ¢, is decreasing (simply note
that ¢7,(x)<0).

Finally, we remark that ¢; is absolutely continuous (with respect to the

Lebesgue measure) on (0.20) , irrespective of the canonical structure of R.
A similar remark holds for ¢, .

As a matter of ftact.

Yy o
pe(¥)=1+4s | [dp(x-wdRg(x)du .
-0 x u
Consequently, the Radon-Nikodym theorem |7| ensures that ¢ 1s also
absolutely continuous on (0.2), wrrespective of the canonical structure of Rg.

['herefore, our mitial assumptions concerning the existence of repair time densities on
10.7) are totally superfluous to ensure the existence of an invariant measure.

5. THE INVARIANT MEASURE

In order to derive the invariant measure of the T-system, we first recall the
relations

PH(.T)ZA'SPI\Q)“(I)HS(J'L
c(¥)=/APsdc(y)R (y),

Pp(x.y)=AAgPadp(x - y)RG(x)R (y).

and we define

TR =Ag I'V‘I)(.I‘)RH‘-")‘!X -'
()

o = ).j(/J(-(_y}R (y)dy,
()

J X
T = AAg I J':;/),,(.r VIR (y)Rg(x)dydx ,
()

r=U'Wv

Using the relations
Py + Py + Do+ Py =114 I = Agps - tp + 10 = Ap(l + v )., reveals that

[ )x‘\ : l ;

B (L+7pX ITA;} '
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Pt B
Bi= ;
(L+7p)1+ Ap)

e Z'B(l +/]L;_’))+/{;J - ’l-‘.\'f}.‘)'

P
C
(1+75)1+Ap)
Tl ASpPs — 7R
D = :
(1+TH )(l'i-/lp)

I
o

The robot-safety device system is only operative in state A. Therefore, the

long-run availability, denoted by A, is given by P, .

Finally, we propose the following risk-criterion: State B is admissible if 77,

satisfies the relation Py < o << 1, for some o -0, called the security level.

Next, we consider the case of fast repair, 1.e. let Agpg << 1 and Ap - 1. Note

that the notion of "fast” repair does not necessarily imply a small average repan time.
T'he mean repair time 1s only supposed to be considerably smaller than the average

life tume of the corresponding unit. A natural assumption that covers almost all

engineering applications!

We recall that v~ 0 and for any R with mean p, (1+ /) ' - )= 1.
Whence,

Asps(l + pA) ! < Ty < ’é"b'pS .

Or

1
A - 1 |
(L+Ap)1l+Agps)

Consequently, the case of fast repair induces a very tight lower bound for A.
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