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1. INTRODUCTION

The variational principle, given first Ekeland |2], was proved for metric
spaces. After that, this problem received a great deal of attention. Numerous powerful
applications in various fields of mathematics were given.

Fuzzy metric space was introduced by Kaleva and Seikkala [3]. The
variational principle and its equivalents in this kind of space have been considered in
many recent papers, some of them are |1}, 7).

The organization of this paper is the following.

Section 2 contains necessary definitions and notions. Section 3 is devoted to
the form of the variational principle and its equivalents. Some theorems of the fixed
point type for single and multi valued mappings are given.

In Section 4 we give some results for probabilistic metric space of the Menger
type, using theorems from previous sections.
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2. PRELIMINARIES

T'he notion of a fuzzy metric space was introduced by Kaleva and Seikkala in
13].

Throughout the paper let R=(-».2), R =|0.x). Let I' denote the set of all
fuzzv numbers that is, the set of all fuzzy sets u: R —|0.1] such that for every

v e (0.1] the set

W =2fxelu(x)2a V20

e

15 compact and convex. If for all ¢ (0.1, «, e R v =}, then « belongs to the set of
non-negative fuzzy numbers F .

It 1s obvious that, if «wel'" | then «,=|a,.b,|, a,.b,c R U o for all
ae(0l1].

Let X be a nonempty set, d:. X x X -5 [ | L and R are symmetric mappings
from  [01]«]0.1] »>[01] nondecreasing in both arguments such that L(0.0)=0,
R(l.1)=1. We shall denote

|(I(-r* ._V)IH- = IA”('T-}’)* i():.r('r‘y)l

and by /.. the indicator function of a.

1(&

T'he quadruple (X.d.L.R) 1s a fuzzy metric space and d a fuzzy metric iff

].. (Z(.\‘.‘Y)ZI:“: <:>x=_'}’ ]
2. dix.y)=d(y.x)forallx.ye X

J.forall x.y.ze X

d(x.y)e+0)2 Lid(x.z)(¢).d(z.y)0))
whenever ¢ € 4 (x.2).0 € Aj(z.y)and ¢ +0 < A (x.y)
d(x.yNe+0)< R(d(x.z)e).d(z.y)0))

Whenever & 2 4 (x.z2).0 2 4j(z.y)and £ +0 2 4, (x.y)
It im,_, ,,R(a.a)=0,then the family

U={U(e.a):e>0, ae(0l]!

of sets
U(e.a)= (x.y)eXxX:p,(x.y) <&l

forms the basis for a Hausdorff uniformity on X x X .
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T'he sots
N, (a0 = tye X: py(a.y)<e

form the basis for a Hausdorff topology on X and this topology is metrizable.

T'he sunset Ac X is fuzzy bounded if there exists a we I’ lim, |, u(a)=0

such that A (x.y)<a,and p,(x.y)<b, forall x.ye A. ae(0.1], where «, = |a,.b,|.

The diametar d(A) of fuzzy bounded set Ac X is d(A)=sup, y pd(x.y).

It 1s obvious that

(d(A)),; = [SUPy v n A (X 9), SUP, ven (2] =|d, (A).d,(A)], ae(0.1].

3. THE VARIATIONAL PRINCIPLE AND ITS EQUIVALENTS IN
FUZZY METRIC SPACES

Let (N.d.L.R) be a fuzzy metric space such that lm_, ,,R(a.a)=0,

im, ,, d(x.y)a)=0 forall x.ye X andlet ¢: X x X - (-».2] be a function which is

lower semicontinuous in the second argument, (1)

Mx.x)=0 forall xe X, (2)
Px.X)<P(x.2)+¢d(z.y) forall x.y.ze X,

there exists x € X such that inf ¢(x.x)> -« . (3)

xe X
The relation < is introduced by the equivalence

x<yoVae(0l], p,(x.y)+¢4(x.y)<0. (4)

Lemma 1. I/ the [function ¢: X xX - (-»o.»| satisfies (2), then the relalion < s

reflextve, antisymmelric and transtlive (relation < is an order in X).

Proof: Since for all ae(0.1] p, (x.x)=0=—-¢(x.x), we get that x<x for all xe X.

Further, is x <y and y< x, then for every a e (0.1}
P (x.y)<-¢(x.y) and p,(y.x) < —¢(y.x).

T'he equality p,, (x.y) = p,(y.x) implies that for all « e (0.1]
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2p (X.V)E-¢p(x.y)—¢g(y.x)=-d(x.x)=0=>x=y.
To prove the transitivity we assume that x<y and y< z This means that
dx.y)a)=0 for all a>-¢(x.y)>0 and d(y.z)b)=0 for all b>-¢(y.z)>0. On the

other hand, for every &> —¢(x.2) 2 -¢(x.y)-¢(y.z), there exist a>—-¢(x.y)>0 and

b>—¢(y.z)>0 such that

dix.z)e)< R(d(x.y)a).d(y.z)b))=R(0.0)=0,
that is, for all « e (0.1]

P, (x.2) S -¢(x.2) = XSZ.

For every xe X we define the set S(x)= lye X x<y!, where the relation <

is introduced by (4). Let x, € X be such that

(a) any nondecreasing Cauchy sequence in S(x,) has an upper bound in X and
(b) for any x« S(x,) and & >0, there exists ye S(x,) such that d_(S(¥)) <« for

every o< (0.1}.

In the next seven theorems, let (X.d.L.R) be a fuzzy metric space (not
(*)y necessarily complete, ¢: X x X - (-».2| be such that (2) is satisfied and the

relation < defined by (4) be an order in X satisfying (a) and (b).

Theorem 1. [/ (*) is satisfied, then there exists x™ € S(xy) such that for all xe X\ |x"
p (x" x)+¢(x".x)>0 for some ae(0.1]. (5)

Proof: Using assumption (b), we shall form a Cauchy sequence ix,},. n. Since

Xy €S(xg), for £ =1 there exists x; € S(x;) such that d,(S(x;))<1. If =, then

there exists x, € S(x;) such that J,,(S(xg))< % Continuing this process, for ¢ = *,17

there exists x, € S(x, ;) such that d,(S(x, ))<,_l,' for all ae(0.1]. The sequence

-

i, n 18 nondecreasing (x; < xy, <..< x, <..) and it is Cauchy sequence

s

X

1

(d,(x,.%,,)< min:%.ﬁ: for all ae(0.1].

By (a) we get that there exists an upper bound x" € X . Since x,< x . this

means that a" e S(x,) and x"e() . S(x,). But d,(S(x,))— 0, which implies that

x =hm, ,x,.Inorder to prove (5) we assume that there exists xe X\ |x"} such that
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d,(x . x)+d(x . x)<0 forall ae(0.1],

L 4

that 1s, x" < x. Then x together with x* belongs to S(x,) forall ne N and p, (x.x )<

iy

d, (S(x, ))f:f. Putting n—w©, we get that p_(x.x")=0 for all ¢e(0.1] which
means that x=x". Since we chose x from X \!x*!, we have that the assumption

N

X < x 1s not corveet and hence (5) 1s true.

Theorem 2. Let (%) be salisfied. If A c X has the property thal [for cvery xe S(x,) A

: . ‘ " .
there exists y € S(xy)  1x) such that x<y, then there exists x” € S(x, )N A.

Proof: From Theorem 1 we know that there exists x” € S(x;) such that x < x* for

all xe X\i{x"}.1tis obvious that x" € A ,ie. x" €S(x,)nA.

Theorem 3. Lel (%) be salisfied. 1f for cvery xe S(x,) with ml, yd(x.y)<0 (here

exisls ye X tx} such that x<y, then there exists x" € S(x,) such thalt ¢(x".y)=0 [or

u/s’ D= JY :

Proof: It A= xe X ml, y¢(x.y)=0}, then the assumptions from the theorem could
be formulated by: for every xe S(x,) Athere exists ye X |x! such that x< y. Now

we can apply Theorem 2 which means that there exists x” € S(x,)n A

Theorem 4. [/ (he condilions (¥) are salisfied and if f:X —>X is a [unclion

: L " . = . i - * - _
salis/ying x< [lx) forall xe X, then ['has a fixed poinl x € S(x,)).

A . ¥ ¥ o - . - F ¥
Proof: By Theorem 1, there exists x € S(x,) such that x T x forevery xe X\ jx |,

If we suppose that f(x")=x , then for some e (0.1}
o [l ))Fdx . filx ) >0,

that is, x~ < /[(x7). This contradicts the assumption of the theorem that x< f(x) for

H“ S\ 4'\.- 3

rgy 2 - AR U7 AT : R 2 oA Y : .
I'heorem 5. Lel the conditions (%) be satisfied. If F: X — 27 \10} 1s a mullivalued

mapping such that for cvery xeX and cvery yeF(x) x<y, then (here exists

x € Sxy) stuchithal” Elx")=1x"}.
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=
e
I

Proof: If f:S(x,) > X is a selection of I, we can apply Theorem 4 to /, which means
that there exists x° € S(x,,) such that f(x")=x".If F(x)# !x} for all xe S(x,), then
cither xe F(x) or xe F(x). The selection formed by f(x)=ye F(x)' {x} has no fixed

; . . o Lk FEN). e : * ~
point, which 1s a contradiction. This means that there exists x € S(x,) such that

»

F(x )=4x }.

Theorem 6. L./ the conditions (*) be satisfied. I} FF: X — 2%\ 10! is @ multivalued
mapping such that for every xeS(x,) F(x) there exists ye X \xi [or which x<y,

then there exists x° € S(x) such that F(x™)=x"}.

Proof: Invoking Theorem 1, x*eS(x(,) is an element for which x* $x for all

xe X\!x"!. The supposition that x* e F(x*) means that x" € S(x,) \/F(x"). Then

.

. . * c
<y which contradicts x T x forall xe X jx .

» .

there exists ye X ' x| such that x

Theorem 7. The statements of Theorem 1, Theorem 2, Theorem 3, Theorem 4,
Theorem 5 and Theorem 6 are equivalent.

Proof: So far we have proved the imphcations Theorem 1 = Theorem 2, Theorem 2
= T'heorem 3. Theorem 1 = Theorem 4, Theorem 4 = Theorem 5 and Theorem 1 =
Theorem 6.

The implications Theorem 6 = Theorem 4 and Theorem 5 = Theorem 4 are
obvious, since the single-valued mapping is a special case of multivalued mapping.

It only remains to prove that Theorem 3 = Theorem 1 and Theorem 4 =
Theorem 1.

To prove that Theorem 3 = Theorem 1, we shall assume that x° € S(x,)

from Theorem 3 (p(x”".x)= 0 for all xe X) is such that (5) does not hold, i.e.
pa x)+g(x . x)<0 forall ae(0l] andall xe X\ ix™} . ()

It 1s obvious that if ¢(x”.x) =0 forall xe X and p,(x".x) 20, then together
with (6) we get p, (x".x)=0 for all ae(0.1]. But we chose x from X \!x"! . that is,
p,x .x)>0 for some «e(0.1]. This is a contradiction.

To complete the proof, one needs to show that Theorem 4 = Theorem 1. If
I'heorem 1 does not hold, then for every xe S(x,) there exists ye X !x! such that

x<y Weshall form f:S(x,)=> X by fix)=y.

If Theorem 4 holds, then there x"e8(x;) such that [(x")=x" which

contradicts the supposition that ye X {x!.
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Lemma 2. [/ (X.d.L.R) is a [uzzy metric space and the function ¢: X x X — (=]
satisfies (1), (2) and (3), then for any xe S(x) and & >0, there exists ye S(x) such

that E”(S( y))<¢ forevery ae(01].
Proof: L.et xe S(x). Then

ml dlyv.z)2 mt  |éh(x.2)-d(x.x2)] 2

= & :.;{ X AL ISlE 3 )

> ml ¢Pl(x.z2)-¢d(x.x)>-n,
= s

-

that 1s, there exists ae Rl g, ¢(x.z)=a . We shall choose ye S(x) such that
Hx.y)<a +i)—

Sinilarly as in the previous case, we get

. . A
b= ml ¢(y.z)2 ml P(x.2)-gd(x.y)=2——.
zeo(y) - SiX) 2

Finally, to finish the proof, it remains to show that (7” (S(y))<e.

If z,.z, €S(y), then for every oe(0.1].

, L& &
P ¥-21) S —¢(y-21) £ 55 d(y.z )(-5-) <

P, (V.29) S —¢(y.29) =<

LY

" c:c{()f.zg)(%)c:a.

Iul"‘“

Since lm, ,, Ria.a)=0 for every oe(0.1] there exists fe(0.1] such that

B/ /)< o . Then we get

-

& N
d(z).z, (&)< R(d(y.z )(T;)' d(y.zy )(T;")) <R(fp.P)<
which  means that  p (z,.z2,)<¢  for every «o=(0.1]. Hence. d,,(Siy)=

= SUp. Stvi Pel2p-20)=¢ forall ee(0.1].

lllnn-l -

Lemma 3. |5| I/ (X.d.L.R) is a complele fuzzy melric space and (he [unction
g X « X - (—=.2| salisfies (1) and (2), then every nondecreasing Cauchy sequence has

an upper bound in X.

Theorem 8. [/ (X.d.L.R) is a complele fuzzy melric space and the [unclion
g X« X > (—»=.7| salisfies (1), (2) and (3), then Lhe next six stalemenls are equivalent:
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there exists x* € S(¥) such that forall ye X\ix"!

P, x .x)+d(x .x)>0 for some ae(0.1]),

i A X has the property that [or every x'eS(X)n A there exists ye X |x) such

that x< vy, then there exists x” € S(X)n A,
tf Jor every xe S(x) with mly, yo(x.yv)<0 there exisis ye wx) such that x< v,
then there exists x* € S(X) such that ¢(x".y)=20 forall ye X,

i f X > X is a [unction satisfying x< f(x) for all xe X, then [ has a [ixed

: ¥ -y -
point x € 5(x),

i1 X —2%\10! is a multivalued mapping such that for every xe X and every

ve F(x), x< vy, then there exists x" € S(x) such that F(x™)=x"!,

if F:X—- 24 V10! s a multivalued mapping such that for every xe S(x) F(x)
. = , . . - y, -~ -
there exists some ve X \x) for which x<y, then there exislts x € S(x) wilh

x ell(x ).

Proof: Usimg Theorem 7, Lemma 2 and Lemma 3, we get T'heorem 8.

4. THE VARIATIONAL PRINCIPLE AND ITS EQUIVALENTS IN

PROBABILISTIC METRIC SPACES

The function F:R 5|01 (R denotes the set of reals) which i1s left

continuous, nondecreasing with sup,, p F(x)=1, 1s a distribution function. Let D be

the sot of all di=tribution functions.

The triplet (X.F.t) where Xis any set, I/ X « X — D 1s such that

v o=, cdorall xyeX,
F, ,(v)=1 forall v>0sx=y.
F. ,(0)=0 forall xyvelX.

I, y(ot+u) = 1(F, (v).F. () forall x.yv.ze X and nwveR .

and ¢ 01«01 - ]0.1] 15 commutative, nondecreasing, associative and t(a.l)=a for

all ae|0.1],15 a Menger space.
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In [3] 1t was proved by Kaleva and Seikkala that every Menger space (X.F.t)
1s a fuzzy metric space (X.d.L.R) where u, , =supiv: F, ,(v)=0} and

0 o WUy o

dix.y)u) =

e Y

== s o) 1=

Rla.b)=1-t(l-a.l1-b). a.be|0.1]
L=0

If 9: XxX > (-».2| 1s a function satisfying (1), (2) and (3), then we define

the relation < by

xsy=I, (w)zHu+g¢x.y)) forall u=>0 (7)
0 u<0 o | :
where H(u) i o For every xe X by S(x) we denote set S(y)=1ye X x < yi
l i >

Lemma 4. The relation < defined by (7) is an order itn X.

Theorem 9. Lelt (X_F.t) be a complete Menger space such that h,  tta.a)=1 and
¢ XN xX o (—x.»n| be afunclion salisfying (1), (2) and (3). Then the statements (ii)-(vi)

(from Theorem 8) and
(1) there exists x" € 8(x) such that for all xe X\ ix™!
I', ()< Hu+¢(x.y)) [or some ue R,

are equivalent.
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