
Yugoslav Journal of Operations Research
9 (999), Number 1, 129-139

COMMUNICATION MODELS: AN EDUCATIONAL
FRAMEWORK FOR PARALLEL PROG ING

Miroslav HAJDUKOVIC, Branko PERISIC, Danilo OBRADOVIC
Faculty of Engineering, University of Noui Sad

Fruskogorsha 11, 21000 Nooi Sad,
Yugoslavia

Abstract: This paper presents the abstract representation of parallel computers in
the form of communication models . The communication models are intended to be an
educa t ional framework for parallel programming, independent of specific details of
parallel computer architectures .

Keywords: Parallel programming, parall el computers.

1. INTRODUCTION

Monoprocessor computers show a high degree of uniformity 191. That is why
it is possible to represent monoprocessor computers by one abstract model in the form
of procedural high level programming languages 151. Such a model makes
programming transparent to monoprocessor computer architecture details (these
details are the concern of compilers, rather than programmers). Unfortunately,
parallel computers do not show such uniformity 121. According to their characteristics,
different classifications of parallel computers exist. A well known example of such a
classification is the Flynn classification PI of parallel architectures to MISD, SIMD
and MLMD classes. Parallel computers from the MLMD class belong either to
multiprocessors or to multicomputers [10 I. These two subclasses are important
because they influence the style of parallel programming. So , the shared memory style
of parallel programming is inspired by multiprocessors, while the message passing
style of parallel programming is inspired by multicomputers. The first style is simpler
for programmers, but the second style is more general [WI .

Serious differences between the architectures of parallel computers have
influenced many, very different, high level programming languages, adapted to
particular parallel computer architecture 111. 121, l-t I, [61. The close adaptation of high

,

130 M. Hajdu kovic, B. Perisic, D. Obradovic / Communication Models

level programm ing languages to particular parallel computer architectures is a
natural consequence of the necessity to use all advances of a particular parallel
computer architecture to the greatest possible extent. But, it is possible to make an
effor t in the opposite direction and devise abstract models of a parallel computer, best
suited to some problem classes. Such an effo r t is especially important for the purposes
of par allel programming education, because it eliminates unnecessary details of the
functioning of a particular parallel computer architecture, and lets one concen t rate
only on the essence of parallelism.

The abst ract models of a parallel computer could have the form of
communicating sequential processes [11]. The exact form of such an abstract model
depends on the communication pat tern su itable for the opt imal cooperation of
processes needed to solve some classes of problems. In this paper su ch abstract models
are called communication models, and the typical communication models are

•

presented. Their design has been st rongly influenced by gained exper ience in parallel
programming teaching. This exper ience suggests that parallel programming shou ld
benefit as much as' possible from (monoprocessor) multiprogramming lit is easier to
make the t ransition from multiprogramming to true parallel programming, than from
sequent ial to parallel programming). For success in parallel programming teaching it
is important to offer exact (predefined) forms of parallelism (t hat lead one to parallel
solu tions of problems). Such forms of parallelism shou ld be adaptable to different
kinds of problems. Also, they should offer natural ways of connecting sequential and
parallel parts of devised parallel algorithms. All such forms shou ld be uniform and
simple (to be learn and use easily and fast).

The com mu nication models are intended to provide an educational
framework for parallel programming. Examples of their usage are shown, and their
character istics and implementation are discussed.

2. COMMUNICATION MODELS

T he communicat ion models rely upon processes and process cooperation
mechanisms. The processes correspond to independent (parallel) activities . Important
properties of processes are their descriptions , as well as their creation and
destruction. The processes are identified by identities in the fo rm of unique integers
l p;. i = 1.2.3.4....).

T he process cooperation mechanisms are based on mailboxes. and se nd and
receive operations. T here are ordinary (0) and special (s) mailboxes. All mailboxes
have the same (finite) capacity (so every mailbox accepts a fin ite number of
messages). The send operation places a message in to the designated mailbox. The
receive operation pulls out a message from the designated mailbox. Both operations
are asynchronous [31 . T his means tha t if a mailbox is full , sending blocks the process
activity until the mailbox becomes not fu ll. Also if a mailbox is empty receivinsr, , b

blocks the process activity until the mailbox becomes not empty.

•

M. Hajdukovic, B. P eri sic, D. Obradovic / Communicat ion Models Jill

The formal definition of the commu nication models is based on syntax of the
program ming langu age C.

C functions are su itable for the description of processes. The functions which
describe processes are of the process type. The create function is intended for process
creation . The only argu ment of a create function call is the address of a process
function. Process destruction happens au tomatically at the end of process fu nction
execu t ion .

A communica tion model program execu tion begins with the automat ic
crea t ion of t he initial process. Besides that, the initial process function is the same as
ordinary process functions. The initial process has higher pr ior ity than other
processes.

T o simplify the commu nication models' description, the content of messages
is limited tu integer type values. The arguments of a send fu nction call a re a mailbox
ident ity and message content . The unly argument of a receive fu nction ca ll is a
mailbox identity. Such a call returns the received message content. Mailbux identities
are unique integers. Close relationships exist between message boxes and processes .
Consequent ly, process identities are mapped to mailbox identities. Special mapping
functions are u sed for that . The only argu ment of any mapping function call is a
process identity . Such a call returns a mailbox identity .

Four commu nica t ion models are described: array, mesh , tree and any_to_any.

The array commu nication model (for 3 processes) may be presented as:

o o o o

Every process t p; . i = 1.2.3) has two ordinary (0) and one special (s) mailbox. .

The fu nctions: .

in t left tin t);

int right tin t):

int specialtin t) ;

map a process identity to an identity of it s left , r ight and special mailbox
(respect ively). Only the initial process can access all mailboxes. All other processes are
limited only to their mailboxes. Every mailbox has a capacity of one message.
Init ializa t ion of a ll mailboxes is achieved by the initiate_array function call:

void init ia te arraytint);-
The unly argu ment of the initiate_array function call is the tuta l number uf

processes.

,

132 M. Hajdukovic, B. P erisic, D. Obradovic I Communication Models

The mesh commu nica t ion model (for 4 processes) may be presented as:

o

o

o

o

s

o

o

o

o

Every process (p;. i = 1.2.3.4) has four ordinary (0) and one specia l (s)

mailbox (the left mailboxes of the processes P I and P3 are the right mailboxes for the
processes P'2 and P.b as well as the upper mailboxes of the processes PI and P'2 are the
lower mailboxes for the processes P3 and P4) . The functions:

in t upper(int);.

in t lowertint);

in t left tint);

int righ t t int);

int spccia lt int);

map a process identi ty to an identity of it s upper. lower, left . righ t and specia l mailbox
(re pective ly). Only the initial process ca n access all mailboxes. All other processes are
limited only to their mailboxes. Every mailbox has a capacity of one message.
initialization of a ll mailboxes is achieved by th e initiate_mesh function ca ll:

void initiate rnesh tin t .int);-

T he first argument of the initiate mesh function ca ll is the tota l number of-
mesh rows, and the second argument is the tota l number of mesh colu m ns.

The t ree comm u nica t ion model Ifor :3 processes) may be presented as:

o

o

o

(I

o

o

Every process (/'; . ; = 1.2.:3) has th ree ordina ry (0) and OIl(' specia l (s)

mai lbox . 'I'h • functions:

M. Hajdukovic, n. Perisic, D. Obradovi c / Communication Models

int uppert int);

int lowerj leftt int};

int Iowerj -ight tint):

int specialt int);

map a process identity to an identi ty of it s upper, lower Joft , lowerjight and special
mailbox (respectively>. Only t he initial process can access all mailboxes. All other
processes are limited only to t heir mailboxes . Every mailbox has a ca pacity of one
message. Initialization of all mailboxes is achieved by the initiat e t ree function ca ll:-

void initiate_tree tint);

The only argument of the initiate_tree function ca ll is t he total number of processes .

The any_to_any com m u n ication model (fo r a processes) may be presented as:

initial

s o o o

The initial process has a specia l (s) mailbox. Other processes (I~. i = 1.2.3)

have on ly up to one ordinary (0) mailbox. The process identities a re used as the
mailbox identities (integer 0 is used as the identity of t he specia l mailbox). All
processes ca n access all mailboxes. Mailbox capacities are defined during mailbox
initialization:

void initiate any to any tint.in t);- --

The first argument of the initiate_any_to_any function call is the total
number of processes, and the second argument is t he capacity of a particular mailbox.

3. EXAMPLES OF COMMUNICATION MODEL USAGE

The array communication model is su itable for solving the problem of sor t ing
integers (in descending order). Such sor t ing is achieved if eve ry process keeps t he
highest received integer, and sends all other integers to its successo r:

process sor ter rin t index)
I int cou nt, old, new;

count = receive tleft undex j):
if «(--cou nt) > 0)

sendr r ight tindex).cou n t);

old = receivetleft t indexl);
while (cou n t --) > 0)

if ((new = roceive tleft findexl j) > old)
{ senduighttindexr.old);

,

134

};

M. Hajdukovic, B. Perisic, D. Obradovic I Communication Models

old = new; };
else

sendirightundex).new);
sendtspecialtindex).old);

The initial process initiates the array of the mailboxes, creates processes, sends
integers 1, 7 and 5 to sorting, takes them from sor ting and shows the sor ted array:

process initialtvoid)
{ initiate arraytS);-

createt sorter.L l; create tsorter.Z); create(sorter ,3l;
sendtleftt Ll.S); /* number of integers */
send(left(l),l); sendrleftt I j.Z); sendtleftt l j .fi);

showfreceivetspecialt1»);
showtreceivetspeciallZ) l;
showt receivetspecialt 3»);

l .
I ,

The mesh communication model is suitable for solving the problem of matrix
multiplication. For example, the product of matrices A and B is:

x

Calculation of each of the four elements of the product is independent and
can be done by a separate process if it has the necessary elements of matrices A and B .
If process PI has elements all and b l l , process P2 has elements al2 and b22 , process Pa
has elements a 22 and b21, and process P4 has elements a 21 and b12, they can calculate
in parallel one-half of the expression describing the corresponding element of the
product. To calculate the other half, the processes must exchange elements of
matrices A and B. The excha nge is regular, so all processes send an element of matrix
A right , and an element of matrix B down, and receive a new element of matrix A
from the left, and a new element of matrix B from above.

process multiplier(int index)
: int c = 0;

int i = 2·,
int a b·, ,
while (0--) > 0)
{ a = receive tleftrindex j);

b = receive tuppert index jl;
c + = a"b:,
sendt r igh tt index) .a);

M. I lajdukovic, Il . I '('ri . il'. D. Ohrndnvk' I Cnnununicnt inn Mod ..ls

I •,,

sendt lowe rt iudex l .h):

send (specia l(index).c l;

,.,,

,
I

The initial process initiates m es h m uilhoxes , de posi t s th« e le uu- nt.s of matrix A:

11 12
1:3 14

a nd the e le men ts of matrix H:

2 1 :l2
2:3 24

in the appropriate mailboxes . cr eutcs process ss a nd s hows t lH' c lements of th« product
matrix :

process initial ;vo id)

initiate_mesh(2 ,~) ;

send tleft t l l. I I); se nd(k·ft(2) , I 2); I a ll ind u l z I

se ndt l · ft (3),14): 'e nd lle fU 4), 13): I a~2 a nd a~ 1 I

send tuppc r t l),2 1); s "HI (uPI)l' r(~) ,~4) : / hIl and h2~

e n d tupp 1'(3),23): sem llu ppe r(4) ,22); I hz l nnd hl 2

create tm u lt ipl ie r .L l: creute tmul t. ipl ie r .z l:

cr sa teu n u lt iplicr.St: creuteunu ltiplier.d r:
show t receive ts pccinl t 1)); s howt receive !s peciult~)) :

show! receive ts peciult 3 1): show! r rceivet s peciult-l)):
I •,,

T h e tree com m u n ication model is su ita ble fo r so lv in t th« prohleru Ill' the

pa ralle l su m m in g of in teg srs. All processes in charg-e of su m m in g- add two int!' g"!'rs

received from below and se nd up the su m:

process su rn ma tort int ind sx)

: int a .h,c;
a = roceive tlowerjleft.t ind sx l):

h = receivellower_"igh t (index JJ ;

c = a-r h:,
send lu ppe rt index).c);

I •
I .

T h e initial process initia tes t r se m ailboxes , doposits integ-ers I 0 , ~O . :10 and

40 in the a ppropr iate mailboxes , creates proc isses a nd s hows the su m:

process init.ial lvoid)

I initiat e t ree tS);-

•
136 M. Hajdukovic, B. P erisic, D. Obrad ovic I Communicat ion Models

sendtlower left(2),10); sendtlower right(2),20);- -
sendtlower- leftlS),30); sendOower_right(3),40);
create tsummator.L); craate tsummator.z); create tsummator.S):
showl receivetup(1»);

l ;

The any_to_any communication model is su itable for the parallel fi nding of
distances from a gi ven node to all other nodes in a directed gr aph (in this exam ple it is
presumed that the graph consists of th ree nodes). All nodes have dis : arr.es, By
defin ition the distance of the given node is O. Starting distances for all other nodes are
ENDLESS. If a distinct process is assigned to every node , then the requested
distances can be found in parallel. To achieve th is, every process repeats the same
procedu re until all t he distances are found . In the first step of the mentioned
procedu re every process sends potentially new distances to its su ccessors (t here are at
most two successors). In the second step every process receives its potentially new
distance from its predecessors tt here are at most two predecessors):

•

l ;

,
I

process node tin t index, in t old distance)-
int newdistance , predecessor j nu mber, successor_nu mber , change, i;
int succesors jz];
in t dis tances jz];
prcdecessorj nu mber = receive tindex):
successor number = receive tindex):- ,
for ti = O'i < successor number.i + + 1, - '

successors!iI = receive tindex);
distances ji] = receive tindcx):

do
1 change = 0;

if told distance == E DLESS l-
fo r ti = O;i < successorj nu m beri+ +)

sendisuccessorsli l.E DLESS);
e lse

for li = O;i < successorj num ber .i -i- +)
sendtsuccessors]i I.olct distance + distancesIi[);

,
I

for li = O;i < predecessol'_num ber ;i++)
1 new distance = receive tindex):- ,

if told distance > new distance)- -
old distance = new distance;- -
cha nge = 1; : ;

l ;
sendt u.change):

l
whilcn-eceive t indox) > 0);

show nodelindcx.old distance);- -
I •
I ,

M. Hajdukovic, B. Per isic, D. Obradovic / Communication Models 137

The initial process initiates any_to_any mailboxes and deposits in them data
such as the number of predecessors, number of successors, su ccessor identities and
arch lengths tit is supposed that distances from node 1 to nodes 2 and 3 are to be
found and that the arch from node 1 to node 2 has length 10, the arch from node 1 to
node 3 has length 40 and the arch from node 2 to node 3 has length 20). After that
the initial process creates processes and decides when distances have been found
(when there are no changes in the found distances);

process initialtvoid)
{ int change_count,i;

initiate_ant_to_any(3,6);
sendt I.O); /* number of PI predecessors */
sendt Lz); /* number of PI successors */
sendi Lz); sendtLlO); /* PI successor index and arch length */
sendt lB); sendU ,40); /* PI successor index and arch length "l
send(2,1); /* number of P2 predecessors */
send(2,I); /* number of P2 successors */
send(2,3); send(2,20); /* P2 successor index and arch length */
send(3,2); /* number of P3 predecessors */
send(3,0); . /* number of P3 successors */
createtnode.Lfl):
create(node,2,ENDLESS); create(node,3,ENDLESS);
do
{ change_count = 0;

for (i = I ;i < 4;i+ +)
change_count + = receivetfl);

for (i = I ;i < 4;i++)
send(i,change_cou nt);

}
while(change_count > 0);

4. COMMUNICATION MODEL IMPLEMENTATION

One version of the described communication models is implemented in the
programming language conCert (concur ren t C for embedded real t ime) [81 . The
programming language conCert is designed for concurrent programming on a
monoprocessor computer. Although the programming language conCert supports only
semi-par allelism, its multiprocessing envir onment offers a valuable test bed for the
commu nicat ion models.

•

•

M. l lnjduknvic, fl . [' e r illic, D. Obradovic / Comm u nicatinn Mod el s

5. PROPERTIES OF THE COMMUNICATION MODELS

Pa rullel progranuuing, bused on t he com m u n ica t ion models , nuturally follows
fro 11 l (munoprocessor) mul tiprogranuning ; du e to the chosen cha racte r istics of

cuuu n u n icut ion model e lements (the ir proc 'sses and m essage passing primi tives >.

' I' he com m u n ication mod ,Is help to visua lize typica l pa t terns of parallelism

(t hey do no t offer processes a nd m .ssuge passing primitives only , but also define t heir

lopolob'Y >' ' I'he com m u n ication models a re aduptuhle (fo r exa m ple , with no difficul ty
the planur xm un u nicntion models pres m ted cou ld he accommodated to t h ree­
d im ens ional prohl uns).

' l'he com m u n icatio n models in trodu ce s pecia l mailboxes a s a natural in terface

be tween se r ia l a nd purullel parts of t h • su mo prugruin .

' I' he com m u n ica ti on models offer a s im ple, uniform and uhstruct frum ewurk
1'01' purullel progrununing, t he refore t hey are used wi th no difficulties ,

6. CONCLUSION

I~duca tional I' 'asons were h ·h ind t he development of t he com m u n ication
1I10de !:; . ' I' he properties of t h r co uu u u n icution models makes t hem easy to com prchc ud

li nd use . 'I' hat is why t hey a re successfu lly used fi)r lnhuru tory exe rcises in pnrallcl
•pl")1-:"1'a m m m g,

'1' 111' co m m u n ication models ur inspired hy CS I' 1111 , Be tween CS P and t he
couu u u u i 'atio n mudols t he re lire importan t differences , for ixnm ple in the

,ha l'lI 't!' r iHl icH of t he com m u n ication m -chun iem s . Besides tha t , t he com m u n ication

modelH I:,rive precise dn ta uhou t t he co uuuun ica t ion co n ncctio n of processes . Encl:

pnrL i .u lnr cou u n u nicntiu n model iHinfluenced by Hom e parallel com pu te r nrchitocture

c1aHs (1'01' -xu m plo, urrny cor res punds to sys to lic al 'I'IIY, mesh cor res ponds to S IM I)

Ill' .h itcct. u ru , t ree CO lT 'Hponds to dllta flow archi tecture , nny_to_a llY co r res po nds to

hy percu be MI MI) nrchitectur ' J. Hesidcs t he prcseu ted, other co uu u u n ieatio n mudels
11 1'(' pOHHihl(1 a H well (t he ir defini tion depends su lo ly 011 t lu: need to solve HOllW new
,llIHHI)Hof pruhlems).

IU~FbIU~NCgS

III AId, H. u., The /)f "~ ;J.:II aru! Allu/YII;IIIJj' I 'u1'IIIll'l AIJ.:u/';I/III1 .~, I ' runt il'll 11 1111 , I\JH\I .

1·!1 Almuai , (:, H" II l1d (:ottl iuh, A., II;J.:"'Y l'u1'II /I" 1 C'filll/JIII;IIJ.: , llunj lllll ill/ClIlIllll ingfl , IH!:\H.
I II Arulruwa, (:. Il. , L'fJII"/II'1" '/l1 1'/'UJ.:1'II1II 1II ;1IJ.: , 1I11lljlllll in/ClI lI\l lI ings , HHI I.

"II Alldl'IIlVfl , (:. H" li nd Hl'h lloidor, I", lt., "CO l ll~I ' P I. li nd nu tut. iuns Ii II' r nncurron t. pl'ogl'lI llIlIl in /(,
A(,'M ('UIII/JIII;IIJ.: SII"'/l'Y,~ , 10 (IHH:\) :1·,1:1 ,

I ~ I 111ll'I\II fl , ,I" "Cll n PI'0I:" llI lI lll ing Irll liherutud 1" '0 111 t.h« von NOll 1l l11 11 11 s t.v l«? A tu nrt.iun ul s tv l«, ,

lind iI H II IgohI'll 0I' PI'og1'1\111 1:\", ('UIII 1111111;,." I;on » ur III/' A(:M , :l l (I H7H) (i I:\. (i,l l ,

M. Hajdukovic, B. Peri sic, D. Obradovic I Communication Models

•

,

16 \ Bal , 11 . E ., S teine r, 11.. S., a nd Tanen baum , 11.. S., "P rogramming languages lo r dist.r ibutr-d

computi ng systems", A CM COlllfJu t in~ S urucys, 21 (1Hl:l!J) 261 -:322.

171 Flynn, M. J., "Very high -speed comput ing sys te ms", Proc. IEEE, 54 O !J(6) HJ01 -1HO!J.

I ~I Hajdukovic, M., "Concurrent programming in the programm ing language conCe rt", Universit y
textbook (in Serbian), HJ!-J6.

191 Hayes, J . P ., Com puter Architecture and Organizat ion , 2nd ed., McGraw-H ili , 1!J8l:l .
1101 Hennessy, J . L., a nd Patterson , D. 11.., Computer Archit ecture: a 4 tw lt t itatiue Approorh,

Morgan Kaufmann, 1!J90.
1111 Hoare, C. A. R., "Commu nica ti ng sequent ia l processes", Communication s o] the ACM, 21

(1978) 666-677.

•

