Yugoslav Journal of Operations Research
9 (1999), Number 1, 129-139

COMMUNICATION MODELS: AN EDUCATIONAL
FRAMEWORK FOR PARALLEL PROGRAMMING

Miroslav HAJDUKOVIC, Branko PERISIC, Danilo OBRADOVIC

Faculty of Engineering, University of Novi Sad
Fruskogorska 11, 21000 Novt Sad,
Yugoslavia

Abstract: This paper presents the abstract representation of parallel computers in
the form of communication models. The communication models are intended to be an
educational framework for parallel programming, independent of specific details of
parallel computer architectures.

Keywords: Parallel programming, parallel computers.

1. INTRODUCTION

Monoprocessor computers show a high degree of uniformity [9]. That is why
1t 1s possible to represent monoprocessor computers by one abstract model in the form
of procedural high level programming languages [5]. Such a model makes
programming transparent to monoprocessor computer architecture details (these
details are the concern of compilers, rather than programmers). Unfortunately,
parallel computers do not show such uniformity [2|. According to their characteristics,
different classifications of parallel computers exist. A well known example of such a
classification is the Flynn classification [7] of parallel architectures to MISD, SIMD
and MIMD classes. Parallel computers from the MIMD class belong either to
multiprocessors or to multicomputers [10]. These two subclasses are important
because they influence the style of parallel programming. So, the shared memory styvle
of parallel programming is inspired by multiprocessors, while the message passing
style of parallel programming is inspired by multicomputers. The first style is simpler
for programmers, but the second style is more general [10].

Serious differences between the architectures of parallel computers have
influenced many, very different, high level programming languages, adapted to
particular parallel computer architecture [1], [2], [4], [6]. The close adaptation of high

130 M. Hajdukovié, B. Perisi¢, D. Obradovi¢ / Communication Models

level programming languages to particular parallel computer architectures is a
natural consequence of the necessity to use all advances of a particular parallel
computer architecture to the greatest possible extent. But, it is possible to make an
effort in the opposite direction and devise abstract models of a parallel computer, best
suited to some problem classes. Such an effort is especially important for the purposes
of parallel programming education, because it eliminates unnecessary details of the
functioning of a particular parallel computer architecture, and lets one concentrate
only on the essence of parallelism.

The abstract models of a parallel computer could have the form of
communicating sequential processes [11]. The exact form of such an abstract model
depends on the communication pattern suitable for the optimal cooperation of
processes needed to solve some classes of problems. In this paper such abstract models
are called communication models, and the typical communication models are
presented. Their design has been strongly influenced by gained experience in parallel
programming teaching. This experience suggests that parallel programming should
benefit as much as possible from (monoprocessor) multiprogramming (it is easier to
make the transition from multiprogramming to true parallel programming, than from
sequential to parallel programming). For success in parallel programming teaching it
1s important to offer exact (predefined) forms of parallelism (that lead one to parallel
solutions of problems). Such forms of parallelism should be adaptable to different
kinds of problems. Also, they should offer natural ways of connecting sequential and
parallel parts of devised parallel algorithms. All such forms should be uniform and
simple (to be learn and use easily and fast).

The communication models are intended to provide an educational
framework for parallel programming. Examples of their usage are shown, and their
characteristics and implementation are discussed.

2. COMMUNICATION MODELS

The communication models rely upon processes and process cooperation
mechanisms. The processes correspond to independent (parallel) activities. Important
properties of processes are their descriptions, as well as their creation and
destruction. The processes are identified by identities in the form of unique integers
(B 1=1,2:8.4,. 1)

The process cooperation mechanisms are based on mailboxes, and send and
receive operations. There are ordinary (o) and special (s) mailboxes. All mailboxes
have the same (finite) capacity (so every mailbox accepts a finite number of
messages). The send operation places a message into the designated mailbox. The
receive operation pulls out a message from the designated mailbox. Both operations
are asynchronous [3]. This means that if a mailbox is full, sending blocks the process
activity until the mailbox becomes not full. Also, if a mailbox is empty, receiving
blocks the process activity until the mailbox becomes not empty:.

M. Hajdukovic, B. Perisié, D. Obradovi¢ / Communication Models 131

The formal definition of the communication models is based on syntax of the
programming language C.

C functions are suitable for the description of processes. The functions which
describe processes are of the process type. The create function is intended for process
creation. The only argument of a create function call is the address of a process
function. Process destruction happens automatically at the end of process function
execution.

A communication model program execution begins with the automatic
creation of the initial process. Besides that, the initial process function is the same as
ordinary process functions. The initial process has higher priority than other
processes.

To simplify the communication models' description, the content of messages
1s limited to integer type values. The arguments of a send function call are a mailbox
identity and message content. The only argument of a receive function call 15 a
mailbox i1dentity. Such a call returns the received message content. Mailbox identities
are unique integers. Close relationships exist between message boxes and processes.
Consequently, process identities are mapped to mailbox identities. Special mapping
functions are used for that. The only argument of any mapping function call 1s a
process identity. Such a call returns a mailbox identity.

Four communication models are described: array, mesh, tree and any_to_any.
The array communication model (for 3 processes) may be presented as:

0 P, 0 P, 0 Ps 0
S S S

Every process (P..i = 1.2.3) has two ordinary (o) and one special (s) mailbox.

The functions:

int left(int);

int right(int);

int special(int);
map a process identity to an identity of its left, right and special mailbox
(respectively). Only the initial process can access all mailboxes. All other processes are

limited only to their mailboxes. Every mailbox has a capacity of one message.
Initialization of all mailboxes is achieved by the initiate_array function call:

void initiate array(int);

The only argument of the initiate_array function call is the total number of
processes.

132 M. Hajdukovié, B. Peri$ié, D. Obradovi¢ / Communication Models

The mesh communication model (for 4 processes) may be presented as:

0 4{)3 0O .})4

Every process (P.1=1.2.3.4) has four ordinary (o) and one special (s)

mailbox (the left mailboxes of the processes P, and P5 are the right mailboxes for the
processes P, and Py, as well as the upper mailboxes of the processes P, and P, are the
lower mailboxes for the processes Py and P,). The functions:

int upper(int);.

int lower(int);

int left(int);

int right(int):

int special(int);
map a process identity to an identity of its upper, lower, left, right and special mailbox
(respectively). Only the initial process can access all mailboxes. All other processes are

limited only to their mailboxes. Every mailbox has a capacity of one message.
Initialization of all mailboxes is achieved by the initiate mesh function call:

vold initiate mesh(int,int);

T'he first argument of the initiate_mesh function call is the total number of
mesh rows, and the second argument 1s the total number of mesh columns.

The tree communication model (for 3 processes) may be presented as:

O 0

O 0 0 ()

Every process (P.i=1.23) has three ordinary (o) and one special (s)

mailbox. The functions:

M. Hajdukovic, B. Perisic, D. Obradovi¢ / Communication Models 133

Int upper(int);
int lower left(int);
int lower right(int);

int special(int);

map a process 1dentity to an identity of its upper, lower left, lower right and special
mailbox (respectively). Only the initial process can access all mailboxes. All other
processes are lmited only to their mailboxes. Every mailbox has a capacity of one
message. Initialization of all mailboxes is achieved by the initiate tree function call:

vold initiate tree(int);
The only argument of the initiate tree function call is the total number of processes.
The any to_any communication model (for 3 processes) may be presented as:

initial P, P, P,

S 0O (8 9

The 1nitial process has a special (s) mailbox. Other processes (P..i=1.2.3)
have only up to one ordinary (o) mailbox. The process identities are used as the
mailbox identities (integer 0 is used as the identity of the special mailbox). All
processes can access all mailboxes. Mailbox capacities are defined during mailbox
mitialization:

void initiate any to any(int,int);

The first argument of the initiate any to any function call 1s the total
number of processes, and the second argument is the capacity of a particular mailbox.

3. EXAMPLES OF COMMUNICATION MODEL USAGE

The array communication model is suitable for solving the problem of sorting
integers (in descending order). Such sorting is achieved if every process keeps the
highest received integer, and sends all other integers to its successor:

process sorter(int index)
: int count, old, new;
count = receive(left(index));
if ((--count) > 0)
send(right(index),count);
old = receive(left(index));
while ((count--) > 0)
if ((new = receive(left(index))) > old)
{ send(right(index),old);

134 M. Hajdukovié, B. Perisic¢, D. Obradovi¢ / Communication Models

gl niew: e
else
send(right(index),new);
send(special(index),old);
(s

The initial process initiates the array of the mailboxes, creates processes, sends
integers 1, 7 and 5 to sorting, takes them from sorting and shows the sorted array:

process initial(void)

{ initiate array(3);
create(sorter,l); create(sorter,2); create(sorter,3);
send(left(1),3); /* number of integers */

send(left(1),1); send(left(1),7); send(left(1),5);
show(receive(special(1)));
show(receive(special(2)));
show(receive(special(3)));

The mesh communication model is suitable for solving the problem of matrix
multiplication. For example, the product of matrices A and B is:

ay a9 b by ay b1 +a9by, a;1b19+a9bgs
g Q99 by, byy 91611 +ag9by; @969+ ag9byy

Calculation of each of the four elements of the product is independent and
can be done by a separate process if it has the necessary elements of matrices A and B.
If process P, has elements a;; and b,,, process P, has elements a, and by,, process P4
has elements ayy and by, and process P, has elements a,, and b, they can calculate
in parallel one-half of the expression describing the corresponding element of the
product. To calculate the other half, the processes must exchange elements of
matrices A and B. The exchange is regular, so all processes send an element of matrix
A right, and an element of matrix B down, and receive a new element of matrix A
from the left, and a new element of matrix B from above.

process multiplier(int index)

| mt ¢ = 0
Int 1= 2;
int a,b;

while ((1--) > 0)

{ a = recelve(left(index));
b = receive(upper(index));
¢ += a*hb;
send(right(index),a);

M. Hajdukovié, B. Perisi¢, D. Obradovié¢ / Communication Models 136

send(lowertindex) . b): ;
send(special(index) ¢);

The mitial process initiates mesh mailboxes, deposits the elements of matrix A:

11 12
13 14

and the elements of matrix B:

in the appropriate mailboxes, creates processes and shows the elements of the product
matrix:

process initial(void)

| initiate_mesh(2,2);
send(left(1),11): send(left(2),12): /* all and al2 */
send(left(3),14); send(left(4),13); /* a22 and a21 */
send(upper(1),21); send(upper(2),24); /* bll and b22 */
send(upper(3),23); send(upper(4),22); /* b21 and b12*/
create(multiplier,1); create(multiphier,2);
create(multiplier,3); create(multiplier,4);
show(receive(special(1)); show(receive(special(2));
show(receive(special(3)); show(receive(special(4));

The tree communication model is suitable for solving the problem of the
parallel summing of integers. All processes in charge of summing add two integers
received from below and send up the sum:

process summator(int index)

: int a,b.c:
a = receive(lower left(index));
b = receive(lower right(index));
¢ = a+b;
send(upper(index),c);

The initial process initiates tree mailboxes, deposits integers 10, 20, 30 and
40 in the appropriate mailboxes, creates processes and shows the sum:

process initial(void)
{ initiate tree(3);

136 M. Hajdukovié, B. Perisi¢, D. Obradovié / Communication Models

send(lower left(2),10); send(lower right(2),20);

send(lower left(3),30); send(lower right(3),40);
create(summator,l); create(summator,2); create(summator,3);
show(receilve(up(1)));

s

The any to any communication model is suitable for the parallel fir.ding of
distances from a given node to all other nodes in a directed graph (in this exainple it is
presumed that the graph consists of three nodes). All nodes have dis' arces. By
definition the distance of the given node is 0. Starting distances for all other nodes are
ENDLESS. If a distinct process is assigned to every node, then the requested
distances can be found in parallel. To achieve this, every process repeats the same
procedure until all the distances are found. In the first step of the mentioned
procedure every process sends potentially new distances to its successors (there are at
most two successors). In the second step every process receives its potentially new
distance from its predecessors (there are at most two predecessors):

process node(int index, int old _distance)
: int new_distance, predecessor number, successor number, change, 1;
int succesors|2|;
int distances|2|;
predecessor_ number = receive(index);
successor number = receive(index);
for (1 = 0;1 < successor number;i++)
{ successors|i] = receive(index);
distances|i1] = receive(index); }s
do
\ change = 0;
if (old distance == ENDLESS)
for (1 = 051 < successor number;i+ +)
send(successors|i|, ENDLESS);
else
for (1 = 051 < successor number;i+ +)
send(successors|i],old distance+distances|i]);

for (1 = 051 < predecessor number;i++)
: new distance = receive(index);
if (old_distance > new distance)
: old distance = new distance;
change = 1; '
E
send(0,change);
}
while(receive(index) > 0);
show node(index,old distance);

M. Hajdukovi¢, B. Perisic¢, D. Obradovi¢ / Communication Models

The initial process Initiates any to_any mailboxes and deposits in them data
such as the number of predecessors, number of successors, successor identities and
arch lengths (it 1s supposed that distances from node 1 to nodes 2 and 3 are to be
found and that the arch from node 1 to node 2 has length 10, the arch from node 1 to
node 3 has length 40 and the arch from node 2 to node 3 has length 20). After that
the initial process creates processes and decides when distances have been found

(when there are no changes in the found distances):

process initial(void)

{

int change count,i;
initiate_ant to any(3,6);

send(1,0); /* number of P1 predecessors */
send(1,2); /* number of P1 successors */
send(1,2); send(1,10); /* P1 successor index and arch length */
send(1,3); send(1,40); /* P1 successor index and arch length */
send(2,1); /* number of P2 predecessors */
send(2,1); /* number of P2 successors */
send(2,3); send(2,20); /* P2 successor index and arch length */
send(3,2); /* number of P3 predecessors */
send(3,0); . /* number of P3 successors */

create(node,1,0);
create(node,2, ENDLESS); create(node,3, ENDLESS);
do
{ change count = 0;
for G = 11 < 4;1++)
change count + = receive(0);
for G =11<43++)
send(i,change count);

}

while(change count > 0);

4. COMMUNICATION MODEL IMPLEMENTATION

One version of the described communication models is implemented in the
programming language conCert (concurrent C for embedded real time) [8]. The
programming language conCert is designed for concurrent programming on a
monoprocessor computer. Although the programming language conCert supports only
semi-parallelism, its multiprocessing environment offers a valuable test bed for the

communication models.

138 M. Hajdukovié, B. Perigi¢, D. Obradovi¢ / Communication Models

5. PROPERTIES OF THE COMMUNICATION MODELS

Parallel programming, based on the communication models, naturally follows
from (monoprocessor) multiprogramming, due to the chosen characteristics of
communication model elements (their processes and message passing primitives).

The communication models help to visualize typical patterns of parallelism
(they do not offer processes and message passing primitives only, but also define their
topology), T'he communication models are adaptable (for example, with no difficulty
the planar communication models presented could be accommodated to three-
dimensional problems).

The communication models introduce special mailboxes as a natural interface
between serial and parallel parts of the same program,

T'he communication models offer a simple, uniform and abstract framework
for parallel programming, therefore they are used with no difficulties.

6. CONCLUSION

Kducational reasons were behind the development of the communication
models. The properties of the communication models makes them easy to comprehend
and use. That 18 why they are successfully used for laboratory exercises in parallel
Programiming,

T'he communication models are inspired by CSP [11]. Between CSP and the
communication models there are important differences, for example in the
characteristics of the communication mechanisms. Besides that, the communication
models give precise data about the communication connection of processes. Each
particular communication model is influenced by some parallel computer architecture
class (for example, array corresponds to systolic array, mesh corresponds to SIMD
architecture, tree corresponds to data flow architecture, any to any corresponds to
hypercube MIMD architecture), Besides the presented, other communication models
are possible as well (their definition depends solely on the need to solve some new
classes of problems),

REFERENCES

L] Akl S, G, The Design and Analysis of Parallel Algorithms, Prentice Iall, 1989,
2] Almasi, Go S, and Gottlieb, AL, Hhighly Parallel Computing, Benjamin/Cummings, 1989,
o Andrews, G R, Concurrent Programmuing, Benjamin/Cummings, 1991,

4 Andrews, G, R, and Schneider, I', B., "Concept and notations for concurrent programming’,
ACM Computing Surveys, 16 (1983) 3-43.

151 Backus, J., "Can programming be liberated from the von Neumann style? A functional style

and its algebra of programs", Conmumunications of the ACM, 21 (1978) 613-641.

M. Haydukovic, B. Perisi¢, D. Obradovi¢c / Communication Models 139

[6] Bal, H. E., Steiner, A. S., and Tanenbaum, A. S., "Programming languages for distributed
computing systems", ACM Computing Surveys, 21 (1989) 261-322.

7] Flynn, M. J., "Very high-speed computing systems", Proc. IEEE, 54 (1966) 1901-1909.

18] Hajdukovic, M., "Concurrent programming in the programming language conCert", University
textbook (in Serbian), 1996.

9] Hayes, J. P., Computer Architecture and Organization, 2nd ed., McGraw-Hill, 1988.

[10] Hennessy, J. L., and Patterson, D. A., Computer Architecture: a Quantitative Approach,
Morgan Kaufmann, 1990.

(11] Hoare, C. A. R., "Communicating sequential processes", Communications of the ACM, 2]
(1978) 666-677.

