
Yugoslav Journal of Operations Research
8 (W U8J, Numher 2, 32;j·;J2U

UNINTERRUPTABLE AND OTHER REGIONS

Miroslav HAJDUKOVIC, Danilo OBRADOVIC, Branko PERISIC

Faculty of Engineering, University ofNooi Sad
Frushogorsha 11, 21000 Nooi Sad

Yugoslavia

Abstract: This paper exam ines the correspondence between exclusive variables,
accessed by different processes , and atomic variables, accessed by interrupt handler
routines and by different processes. The differences between these two kind of
variables are described. Atomic variables handling primitives are introduced, and the
implementation of these primitives is discussed. Generalization of the critical regions
idea is proposed, and the usefulness of different accessing policies to shared variables
is expla ined.

Keywords: Concu rrent programming, shared data, cr itical regions, s ignaling regions. munitnrs ,
interrupts, interrupt handling.

1. INTRODUCTION

Multiprocessing in a shared memory monuprocessor with preemptive .
schedu ling leads to race conditions and is troublesome when different processes access
the same shared variables (in this paper such variables are called exclusive variables).
For example, if a process producer writes data in an exclusive variable to be read by a
process consumer, it is possible for the consumer to read an erroneous combination of
new and old data. To prevent this, it is necessary that accesses to the exclusive
variable be mutually exclusive. Even with mutually exclusive accesses to the exclusive
variable, unexpected behavior of the producer and the consumer is still possible . For
exam ple , if the producer successively writes the exclusive variable, then some data are
lost. On the other hand, if the consumer successively reads the exclusive variable,
then the same data are read several times. To prevent this, it is necessary that
accesses to the exclusive variable be conditionally synchronized.

Program sections in which only one process at a time is allowed to be active
are called critical sections 161. The mutual exclusion of critical sections is provided by
variables of a special kind, called semaphores, and by two special operations P and V,

:324 M. Hajdukovic, D. Obradovic, B. Peri sic / Uninterruptable and Other Regions

defined for such variables 171 , 181 . The first operation should be used at the beginning
of each critical sect ion, and the second should be used at the end of each critical
section. The P operation stops the process activity at the beginning of a critical section
if there is another process already active inside some other critical section. The V
operation continues the stopped activity of one of the processes waiting to enter one of
the cr it ica l sect ions. It is possible to achieve conditional synchronization in a similar
manner. The main drawback of the P and V operations is their potential for misuse,
which cannot be discovered by the compiler. So, an idea emerged [11, [21, 1111 not to
protect critical sect ions of programs, but to protect exclusive variables. To achieve
this . variables defined as exclusive must be used inside of a special statement, called a
(condit ional) critical region . So, the compiler can detect any misuse of exclusive
variables. and :1 is responsible for enforcing that all critical regions (applied to the
sa me exclusive var ia ble) are mutually exclusive. The drawbacks of critical sections are
poor readability uf the programs and inefficient implementation [51 . Pour readability
of the programs is caused by permission tu use exclusive variables (inside critical
regions) through out an ent ire program. Inefficient implementation was the
consequence of the implicit signaling uf conditions needed for conditional
synchroniza t ion. .

The troubles with critical regions were fixed by the invention of monitors,
and by using explicit sign a ling inside monitors 131, 1121. A monitor is a module which
encapsulates exclusive variables with the operations that act on them. All such
operations are implicitly mutually exclusive (that is enforced by the compiler). For
explicit signa ling it is necessary to introduce variables of a new type, called condition
variables. Besides that . two operations, wait and signal. are defined fur such variables .
The first operation stops the activity of a process until some condition is fulfilled , and
the second operation makes possible the continuation of the stopped activity when the
condition is fulfilled . Explicit signaling raised the dilemma whether (after the
signa ling) to continue the activity of the signaling - process (signa l-a nd-con t inu e
sema nt ics) or to continue the activity of the signaled process (signal-a nd-retu r n
sema nt ics). Such a dilemma is a result of the (ina ppropr ia te) connection between
conditional synchronization and scheduling 1131. Besides that, the monitor concept
unnecessarily connects data encapsulation with mutual exclusion. That causes serious
negative consequences 1131. To avoid such consequences it is suggested to achieve
mutual exclusion by using special regions inside data encapsulation modules. Such
regions are called sign aling regions 1131 because conditional synchronization is based
on conditional variables and wait and signal operations. Signaling regions have signal­
and-continue-bu t-return sema nt ics 1131 (the signaling process leaves its signaling
region and continues its activity if it has the highest priority, while the signaled
process exclusive ly gets permission to enter its signaling region).

Approaches used fur process synchronization accessing the same shared
variables are not su itable for the synchronization of interrupt handling routines and
processes accessing the same shared variables. The shared variables, accessed by
interrupt handling routines as well as by processes, constitute a special subclass of
sha red variables. In this paper such shared variables are called atomic variables. The

M. Hajdukovic, D. Obradov ic, B. Perisic / Uninterruptabl e and Other Regions ::l ~ 5

synchro niza t ion of accesses to atomic variables has practical importance. For example,
when the x and y coordinates of an object are stored in an atomic variable by an
interrupt handling routine, tu be read by a background process in charge of displaying
the object 's pusitiun, it is importan t that all accesses tu such atomic variable be
mutually exclusive. This kind uf mutual exclusion must be achieved by interrupt
disabling, tu prevent changing of the atomic variable by the interrupt handling routine
while the background process is reading it (such mutual exclusion prevents displaying
the object in the wrong posi tion), Besides that, it is important that the background
process can stop its activity in order to expect the event of changing the object's
position . Also, it is important tu enable continuation of the background process
activity. In the meantime, other processes, not involved in displaying the object's
pusitiun, are active.

The rest uf this paper expla ins the usage uf atomic variables and
uninterruptable and other kinds uf regions, and cum pares atomic and exclusive
variables.

2. ATOMIC VARIABLES AND UNINTERRUPTABLE REGIONS

Atomic variables and uninterruptable regions are described in the context uf
the programming language C used fur their implementation.

The consistency of atomic variables is protected unly if all accesses to them
are made under disabled interrupts. This is, by definitiun, true inside interrupt
handling routines. Such routines are defined as functions , designated by the keyword
interrupt (in terru pt functions do not return values). An interrupt function becomes
the interrupt handling routine after its address is placed into the interrupt table. This
is impossible without the specia l interrupt_set function.

Uninterruptable regions are introduced to disable interrupts while processes
are accessing atomic variables. Such regions begin with the keyword uninterruptable,
and end with the keyword back. These keywords bracket statements to be execu ted
under disabled interrupts. The first keyword causes the disabling of interrupts, and
the second keyword returns interrupts to the sta te before the execu t ion of the
uninterruptable region st ar ted. The disabling of interrupts inside of an
uninterruptable region is in effect only for an active process (the context switch
potentially causes interrupt enabling).

All uninterruptable regions are mutually exclusive and accesses to atomic
var ia bles are allowed only inside uninterruptable regions land, of course, inside
interrupt function bodies). To enforce this rule, all atomic variables are marked by the
keyword atomic. Atomic variables are defined as structures with the keyword atomic
preceding the description of all fields.

To stop process activity inside an uninterruptable region until some event
happens, it is necessary to name such event. This is the purpose of even t type
variables. The process stops its activity inside the uninterruptable region by calling

•

a:w M. Llajdukovic, D. Obradovic, B. Peri sic I Uninterruptable and Other Regions

the expect function . The only argument of such a call is an address of the event
variable that names the expected event. The events are connected to interrupts and
they are notified from interrupt functions . Notification of event happening is fulfilled
hy a notify function call. The only argument of such a call is an address of the event
variable , which names the event. Notification of event happening enables the process
expect ing the event to continue its activity. It is important to stress that interrupt
handling routines are more urgent than the processes, and this causes notify function
calls to have signa l-and-cont inue semantics. This means that processes continue their
activity on ly after the notifying interrupt handling routine is finished.

Delaying the activity of II process for some number of time units is a good
example of atomic variables usage. The atomic variable tick:

sta t ic st ruct I
atomic
unsigned long countdown;
even t alarm',

. I tick;
•

conta ins the countdown and alarm fields . The first field is intended to contain a
number of time units, while the second field names the delay interval expiration
event. The initial value of the countdown field is 0 (t he tick variable initialization is
not shown).

To delay its activity, processes call the delay function. The only argument of
such a ca ll contains a number of time units:

void delay tunsigned long duration)
,
I

if (du rat ion > 0)
uninterruptable

tick.countdown = duration;
expect!& tick.alarm);

,.
I ,

back:

(the delay function enables only one process at a time to postpone its activity).

The positive countdown field is decremented whenever a time unit expires .
When t his field is decremented to 0, the delay interval expiration notification occurs.
The clock function describes such interrupt handling: .

sta t ic interrupt clock lvoid)
I
I

if l ttick.countdown > 0) && tt--tick.countdown) = =0))
notifyt&tick.alarm);

I •
I ,

(placing the clock interrupt function address into the interrupt table is not shown).

M. Hajdukovic, D. Obrndovic, B. Perisic / Uninterruptable and Other Regions 3~ 7

The tick atomic variable. the delay function and the clock interrupt function
constitute a module. The delay function (and the module initialization function, which
is not shown) is the only visible part of that module.

3. IMPLEMENTATION OF ATOMIC VARIABLES AND
UNINTERRUPTABLE REGIONS

Atomic variables and uninterruptable regions are implemented as part of the
programming language conCert (concurrent C for embedded real time) [91, 110]. The
programming language conCert is an extension of the programming language C. This
extension is based on the C preprocessor.

Atomic variables are ordinary structures, with the exception that their usage
is limited to uninterruptable regions and interrupt functions.

Interrupt functions are ordinary functions (before their execution the
conCert executive, which is part of every conCert program, saves all processor
registers and restores them after interrupt function execution) .

Behind the keyword uninterruptable there is a hidden function call. Its role is
to save the status register and to disable interrupts. Behind the keyword back there is
a hidden functional call, too. Its role is to restore the status register.

The event type corresponds to the process descriptor's list head. Each expect
function call inserts the active process descriptor into this list, and causes a context
switch as well. The descriptor is pulled out of this list and inserted into the ready list
when the notify function is called by an interrupt handling routine (the context switch
eventually happens only after the interrupt handling routine finishes) .

The solution to the process activity delaying problem, presented as an
example of the usage of atomic variables and uninterruptable regions. is a very
simplified part of the conCert executive code in charge of postponing process
activities.

4. ATOMIC VARIABLES VERSUS EXCLUSIVE VARIABLES

There are several similarities between atomic and exclusive variables. Both of
them are shared variables, therefore special attention is necessary to protect their
consistency. Consequently, both of them can appeal' only in a special kind of region,
Besides that, primitives of a special kind (expect/wait) are necessary to stop the
activity of processes (until some event has happened/until some condition becomes
true). Also, primitives of a special kind (notify/signal) are necessary to continue the
activity of processes (after some event has happened/after some condition becomes
true). But, there are also very important differences between the implementation of

•

:~~8 M. Hajdukovic, D. Obradovic. B. Perisic / Uninterruptable a nd Other Regions

the region requ ired by atomic variables, and of the region required by exclusive
variables, as well as between their primitives, controlling the activities of processes.

T he atomic variable region relies on the disabling of interrupts. Such
disabling is connected to the process activity. The exclusive variable region only
partially relies on the disabling of interrupts, and gives the right of accessing an
exclusive variable tu only one process. Such right is connected to the process itself, not
to its activity . This difference means that context switches are not generally
acceptable inside the atomic variable region, while they are acceptable inside the
exclusive variable region. In the case of the atomic variable region. context switches
are acceptable only if the atomic variable is in a consistent state.

The expect primitive as well as the wait primitive causes a context switch.
but the former potentially enables interrupts, while the latter takes the right of
accessing exclusive variable from the active process.

The notify primitive notifies the happening of the event, while the signal
prim itive signals t ha t the condition is true. The notify primitive does not cause a
context switch (the event cannot be canceled, therefore there is nu need to hurry with
act iva t ion uf the process, expect ing the happening uf the even t). Several successive
notify ca lls are possible. The sign al primitive can cause a context switch (to give the
process a chance, waiting for the condition tu become true, to detect that the condition
is t rue). Several successive sign al calls could be troublesome (could cause a form of
busy waiting 110[).

The similar it ies between atomic and exclusive variables are misleading
because their differences rule their usage as well as their implementation.

5. OTHER REGIONS

Crit ical regions and signaling regions are invented to enable the compiler tu
check the consistency of shared variable usage. The uninterruptable regions are based
on the same idea. All three kinds uf regions offer mutually exclusive access to the

•

shared variables, althou gh they differ in implementations of the mutual exclusion.

Besides needs for exclusive regions, there are examples of shared variable
usage with less restrictive access policies. Fur exam ple, in the five philosophers
problem 171 it is necessary on ly to prevent two philosophers from using the same fork
at the same moment . There is nu reason to prevent two philosophers from using
diffe rent forks a t the same time. Similarly, in the readers and writers problem [41
mutual exclusion is obliga to ry among readers and writers. as well as amung writers,
but nut among readers. For expressing different access policies to shared variables it
is possible tu extend the regions idea by en try and exit protocols. The role of such
pro tocols is to define specific access policies to shared variables. Mutual exclusion is
necessary only for entry and exit protocols, but not for statements bracketed by these

M. Ilnjdukovic, D. Obradovic, B. Peri sic / Uninterruptable ann Oth er Regions 32U

protocols. In this way it is possible to use shared variables in less restrictive ways, yet
still under full com piler contro l.

6. CONCLUSION

Unin ter ruptable regions protect the consistency of a tomic variables in a
simila r way as signaling regions protect the consistency of exclusive variables, but
there are importan t differences between their usage and implementation. Atomic
variables and uninterruptable regions simplify interrupt handling. They played a very
important role in the conCert executive design and implementation .

REFERENCES

III Brinch-Hansen , P ., "A comparison of two synchro nizing concepts", Acta Inform atica , 1 UU72)
1UO-HJU.

121 Brinch-Hansen, P ., "Structured mul t iprogramming" , Comuuications of the A CM, 15 (lU72)
574-577.

131 Brinch-Hnnsen, P ., Operating System Principles , Prent ice Ha ll , lU73.
14 1 Courtois, P .J., l leymans, F., and Parnas, D.L., "Concurrent control with 'readers' and

'writers", Conununicatiou of tlu:A CM, 14 (1971) 667-668.
1.:'1 Courtois, P.J., Heyrnans, F., a nd Parnas, D.L., "Comments on 'A compa rison of two

synchronizing concepts' by Brinch-Hansen", Acta Informatica , 1 (972) 375-376.
11'1 Dijkst.ra, K W., "Solution of a problem in concur rent programming control", Communications

of/he A CM, 8 (lU65) 569.
171 Dijkst ra , B.W., "Cooperat ing seque ntial processes", in: F. Gennyus (ed.), Programming

I,angllages , Academic Press, 1!J68.
[x] Dijkst ra, K W., "Hierarc hical ordering of seque nt ial processes", Acta ln form atica , 1 (971) 115­

1::18.
1')1 Ilajdukovic, M., The Program m ing Langu age ConCert , Univers ity textboo k (in Serbian), 1995.
11°1 Haj riukov ic. M., Concurrent Programm ing in the Programm ing Language Con Cert . University

textbook (i n Serbian), 1996.
I1 I I Hoare, C.AR., "Towa rds a theory of parallel programming" , in: c.A.R. Hoare, and R.H. Perrot t

(eds.), Operating System Techn iques, Academic Press, 1972.
1121 Hoare, c.A.R., "Monitors: an operati ng systems concept", Communications of the A CM, 17

(1974) 549-557.
113 / Reynolds, C.W., "Signaling regions: multiprocessing in a shared memory reconsidered",

S ufturare-Practice and Experience, 20 (990) 325-356.

•

